John P Quinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8881231/publications.pdf

Version: 2024-02-01

101543 71685 7,493 187 36 76 citations g-index h-index papers 194 194 194 8566 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
2	Estrogen control of central neurotransmission: Effect on mood, mental state, and memory. Cellular and Molecular Neurobiology, 1996, 16, 325-344.	3.3	385
3	A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15251-15255.	7.1	340
4	DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research, 1985, 13, 8143-8163.	14.5	256
5	An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Letters, 1999, 458, 171-174.	2.8	237
6	Genome-Wide Association Study of Major Recurrent Depression in the U.K. Population. American Journal of Psychiatry, 2010, 167, 949-957.	7.2	221
7	A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4552-4557.	7.1	159
8	The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. Journal of Neurochemistry, 2001, 79, 1033-1038.	3.9	153
9	Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene. Translational Psychiatry, 2015, 5, e560-e560.	4.8	142
10	Structure of a variable number tandem repeat of the serotonin transporter gene and association with affective disorder. Psychiatric Genetics, 1996, 6, 177-182.	1.1	120
11	The serotonin transporter intronic VNTR enhancer correlated with a predisposition to affective disorders has distinct regulatory elements within the domain based on the primary DNA sequence of the repeat unit. European Journal of Neuroscience, 2003, 17, 417-420.	2.6	109
12	Behavioural analysis of a nociceptive event in fish: Comparisons between three species demonstrate specific responses. Applied Animal Behaviour Science, 2008, 114, 248-259.	1.9	106
13	Nitric oxide, a biological double-faced janus-is this good or bad?. Histology and Histopathology, 2006, 21, 445-58.	0.7	102
14	A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Research, 2000, 60, 1840-4.	0.9	102
15	Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset. Npj Parkinson's Disease, 2019, 5, 8.	5. 3	95
16	fos/jun and Octamer-binding Protein Interact with a Common Site in a Negative Element of the Human c-myc Gene. Journal of Biological Chemistry, 1989, 264, 8992-8999.	3.4	95
17	fos/jun and octamer-binding protein interact with a common site in a negative element of the human c-myc gene. Journal of Biological Chemistry, 1989, 264, 8992-9.	3.4	84
18	YB-1 and CTCF Differentially Regulate the 5-HTT Polymorphic Intron 2 Enhancer Which Predisposes to a Variety of Neurological Disorders. Journal of Neuroscience, 2004, 24, 5966-5973.	3.6	79

#	Article	IF	CITATIONS
19	Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models. Neurobiology of Disease, 2006, 24, 41-52.	4.4	79
20	Behavioural changes in the rat following infection with varicella-zoster virus. Journal of General Virology, 1999, 80, 2433-2436.	2.9	76
21	Molecular Genetics of Monoamine Transporters: Relevance to Brain Disorders. Neurochemical Research, 2008, 33, 652-667.	3.3	66
22	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
23	Combinatorial interaction between two human serotonin transporter gene variable number tandem repeats and their regulation by CTCF. Journal of Neurochemistry, 2010, 112, 296-306.	3.9	63
24	Glial-mediated neuroprotection: Evidence for the protective role of the NO-cGMP pathway via neuron-glial communication in the peripheral nervous system. Glia, 2005, 49, 197-210.	4.9	62
25	Tachykinin expression in cartilage and function in human articular chondrocyte mechanotransduction. Arthritis and Rheumatism, 2003, 48, 146-156.	6.7	61
26	Allodynia in rats infected with varicella zoster virus—a small animal model for post-herpetic neuralgia. Brain Research Reviews, 2004, 46, 234-242.	9.0	61
27	Differential Activity by Polymorphic Variants of a Remote Enhancer that Supports Galanin Expression in the Hypothalamus and Amygdala: Implications for Obesity, Depression and Alcoholism. Neuropsychopharmacology, 2011, 36, 2211-2221.	5.4	60
28	Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evolutionary Biology, 2013, 13, 101.	3.2	55
29	A Polymorphism Associated with Depressive Disorders Differentially Regulates Brain Derived Neurotrophic Factor Promoter IV Activity. Biological Psychiatry, 2012, 71, 618-626.	1.3	51
30	Distinct factors bind the AP-1 consensus sites in gibbon ape leukemia virus and simian virus 40 enhancers. Journal of Virology, 1989, 63, 1737-1742.	3.4	51
31	NEURONAL-SPECIFIC GENE EXPRESSION $\hat{1}\frac{1}{4}$ THE INTERACTION OF BOTH POSITIVE AND NEGATIVE TRANSCRIPTIONAL REGULATORS. Progress in Neurobiology, 1996, 50, 363-379.	5.7	49
32	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
33	Binding of a cellular protein to the gibbon ape leukemia virus enhancer Molecular and Cellular Biology, 1987, 7, 2735-2744.	2.3	45
34	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
35	Differential Regulation of the Serotonin Transporter Gene by Lithium Is Mediated by Transcription Factors, CCCTC Binding Protein and Y-Box Binding Protein 1, through the Polymorphic Intron 2 Variable Number Tandem Repeat. Journal of Neuroscience, 2007, 27, 2793-2801.	3.6	43
36	Repression of preprotachykinin-A promoter activity is mediated by a proximal promoter element. Neuroscience, 1995, 65, 837-847.	2.3	40

