
Samuel A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of 8-Aminoquinoline-Directed Ni-Catalyzed C(sp ³)–H Functionalization: Paramagnetic Ni(II) Species and the Deleterious Effect of Carbonate as a Base. Organometallics, 2021, 40, 2970-2982.	2.3	9
2	Influence of <i>N</i> -Heterocyclic Carbene Steric Bulk on Selectivity in Nickel Catalyzed C–H Bond Silylation, Germylation, and Stannylation. Organometallics, 2019, 38, 436-450.	2.3	25
3	Mechanistic Insight into H/D Exchange by a Pentanuclear Ni–H Cluster and Synthesis and Characterization of Structural Analogues of Potential Intermediates. Organometallics, 2018, 37, 116-126.	2.3	18
4	Synthesis of Surface-Analogue Square-Planar Tetranuclear Nickel Hydride Clusters and Bonding to μ ₄ -NR, -O and -BH Ligands. Inorganic Chemistry, 2018, 57, 2438-2446.	4.0	15
5	Dismantling of Vinyl Ethers by Pentanuclear [(i Pr 3 P)Ni] 5 H 6 : Facile Cooperative Câ^'O, Câ^'C and Câ^'H Activation Pathways. Chemistry - A European Journal, 2018, 24, 14282-14289.	3.3	11
6	Nickel-Catalyzed C–H Silylation of Arenes with Vinylsilanes: Rapid and Reversible β-Si Elimination. Journal of the American Chemical Society, 2017, 139, 9401-9407.	13.7	42
7	Influence of the Transmetalating Agent in Difficult Coupling Reactions: Control in the Selectivity of C–F Bond Activation by Ni(0) Complexes in the Presence of AlMe ₃ . Organometallics, 2017, 36, 1436-1446.	2.3	12
8	Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster. Nature Chemistry, 2017, 9, 1282-1285.	13.6	30
9	Versatile (η6-arene)Ni(PCy3) nickel monophosphine precursors. Chemical Communications, 2017, 53, 13176-13179.	4.1	8
10	Facile Deep and Ultradeep Hydrodesulfurization by the [(iPr3P)Ni]5H6 Cluster Compared to Mononuclear Ni Sources. Inorganic Chemistry, 2015, 54, 11977-11985.	4.0	17
11	Diamagnetic molybdenum nitride complexes supported by diligating tripodal triamido-phosphine ligands as precursors to paramagnetic phosphine donors. Dalton Transactions, 2015, 44, 14925-14936.	3.3	10
12	Mechanistic insight into carbon–fluorine cleavage with a (Pr3P)2Ni source: Characterization of () Tj ETQq0 0 0 422, 86-94.	rgBT /Ove 2.4	erlock 10 Tf 5 27
13	Carbon–Hydrogen Bond Stannylation and Alkylation Catalyzed by Nitrogen-Donor-Supported Nickel Complexes: Intermediates with Ni–Sn Bonds and Catalytic Carbostannylation of Ethylene with Organostannanes. Organometallics, 2013, 32, 4174-4184.	2.3	23
14	Synthesis and chemistry of bis(triisopropylphosphine) nickel(<scp>i</scp>) and nickel(0) precursors. Dalton Transactions, 2013, 42, 1461-1475.	3.3	85
15	Dinuclear Ni(I)—Ni(I) Complexes with Syn-Facial Bridging Ligands from Ni(I) Precursors or Ni(II)/Ni(O) Comproportionation. Organometallics, 2013, 32, 2944-2951.	2.3	34
16	Catalytic Hydrogen/Deuterium Exchange of Unactivated Carbon–Hydrogen Bonds by a Pentanuclear Electronâ€Deficient Nickel Hydride Cluster. Angewandte Chemie - International Edition, 2012, 51, 11753-11756.	13.8	25
17	Experimental Study of the Reaction of a Ni(PEt ₃) ₂ Synthon with Polyfluorinated Pyridines: Concerted, Phosphine-Assisted, or Radical C–F Bond Activation Mechanisms?. Organometallics, 2012, 31, 1361-1373.	2.3	50
18	Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Si–H and Si–C Activation. Organometallics, 2012, 31, 3599-3609.	2.3	57

SAMUEL A JOHNSON

