
Samuel A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888167/publications.pdf Version: 2024-02-01

1 The continuing story of dimtrogen activation. Coordination Chemistry Reviews, 2000, 200 202. 10.8 429 2 New Mode of Coordination for the Dintrogen LigandA Formation, Bonding, and Reactivity of a Linardian Complex with a highing N2ULII. That is both Side On and End On. Journal of the American Chemical Society, 2001, 123, 3960 3973. 13.7 195 3 New Mode of Coordination for the Dintrogen LigandA A Durider Tatalanic Complex with a Bridging VULII. That is both Side On and End On. Journal of the American Chemical Society, 1998, 120. 15.7 193 4 Hydroboration of Coordinated Dintrogen: A New Reaction for the N2 Ligand that Results in Its End Side Symbol: Direct View of a Bridging VULII. That is Both Side On and End-On. Journal of the American Chemical Society, 1998, 120. 13.7 110 5 Big (nethylphaphyne) NLIA Symbol: Direct View of a Brod Arthotion of Totrafluoropersones with a Brod End-Bylyhoci Direct View of a Brod Arthotion of Totrafluoropersones with a Brod End-Bylyhoci Direct View of a Brod Arthotion of Totrafluoropersones with a Brod Starbylphaphyne) NLIA Symbol: Direct View of a Brod Arthotion Intermediates and Pool Lengths in Dislovane and Related Moleculus in Terms of the Topology 4.0 95 7 Catalytic Ca 'H Bond Starryletion: A New Regresolective Pathway to CF'S follows to Cf''H Bond Arthotion Intermediates American Chemical Society, 2011, 122, 11225 13.7 91 8 Adfordined Experimental and Computational Study of Unexpected Ci 'H Bond Activation Intermediates American Chemical Society, 2011, 22, 11252	#	Article	IF	CITATIONS
2 Tartalum Complex with a Bridging N2Init That is Both Side-On and End-On. Journal of the American 13.7 195 3 New Mode of Coordination for the Dinitrogen Ligand/Å A Dinuckan Tartalum Complex with a Bridging 11024-11025. 13.7 133 4 Hydroboration of Coordinated Dinitrogen: A New Reaction for the NU Ligand that Results in Its Functionalization and Cleavage. Angewandte Chemie - International Edition, 2002, 41, 5709-5712. 13.8 128 5 Unexpected Intermediates and Poducts in the Co ^{TF} Bond Activation of Lerafuerobergenes with a bit trend polyhology bit polyholo	1		18.8	429
3 N2Linit That is Both Side-On and End-On. Journal of the American Chemical Society, 1998, 120, 137 133 4 Hydroboration of Coordinated Dinitrogen: A New Reaction for the N2 Ligand that Results in its Punctionalization and Cleavage. Angewandte Chemie - International Edition, 2002, 41, 3709-3712. 13.8 128 4 Hydroboration of Coordinated Dinitrogen: A New Reaction for the N2 Ligand that Results in its Punctionalization and Cleavage. Angewandte Chemie - International Edition, 2002, 41, 3709-3712. 13.8 128 6 Study of Bond Angles and Bond Lengths in Disloware and Related Molecules in Terms of the Topology of the Electron Density and Its Laplacian. Inorganic Chemistry, 1997, 36, 3031-3039. 4.0 95 7 Catalytic Ca''H Bond Stamylation: A New Regtoselective Pathway to Ca''Sn Bonds via Ca''H Bond 13.7 91 8 ACombined Experimental and Computational Study of Unexpected Ca''F Bond Activation Intermediates and Ponentalization. Journal of the American Chemical Society, 2010, 132, 11923-11925. 13.7 91 9 Synthesis and chemistry of bis(triisoprophylphosphine) nichel(cseps1/seps.) and nickel(0) precursors. 3.3 85 9 Synthesis and chemistry of bis(triisoprophylphosphine) nichel(cseps1/seps.) and nickel(0) precursors. 3.3 85 9 Synthesis and chemistry of bis(triisoprophylphosphine) nichel(cseps1/seps.) and nickel(0) precursors. 3.3 81	2	Tantalum Complex with a Bridging N2Unit That Is Both Side-On and End-On. Journal of the American	13.7	195