#	Article	IF	CITATIONS
37	Evidence for interplay between genes and parenting on infant temperament in the first year of life: monoamine oxidase A polymorphism moderates effects of maternal sensitivity on infant anger proneness. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2013, 54, 1308-1317.	5.2	40
38	The Nuclear Autoimmune Antigen Ku IS Also Present on the Cell Surface. Autoimmunity, 1992, 13, 265-267.	2.6	38
39	Evidence for interplay between genes and maternal stress <i>in utero</i> : monoamine oxidase A polymorphism moderates effects of life events during pregnancy on infant negative emotionality at 5 weeks. Genes, Brain and Behavior, 2013, 12, 388-396.	2.2	37
40	Characterization of a REST-Regulated Internal Promoter in the Schizophrenia Genome-Wide Associated Gene MIR137. Schizophrenia Bulletin, 2015, 41, 698-707.	4.3	37
41	Characterisation of potential regulatory elements within the rat preprotachykinin-A promoter. Neuroscience Letters, 1995, 184, 125-128.	2.1	35
42	Novel candidate genes identified in the brain during nociception in common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss). Neuroscience Letters, 2008, 437, 135-138.	2.1	35
43	The IL1RN Promoter rs4251961 Correlates with IL-1 Receptor Antagonist Concentrations in Human Infection and Is Differentially Regulated by GATA-1. Journal of Immunology, 2011, 186, 2329-2335.	0.8	35
44	An Activator Element within the Preprotachykinin-A Promoter. Molecular and Cellular Neurosciences, 1994, 5, 165-175.	2.2	34
45	A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging. Neurobiology of Aging, 2016, 39, 217.e1-217.e7.	3.1	34
46	An Evaluation of a SVA Retrotransposon in the FUS Promoter as a Transcriptional Regulator and Its Association to ALS. PLoS ONE, 2014, 9, e90833.	2.5	32
47	An upstream stimulatory factor (USF) binding motif is critical for rat preprotachykinin-A promoter activity in PC12 cells. Biochemical Journal, 1995, 310, 401-406.	3.7	31
48	Three immediate early gene response elements in the proximal preprotachykinin-A promoter in two functionally distinct domains. Neuroscience, 1995, 66, 921-932.	2.3	31
49	Behavioural Genetics of the Serotonin Transporter. Current Topics in Behavioral Neurosciences, 2011, 12, 503-535.	1.7	31
50	A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression. Schizophrenia Bulletin, 2016, 42, 1003-1008.	4.3	31
51	Neuron restrictive silencer factor as a modulator of neuropeptide gene expression. Regulatory Peptides, 2002, 108, 135-141.	1.9	29
52	Retrotransposons in the development and progression of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 284-293.	1.9	29
53	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5.3	29
54	The molecular biology of preprotachykinin-A gene expression. Neuropeptides, 1996, 30, 602-610.	2.2	28

#	Article	lF	Citations
55	Characterization of potential regulatory elements within the rat arginine vasopressin proximal promoter. Neuropeptides, 1999, 33, 81-90.	2.2	28
56	Herpes virus latency in sensory ganglia — a comparison with endogenous neuronal gene expression. Progress in Neurobiology, 2000, 60, 167-179.	5.7	28
57	Regulation of activity-dependent neuroprotective protein (ADNP) by the NO-cGMP pathway in the hippocampus during kainic acid-induced seizure. Neurobiology of Disease, 2008, 30, 281-292.	4.4	28
58	Role of Tachykinin 1 and 4 Gene-Derived Neuropeptides and the Neurokinin 1 Receptor in Adjuvant-Induced Chronic Arthritis of the Mouse. PLoS ONE, 2013, 8, e61684.	2.5	28
59	Binding of a cellular protein to the gibbon ape leukemia virus enhancer. Molecular and Cellular Biology, 1987, 7, 2735-2744.	2.3	28
60	Arginine vasopressin promoter regulation is mediated by a neuron-restrictive silencer element in small cell lung cancer. Cancer Research, 1999, 59, 5123-7.	0.9	28
61	E-box motifs within the human vasopressin gene promoter contribute to a major enhancer in small-cell lung cancer. Biochemical Journal, 1999, 344, 961-970.	3.7	27
62	Additive effect of BDNF and REST polymorphisms is associated with improved general cognitive ability. Genes, Brain and Behavior, 2008, 7, 714-719.	2.2	27
63	Role of Pituitary Adenylate-Cyclase Activating Polypeptide and Tac1 gene derived tachykinins in sensory, motor and vascular functions under normal and neuropathic conditions. Peptides, 2013, 43, 105-112.	2.4	27
64	The <i>SLC6A4</i> VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine <i>in vitro</i> . Addiction Biology, 2012, 17, 156-170.	2.6	26
65	SVA retrotransposons as potential modulators of neuropeptide gene expression. Neuropeptides, 2017, 64, 3-7.	2.2	26
66	Upstream stimulatory factor activates the vasopressin promoter via multiple motifs, including a non-canonical E-box. Biochemical Journal, 2003, 369, 549-561.	3.7	25
67	Characterisation of a functional E box motif in the proximal rat preprotachykinin-A promoter. Neuroscience Letters, 1995, 191, 185-188.	2.1	24
68	The Human Preprotachykinin-A Gene Promoter Has Been Highly Conserved and Can Drive Human-like Marker Gene Expression in the Adult Mouse CNS. Molecular and Cellular Neurosciences, 2000, 16, 620-630.	2.2	24
69	The Regulation of Monoamine Oxidase A Gene Expression by Distinct Variable Number Tandem Repeats. Journal of Molecular Neuroscience, 2018, 64, 459-470.	2.3	24
70	The rat preprotachykinin-A promoter is regulated in PC12 cells by the synergistic action of multiple stimuli. Neuroscience Letters, 1994, 181, 117-120.	2.1	23
71	Evidence of Postnatal Neurogenesis in Dorsal Root Ganglion: Role of Nitric Oxide and Neuronal Restrictive Silencer Transcription Factor. Journal of Molecular Neuroscience, 2007, 32, 97-107.	2.3	23
72	Mechanical stimulation induces preprotachykinin gene expression in osteoarthritic chondrocytes which is correlated with modulation of the transcription factor neuron restrictive silence factor. Neuropeptides, 2008, 42, 681-686.	2.2	23