#	Article	IF	CITATIONS
19	A mechanistic investigation of carbon–hydrogen bond stannylation: synthesis and characterization of nickel catalysts. Dalton Transactions, 2012, 41, 8135.	3.3	13
20	Mechanistic implications of an asymmetric intermediate in catalytic C–C coupling by a dinuclear nickel complex. Chemical Communications, 2011, 47, 9233.	4.1	51
21	Characterization of Intermediates in the Câ^'F Activation of Tetrafluorobenzenes using a Reactive Ni(PEt ₃) ₂ Synthon: Combined Computational and Experimental Investigation. Organometallics, 2011, 30, 441-457.	2.3	44
22	CO ₂ production in the bromateâ€1,4â€cyclohexanedione oscillatory reaction. Journal of Physical Organic Chemistry, 2011, 24, 507-512.	1.9	6
23	Carbonâ^'Hydrogen Bond Oxidative Addition of Partially Fluorinated Aromatics to a Ni(P ^{<i>i</i>} Pr ₃) ₂ Synthon: The Influence of Steric Bulk on the Thermodynamics and Kinetics of Câ^'H Bond Activation. Organometallics, 2010, 29, 6077-6091.	2.3	56
24	Catalytic Câ^'H Bond Stannylation: A New Regioselective Pathway to Câ^'Sn Bonds via Câ^'H Bond Functionalization. Journal of the American Chemical Society, 2010, 132, 11923-11925.	13.7	91
25	Solid-State ⁹¹ Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors. Journal of the American Chemical Society, 2010, 132, 18301-18317.	13.7	28
26	Selective CF Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187.	13.8	81
27	A Combined Experimental and Computational Study of Unexpected Câ^F Bond Activation Intermediates and Selectivity in the Reaction of Pentafluorobenzene with a (PEt ₃) ₂ Ni Synthon. Organometallics, 2009, 28, 3842-3855.	2.3	87
28	Mesityl Alkyne Substituents for Control of Regiochemistry and Reversibility in Zirconocene Couplings: New Synthetic Strategies for Unsymmetrical Zirconacyclopentadienes and Conjugated Polymers. Journal of the American Chemical Society, 2009, 131, 4917-4927.	13.7	22
29	Unsymmetrical Zirconacyclopentadienes from Isolated Zirconacyclopropenes with 1-Alkynylphosphine Ligands. Organometallics, 2009, 28, 1252-1262.	2.3	30
30	A Phosphineâ€Mediated Throughâ€Space Exchange Coupling Pathway for Unpaired Electrons in a Heterobimetallic Lanthanide–Transition Metal Complex. Chemistry - A European Journal, 2008, 14, 721-730.	3.3	28
31	Bridged Dinuclear Tripodal Tris(amido)phosphane Complexes of Titanium and Zirconium as Diligating Building Blocks for Organometallic Polymers. European Journal of Inorganic Chemistry, 2008, 2008, 471-482.	2.0	21
32	Unexpected Intermediates and Products in the Câ^'F Bond Activation of Tetrafluorobenzenes with a Bis(triethylphosphine)Nickel Synthon: Direct Evidence of a Rapid and Reversible Câ^'H Bond Activation by Ni(0). Journal of the American Chemical Society, 2008, 130, 17278-17280.	13.7	110
33	1,4-Shifts in a Dinuclear Ni(I) Biarylyl Complex:Â A Mechanistic Study of Câ~'H Bond Activation by Monovalent Nickel. Journal of the American Chemical Society, 2007, 129, 810-819.	13.7	84
34	Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond Pathway for31P-31P Spinâ^'Spin Coupling. Journal of the American Chemical Society, 2006, 128, 14992-14999.	13.7	52
35	Facile assembly of a Cu9 amido complex: a new tripodal ligand design that promotes transition metal cluster formation. Chemical Communications, 2006, , 1221.	4.1	35
36	Nickel(0)-Catalyzed Isomerization of an Aryne Complex:Â Formation of a Dinuclear Ni(I) Complex via Câ´'H Rather than Câ^'F Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807.	13.7	64