4 Functionalization and Cleavage. Angewandte Chemie - International Edition, 2002, 41, 3709-3712. 13.8 138 5 Bis/fricter/phosphine/bick/Synthon: Direct Evidence of Rapid and Reversible CA [®] H Bond Activation by NI(0). Journal of the American Chemical Society, 2008, 130, 17278-17280. 13.7 110 6 Study of Bond Angles and Bond Lengths in Disiloxane and Related Molecules in Terms of the Topology of the Electron Density and Its Laplacian. Inorganic Chemistry, 1997, 36, 3031-3039. 4.0 95 7 Catalytic: CA [®] H Bond Stamylation: A New Regionalic Chemistry, 1997, 36, 3031-3039. 13.7 91 8 A Combined Experimental and Computational Study of Unexpected CA [®] F Bond Activation Intermediates and Selectivity in the Reaction of Partafluoroberrace with a (PEr sub 3 c/sub) csub 2 c/sub NI 2.3 87 9 Synthesis and chemistry of bis(triisopropylphosphine) nickel((scps):/scps). 3.1 86 10 1,4-Shifts in a Dinuclear NI(I) Biaryl/I Complex:A A Mechanistic Study of CA [®] H Bond Activation by Monovalet NI (kel) caudio at Partafluoroberrace by Nickel(0) with a Nitrogen Donor Analogous to Nickel(0) exclusors. 2013, 42, 1401-1457. 84 11 Selective CG: F Bond Activation of Tetrafluoroberrace by Nickel(0) with a Nitrogen Donor Analogous to Nickel(0) exclusors. 2013, 42, 1401-1457. 84 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Nickelefouccus and a study of CA	3	N2Unit That Is Both Side-On and End-On. Journal of the American Chemical Society, 1998, 120,	13.7	133
Bit (friethylphosphine) Nickel Synthon: Direct Evidence of a Rapid and Reversible CA ⁺ H Bond Activation 13.7 110 9 N(0), Journal of the American Chemical Society, 2008, 130, 17278-17280. 10. 95 6 Study of Bond Angles and Bond Lengths in Dislovane and Related Molecules in Terms of the Topology of the Electron Density and Its Laplacian. Inorganic Chemistry, 1997, 36, 3031-3039. 4.0 95 7 Catalytic CA ⁺ H Bond Stamylation: A New Regioselective Pathway to CA ⁺ Sn Bonds via CA ⁺ H Bond Liston, Journal of the American Chemical Society, 2010, 132, 11923-11925. 11.7 91 8 A Combined Experimental and Computational Study of Unexpected CA ⁺ F Bond Activation Intermediates and Selectivity in the Reaction of Peritafluorobenzene with a (PErt sub 3 (sub) / sub 2 (sub) NI 2.3 87 9 Synthesis and chemistry of bis (triisopropylphosphine) nickel (<scp) (="" (0)="" +="" and="" nickel="" precursors.<="" scp)="" td=""> 3.8 85 10 1,4-Shifts in a Diruclear Ni(I) Biarylyl Complex A Mechanistic Study of CA⁺H Bond Activation by 13.7 84 11 Selective Crize Bond Activation of Tertafluorobenzenes by Nickel (0) with a Nitrogen Donor Analogous to N46Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2155-2187. 13.8 81 11 Selective Crize Bond Activation of Tertafluorobenzenes by Nickel (0) with a Nitrogen Donor Analogous to N46Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2009</scp)>	4		13.8	128
8 of the Electron Density and its Laplačian. Inorganic Chemistry, 1997, 36, 3031-3039. 4.0 90 7 Catalytic Ca"H Bond Stannylation: A New Regioselective Pathway to Ca"Sn Bonds via Ca"H Bond Functionalization. Journal of the American Chemical Society, 2010, 132, 11923-11925. 13.7 91 8 A Combined Experimental and Computational Study of Unexpected Ca"F Bond Activation Intermediates and Selectivity in the Reaction of Pentafluorobenzene with a (PEt sub: 34/sub:)(sub:)(sub:)21/sub:NI Synthen. Organometallics, 2009, 28, 3842-3855. 87 9 Synthesis and chemistry of bis(triisopropylphosphine) nickel(<scp:)(scp:) and="" nickel(0)="" precursors.<br="">Dalton Transactions, 2013, 42, 1461-1475. 3.3 85 10 1.4-Shifts in a Dinuclear NI(I) Biarylyl Complex:Â A Mechanistic Study of Ca"H Bond Activation by Monovalent Nickel, Journal of the American Chemical Society, 2007, 129, 810-819. 13.7 84 11 Selective Cit; F Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to NäCHeterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187. 13.8 81 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Regioselective Coupling of Alexines and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituted Alkynes: A Mechanistic Insight Into the Zirconocene Coupling of Alexines and a Facile Route to Conjugated</scp:)(scp:)>	5	Bis(triethylphosphine)Nickel Synthon: Direct Evidence of a Rapid and Reversible Câr'H Bond Activation	13.7	110
Image: Productional station of the American Chemical Society, 2010, 132, 11923-11925. 15.7 91 A Combined Experimental and Computational Study of Unexpected Ca°F Bond Activation Intermediates and Selectivity in the Reaction of Pentafluorobenzene with a (PEt ₃ 2 2.3 87 9 Synthon. Organometallics, 2009, 28, 3842-3855. 2.3 87 9 Synthesis and chemistry of bis(triisopropylphosphine) nickel(<sccp>i (sccp>i 2.3 85 10 I.4-Shifts in a Dinuclear Ni(I) Biarylyl Complex:Â A Mechanistic Study of Ca°H Bond Activation by Monovalent Nickel. Journal of the American Chemical Society, 2007, 129, 810-819. 13.7 84 11 Selective Citif Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to N&EtHeterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187. 15.8 81 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Zreconocence Coupling of Pentafluorophenyl Substituted Alkynes:Â Mechanistic Insight into the Zirconocence Coupling of Alkynes and a Facil Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2006, 128, 1806-1807. 13.7 67 14 Nickel(0)-Catalyzed Isomerization of an Aryne Complex:Â Formation of a Dinuclear Ni(I) Complex via Câ°⁺H</sccp>	6	Study of Bond Angles and Bond Lengths in Disiloxane and Related Molecules in Terms of the Topology of the Electron Density and Its Laplacian. Inorganic Chemistry, 1997, 36, 3031-3039.	4.0	95
8 and Selectivity in the Reaction of Pentafluorobenzene with a (PEt ₃)(sub>22isub>2Ni 2.3 87 9 Synthon. Organometallics, 2009, 28, 3842-3855. 3.3 85 9 Synthesis and chemistry of bis(triisopropylphosphine) nickel(<scp>1</scp>) and nickel(0) precursors. 3.3 85 10 1,4-Shifts in a Dinuclear Ni(I) Biarylyl Complex.Å A Mechanistic Study of Câ ^{-/} H Bond Activation by Monovalent Nickel. Journal of the American Chemical Society, 2007, 129, 810-819. 13.7 84 11 Selective Cit2/F Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to NaGHeterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187. 13.8 81 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Electron-Withdrawing Pentafluorophenyl Substituted Alkynes.Å Mechanistic Insight into the Zirconocene Coupling of Pentafluorophenyl Substituted Alkynes.Å Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Pacle Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199,4211. 13.7 67 14 Nickel(0)-Catalyzed Isomerization of an Anyne Complex.Å Formation of a Dinuclear Ni(I) Complex via Câ ^{-/} H 13.7 64 15 Structural Similarities in Dinuclear	7	Catalytic Câ^'H Bond Stannylation: A New Regioselective Pathway to Câ^'Sn Bonds via Câ^'H Bond Functionalization. Journal of the American Chemical Society, 2010, 132, 11923-11925.	13.7	91