SAMUEL A JOHNSON

#	Article	IF	CITATIONS
37	Diligating Tripodal Amido-Phosphine Ligands:  the Effect of a Proximal Antipodal Early Transition Metal on Phosphine Donor Ability in a Building Block for Heterometallic Complexes. Inorganic Chemistry, 2006, 45, 7435-7445.	4.0	42
38	Ligand Design for the Assembly of Polynuclear Complexes:  Syntheses and Structures of Trinuclear and Tetranuclear Aluminum Alkyl Complexes Bearing Tripodal Diamidoselenophosphinito Ligands and a Comparison to Related Tripodal Triamidophosphine Complexes. Organometallics, 2006, 25, 5594-5602.	2.3	21
39	Lewis Adducts of the Side-On End-On Dinitrogen-Bridged Complex [{(NPN)Ta}2(?-H)2(?-?1:?2-N2)] with AlMe3, GaMe3, and B(C6F5)3: Synthesis, Structure, and Spectroscopic Properties. Chemistry - A European Journal, 2005, 11, 604-618.	3.3	42
40	Activation and cleavage of alkynes by the dinuclear tantalum complexes ([NPN]Ta)2(µ-H)4 and ([NPN]Ta)2(µ-η1:η2-N2)(µ-H)2 (where NPNâ€,=â€,PhP(CH2SiMe2NPh)2). Canadian Journal of Chemistry, 2005, 652-660.	8.31,	27
41	Functionalization and cleavage of coordinated dinitrogen via hydroboration using primary and secondary boranes. Canadian Journal of Chemistry, 2005, 83, 315-323.	1.1	48
42	Regioselective Coupling of Pentafluorophenyl Substituted Alkynes:Â Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199-4211.	13.7	67
43	Title is missing!. Angewandte Chemie, 2002, 114, 3861-3864.	2.0	40
44	Hydroboration of Coordinated Dinitrogen: A New Reaction for the N2 Ligand that Results in Its Functionalization and Cleavage. Angewandte Chemie - International Edition, 2002, 41, 3709-3712.	13.8	128
45	Reaction of [P2N2]TaCH2(Me) with Ethylene:Â Synthesis of [P2N2]Ta(C2H4)Et, a Neutral Species with a β-Agostic Ethyl Group in Equilibrium with an α-Agostic Ethyl Group ([P2N2] =) Tj ETQq1 1 0.784314 rgBT /Overlo	c1x3110 Tf 5	05417 Td (P
46	New Mode of Coordination for the Dinitrogen Ligand:Â Formation, Bonding, and Reactivity of a Tantalum Complex with a Bridging N2Unit That Is Both Side-On and End-On. Journal of the American Chemical Society, 2001, 123, 3960-3973.	13.7	195
47	The continuing story of dinitrogen activation. Coordination Chemistry Reviews, 2000, 200-202, 379-409.	18.8	429
48	Synthesis and Bonding in the Diamagnetic Dinuclear Tantalum(IV) Hydride Species ([P2N2]Ta)2(μ-H)4 and the Paramagnetic Cationic Dinuclear Hydride Species {([P2N2]Ta)2(I¼-H)4}+I- ([P2N2] =) Tj ETQq0 0 0 rgBT /Ove 19, 3931-3941.	rloçk 10 1 2.3	7 50 302 Td
49	Synthesis and Structure of the Tantalum Trimethyl Complex [P2N2]TaMe3and Its Conversion to the Tantalum Methylidene Species [P2N2]TaCH2(Me) ([P2N2] = PhP(CH2SiMe2NSiMe2CH2)2PPh). Organometallics, 1999, 18, 4059-4067.	2.3	47
50	Chelating amides of lithium. Synthesis, structure and coordination chemistry. Polyhedron, 1998, 17, 947-952.	2.2	15
51	New Mode of Coordination for the Dinitrogen Ligand:Â A Dinuclear Tantalum Complex with a Bridging N2Unit That Is Both Side-On and End-On. Journal of the American Chemical Society, 1998, 120, 11024-11025.	13.7	133
52	Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030.	4.0	72
53	Study of Bond Angles and Bond Lengths in Disiloxane and Related Molecules in Terms of the Topology of the Electron Density and Its Laplacian. Inorganic Chemistry, 1997, 36, 3031-3039.	4.0	95