Dalton Transactions, 2013, 42, 1461-1475. 3.3 53 10 1,4-Shifts in a Dinuclear Ni(i) Biarylyl Complex:Â A Mechanistic Study of Câ"H Bond Activation by Monovalent Nickel. Journal of the American Chemical Society, 2007, 129, 810-819. 13.7 84 11 Selective Ci£/F Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to NäCHeterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187. 13.8 81 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Elective Coupling of Pentafluorophenyl Substituted Alkynes:Â Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199-4211. 13.7 67 14 Nickel(0)-Catalyzed Isomerization of an Aryne Complex:Â Formation of a Dinuclear Ni(I) Complex via Câ"H Rather than Câ"F Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807. 13.7 64 15 Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via SiâC"H and SiâC"C Activation. Organometallics, 2012, 31, 3599-3609. 2.3 57 16 Ni(P ^{i>i/i > (Sup > i>i/i > (Sup > i>sub > 2 (Sub > Synthen: The Influence of Steric Bulk on the Thermodynamics and Kinetics of Câ"H Bond Activation. Organometal}	8	and Selectivity in the Reaction of Pentafluorobenzene with a (PEt ₃) ₂ Ni	2.3	87
10 Monovalent Nickel, Journal of the American Chemical Society, 2007, 129, 810-819. 13.7 84 11 Selective Cit; F Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187. 13.8 81 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Regioselective Coupling of Pentafluorophenyl Substituted Alkynes: A Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199-4211. 13.7 67 14 Nickel(0)-Catalyzed Isomerization of an Aryne Complex: A Formation of a Dinuclear Ni(I) Complex via Câ''H Rather than Câ''F Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807. 13.7 64 15 Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Siâ€''H and Siâ€''C Activation. Organometallics, 2012, 31, 3599-3609. 2.3 57 16 Ni(P:sup> <hi p="">: Sily Synthon: The Influence of Steric Bulk on the Thermodynamics and Kinetics of Câ''H Bond Activation. Organometallics, 2010, 29, 6077-6091. 2.3 56 17 Pasembly of Triangular Trimetallic Complexes by Trianidophosphine Ligands'Â Spin-Frustrated Mn2+Plaque</hi>	9	Synthesis and chemistry of bis(triisopropylphosphine) nickel(<scp>i</scp>) and nickel(0) precursors. Dalton Transactions, 2013, 42, 1461-1475.	3.3	85
11 to Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187. 13.8 81 12 Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Regioselective Coupling of Pentafluorophenyl Substituted Alkynes:Â Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199-4211. 13.7 67 14 Nickel(0)-Catalyzed Isomerization of an Aryne Complex:Â Formation of a Dinuclear Ni(I) Complex via Câ ⁻⁷ H Rather than Câ ⁻⁷ F Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807. 13.7 64 15 Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Siâ€ ⁻⁶ H and Siâ€ ⁻⁶ Activation. Organometallics, 2012, 31, 3599-3609. 2.3 57 16 Ni(P ^{<i>i Carbonâ⁻⁷Hydrogen Bond Oxidative Addition of Partially Fluorinated Aromatics to a Ni(P^{<i>i 2.3 56 17 Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond Pathway for31P-31P Spinâ⁻⁷ Spin Coupling. Journal of the American Chemical Society, 2006, 128, 13.7 52</i>}</i>}	10	1,4-Shifts in a Dinuclear Ni(I) Biarylyl Complex:Â A Mechanistic Study of Câ^'H Bond Activation by Monovalent Nickel. Journal of the American Chemical Society, 2007, 129, 810-819.	13.7	84
12 Chemistry, 1997, 36, 3022-3030. 4.0 72 13 Zirconocene Coupling of Pentafluorophenyl Substituted Alkynes:Â Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199-4211. 13.7 67 14 Nickel(0)-Catalyzed Isomerization of an Aryne Complex:Â Formation of a Dinuclear Ni(I) Complex via Câ ⁻⁷ H Rather than Câ ⁻⁷ Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807. 13.7 64 15 Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Siâ€"H and Siâ€"C Activation. Organometallics, 2012, 31, 3599-3609. 2.3 57 16 Ni(P ^{ci)i/(i) < (sup > Pr_{3 <(sub >) < sub > 2 <(sub > 2ynthon: The Influence of Steric Bulk on the Thermodynamics and Kinetics of Câ⁻⁷H Bond Activation. Organometallics, 2010, 29, 6077-6091. 2.3 56 17 Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated Min2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond Pathway for31P-31P Spinã⁻⁵Spin Coupling. Journal of the American Chemical Society, 2006, 128, 13.7 52}}	11	Selective Cĩ£¿F Bond Activation of Tetrafluorobenzenes by Nickel(0) with a Nitrogen Donor Analogous to Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2009, 48, 2185-2187.	13.8	81
13Zirčonocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003. 125. 4199-4211.13.76714Nickel(0)-Catalyzed Isomerization of an Aryne Complex: Formation of a Dinuclear Ni(I) Complex via Câ [*] H Rather than Câ [*] 'F Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807.13.76415Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Siâ€"H and Siâ€"C Activation. Organometallics, 2012, 31, 3599-3609.2.35716Carbonâ [*] Hydrogen Bond Oxidative Addition of Partially Fluorinated Aromatics to a Ni(P ^{<i>i<i< td="">2.35617Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands: Spin-Frustrated Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond Pathway for31P-31P Spinâ[*]Spin Coupling. Journal of the American Chemical Society, 2006, 128,13.752</i<></i>}	12	Chemistry, 1997, 36, 3022-3030.	4.0	72
14 Rather than Câ ⁵ F Bond Activation. Journal of the American Chemical Society, 2006, 128, 1806-1807. 13.7 64 15 Structural Similarities in Dinuclear, Tetranuclear, and Pentanuclear Nickel Silyl and Silylene Complexes Obtained via Si–H and Si–C Activation. Organometallics, 2012, 31, 3599-3609. 2.3 57 16 Carbonâ [^] Hydrogen Bond Oxidative Addition of Partially Fluorinated Aromatics to a Ni(P ^{<i>i 2.3 56 17 Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond Pathway for 31P-31P Spinâ[°]Spin Coupling. Journal of the American Chemical Society, 2006, 128, 13.7 52</i>}	13	Zirčonocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society,	13.7	67
15 Complexes Obtained via Siâ€"H and Siâ€"C Activation. Organometallics, 2012, 31, 3599-3609. 2.3 57 16 Carbonâ^'Hydrogen Bond Oxidative Addition of Partially Fluorinated Aromatics to a 2.3 56 16 Ni(P ^{<i>i Si 56 16 Ni(P^{<i>i Si 56 16 Ni(P^{<i>i Si 56 17 Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond Pathway for 31P-31P Spinâ^'Spin Coupling. Journal of the American Chemical Society, 2006, 128, 13.7 52</i>}</i>}</i>}	14		13.7	64
16 Ni(P ^(i>i) Pr ₃) ₂ Synthon: The Influence of Steric Bulk on the 2.3 56 17 Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated 2.3 56 17 Assembly of Triangular Trimetallic Complexes by Triamidophosphine Ligands:Â Spin-Frustrated 13.7 52	15		2.3	57
Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond 17 Pathway for31P-31P Spinâ^'Spin Coupling. Journal of the American Chemical Society, 2006, 128, 13.7 52	16	Ni(P ^{<i>i</i>} Pr ₃ 2Synthon: The Influence of Steric Bulk on the	2.3	56
14992-14999.	17	Mn2+Plaquettes and Diamagnetic Mg2+Analogues with a Combined Through-Space, Through-Bond	13.7	52

Reaction of [P2N2]TaCH2(Me) with Ethylene:Â Synthesis of [P2N2]Ta(C2H4)Et, a Neutral Species with a β-Agostic Ethyl Group in Equilibrium with an α-Agostic Ethyl Group ([P2N2] =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5ঞ57 Td (PhP(CH2SiN 18

SAMUEL A JOHNSON

#	Article	IF	CITATIONS
19	Mechanistic implications of an asymmetric intermediate in catalytic C–C coupling by a dinuclear nickel complex. Chemical Communications, 2011, 47, 9233.	4.1	51
20	Experimental Study of the Reaction of a Ni(PEt ₃) ₂ Synthon with Polyfluorinated Pyridines: Concerted, Phosphine-Assisted, or Radical C–F Bond Activation Mechanisms?. Organometallics, 2012, 31, 1361-1373.	2.3	50
21	Functionalization and cleavage of coordinated dinitrogen via hydroboration using primary and secondary boranes. Canadian Journal of Chemistry, 2005, 83, 315-323.	1.1	48
22	Synthesis and Structure of the Tantalum Trimethyl Complex [P2N2]TaMe3and Its Conversion to the Tantalum Methylidene Species [P2N2]TaCH2(Me) ([P2N2] = PhP(CH2SiMe2NSiMe2CH2)2PPh). Organometallics, 1999, 18, 4059-4067.	2.3	47
23	Synthesis and Bonding in the Diamagnetic Dinuclear Tantalum(IV) Hydride Species ([P2N2]Ta)2(μ-H)4 and the Paramagnetic Cationic Dinuclear Hydride Species {([P2N2]Ta)2(μ-H)4}+I- ([P2N2] =) Tj ETQq1 1 0.784314 r 19. 3931-3941.	gBT /Over 2.3	ام <u>ر</u> ه 10 Tf 5
24	Characterization of Intermediates in the Câ°'F Activation of Tetrafluorobenzenes using a Reactive Ni(PEt ₃) ₂ Synthon: Combined Computational and Experimental Investigation. Organometallics, 2011, 30, 441-457.	2.3	44
25	Lewis Adducts of the Side-On End-On Dinitrogen-Bridged Complex [{(NPN)Ta}2(?-H)2(?-?1:?2-N2)] with AlMe3, GaMe3, and B(C6F5)3: Synthesis, Structure, and Spectroscopic Properties. Chemistry - A European Journal, 2005, 11, 604-618.	3.3	42
26	Diligating Tripodal Amido-Phosphine Ligands:  the Effect of a Proximal Antipodal Early Transition Metal on Phosphine Donor Ability in a Building Block for Heterometallic Complexes. Inorganic Chemistry, 2006, 45, 7435-7445.	4.0	42
27	Nickel-Catalyzed C–H Silylation of Arenes with Vinylsilanes: Rapid and Reversible β-Si Elimination. Journal of the American Chemical Society, 2017, 139, 9401-9407.	13.7	42
28	Title is missing!. Angewandte Chemie, 2002, 114, 3861-3864.	2.0	40
29	Facile assembly of a Cu9 amido complex: a new tripodal ligand design that promotes transition metal cluster formation. Chemical Communications, 2006, , 1221.	4.1	35
30	Dinuclear Ni(I)—Ni(I) Complexes with Syn-Facial Bridging Ligands from Ni(I) Precursors or Ni(II)/Ni(O) Comproportionation. Organometallics, 2013, 32, 2944-2951.	2.3	34
31	Unsymmetrical Zirconacyclopentadienes from Isolated Zirconacyclopropenes with 1-Alkynylphosphine Ligands. Organometallics, 2009, 28, 1252-1262.	2.3	30
32	Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster. Nature Chemistry, 2017, 9, 1282-1285.	13.6	30
33	A Phosphineâ€Mediated Throughâ€Space Exchange Coupling Pathway for Unpaired Electrons in a Heterobimetallic Lanthanide†Transition Metal Complex. Chemistry - A European Journal, 2008, 14, 721-730.	3.3	28
34	Solid-State ⁹¹ Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors. Journal of the American Chemical Society, 2010, 132, 18301-18317.	13.7	28
35	Activation and cleavage of alkynes by the dinuclear tantalum complexes ([NPN]Ta)2(µ-H)4 and ([NPN]Ta)2(µ-η1:η2-N2)(µ-H)2 (where NPNâ€,=â€,PhP(CH2SiMe2NPh)2). Canadian Journal of Chemistry, 2005, 652-660.	, 8.3,	27
36	Mechanistic insight into carbon–fluorine cleavage with a (Pr3P)2Ni source: Characterization of () Tj ETQq0 0 0 422, 86-94.	rgBT /Ove 2.4	rlock 10 Tf 5 27

SAMUEL A JOHNSON

#	Article	IF	CITATIONS
37	Catalytic Hydrogen/Deuterium Exchange of Unactivated Carbon–Hydrogen Bonds by a Pentanuclear Electronâ€Deficient Nickel Hydride Cluster. Angewandte Chemie - International Edition, 2012, 51, 11753-11756.	13.8	25
38	Influence of <i>N</i> -Heterocyclic Carbene Steric Bulk on Selectivity in Nickel Catalyzed C–H Bond Silylation, Germylation, and Stannylation. Organometallics, 2019, 38, 436-450.	2.3	25
39	Carbon–Hydrogen Bond Stannylation and Alkylation Catalyzed by Nitrogen-Donor-Supported Nickel Complexes: Intermediates with Ni–Sn Bonds and Catalytic Carbostannylation of Ethylene with Organostannanes. Organometallics, 2013, 32, 4174-4184.	2.3	23
40	Mesityl Alkyne Substituents for Control of Regiochemistry and Reversibility in Zirconocene Couplings: New Synthetic Strategies for Unsymmetrical Zirconacyclopentadienes and Conjugated Polymers. Journal of the American Chemical Society, 2009, 131, 4917-4927.	13.7	22
41	Ligand Design for the Assembly of Polynuclear Complexes:  Syntheses and Structures of Trinuclear and Tetranuclear Aluminum Alkyl Complexes Bearing Tripodal Diamidoselenophosphinito Ligands and a Comparison to Related Tripodal Triamidophosphine Complexes. Organometallics, 2006, 25, 5594-5602.	2.3	21
42	Bridged Dinuclear Tripodal Tris(amido)phosphane Complexes of Titanium and Zirconium as Diligating Building Blocks for Organometallic Polymers. European Journal of Inorganic Chemistry, 2008, 2008, 471-482.	2.0	21
43	Mechanistic Insight into H/D Exchange by a Pentanuclear Ni–H Cluster and Synthesis and Characterization of Structural Analogues of Potential Intermediates. Organometallics, 2018, 37, 116-126.	2.3	18
44	Facile Deep and Ultradeep Hydrodesulfurization by the [(iPr3P)Ni]5H6 Cluster Compared to Mononuclear Ni Sources. Inorganic Chemistry, 2015, 54, 11977-11985.	4.0	17
45	Chelating amides of lithium. Synthesis, structure and coordination chemistry. Polyhedron, 1998, 17, 947-952.	2.2	15
46	Synthesis of Surface-Analogue Square-Planar Tetranuclear Nickel Hydride Clusters and Bonding to μ ₄ -NR, -O and -BH Ligands. Inorganic Chemistry, 2018, 57, 2438-2446.	4.0	15
47	A mechanistic investigation of carbon–hydrogen bond stannylation: synthesis and characterization of nickel catalysts. Dalton Transactions, 2012, 41, 8135.	3.3	13
48	Influence of the Transmetalating Agent in Difficult Coupling Reactions: Control in the Selectivity of C–F Bond Activation by Ni(0) Complexes in the Presence of AlMe ₃ . Organometallics, 2017, 36, 1436-1446.	2.3	12
49	Dismantling of Vinyl Ethers by Pentanuclear [(i Pr 3 P)Ni] 5 H 6 : Facile Cooperative Câ^'O, Câ^'C and Câ^'H Activation Pathways. Chemistry - A European Journal, 2018, 24, 14282-14289.	3.3	11
50	Diamagnetic molybdenum nitride complexes supported by diligating tripodal triamido-phosphine ligands as precursors to paramagnetic phosphine donors. Dalton Transactions, 2015, 44, 14925-14936.	3.3	10
51	Mechanism of 8-Aminoquinoline-Directed Ni-Catalyzed C(sp ³)–H Functionalization: Paramagnetic Ni(II) Species and the Deleterious Effect of Carbonate as a Base. Organometallics, 2021, 40, 2970-2982.	2.3	9
52	Versatile (η6-arene)Ni(PCy3) nickel monophosphine precursors. Chemical Communications, 2017, 53, 13176-13179.	4.1	8
53	CO ₂ production in the bromateâ€1,4â€cyclohexanedione oscillatory reaction. Journal of Physical Organic Chemistry, 2011, 24, 507-512.	1.9	6