#	Article	IF	Citations
73	Involvement of preprotachykinin A gene-encoded peptides and the neurokinin 1 receptor in endotoxin-induced murine airway inflammation. Neuropeptides, 2010, 44, 399-406.	2.2	23
74	SVA retrotransposons as modulators of gene expression. Mobile Genetic Elements, 2014, 4, e32102.	1.8	23
75	Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine. Developmental Neurobiology, 2016, 76, 519-532.	3.0	23
76	Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflammation Research, 2016, 65, 725-736.	4.0	23
77	Neuronal-specific and nerve growth factor-inducible expression directed by the preprotachykinin-A promoter delivered by an adeno-associated virus vector. Neuroscience, 1999, 94, 997-1003.	2.3	22
78	Regulatory characterisation of the schizophrenia-associated CACNA1C proximal promoter and the potential role for the transcription factor EZH2 in schizophrenia aetiology. Schizophrenia Research, 2018, 199, 168-175.	2.0	22
79	The Role of SINE-VNTR-Alu (SVA) Retrotransposons in Shaping the Human Genome. International Journal of Molecular Sciences, 2019, 20, 5977.	4.1	22
80	Reference SVA insertion polymorphisms are associated with Parkinson's Disease progression and differential gene expression. Npj Parkinson's Disease, 2021, 7, 44.	5.3	22
81	Autoimmune antigen Ku is enriched on oligonucleotide columns distinct from those containing the octamer binding protein DNA consensus sequence. FEBS Letters, 1991, 286, 225-228.	2.8	21
82	Post-genomic approaches to exploring neuropeptide gene mis-expression in disease. Neuropeptides, 2004, 38, 1-15.	2.2	21
83	Induction of Tachykinin Production in Airway Epithelia in Response to Viral Infection. PLoS ONE, 2008, 3, e1673.	2.5	21
84	The human neurokinin B gene, TAC3, and its promoter are regulated by Neuron Restrictive Silencing Factor (NRSF) transcription factor family. Neuropeptides, 2009, 43, 333-340.	2.2	21
85	Regulation of the Cell-specific Calcitonin/Calcitonin Gene-related Peptide Enhancer by USF and the Foxa2 Forkhead Protein. Journal of Biological Chemistry, 2004, 279, 49948-49955.	3.4	20
86	Discovering genes: the use of microarrays and laser capture microdissection in pain research. Brain Research Reviews, 2004, 46, 225-233.	9.0	20
87	Either nitric oxide or nerve growth factor is required for dorsal root ganglion neurons to survive during embryonic and neonatal development. Developmental Brain Research, 2005, 154, 153-164.	1.7	20
88	NO-cGMP mediated galanin expression in NGF-deprived or axotomized sensory neurons. Journal of Neurochemistry, 2007, 100, 790-801.	3.9	20
89	Activity-Dependent Neuroprotective Protein Modulates Its Own Gene Expression. Journal of Molecular Neuroscience, 2012, 46, 33-39.	2.3	20
90	Multiple components are required for sequence recognition of the AP1 site in the gibbon ape leukemia virus enhancer Molecular and Cellular Biology, 1989, 9, 4713-4721.	2.3	19

#	Article	IF	CITATIONS
91	NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy. Epilepsy and Behavior, 2016, 54, 117-127.	1.7	19
92	The preprotachykinin A promoter interacts with a sequence specific single stranded DNA binding protein. Nucleic Acids Research, 1993, 21, 1637-1641.	14.5	18
93	A Yeast Artificial Chromosome Containing the Human Preprotachykinin-A Gene Expresses Substance P in Mice and Drives Appropriate Marker-Gene Expression during Early Brain Embryogenesis. Molecular and Cellular Neurosciences, 2002, 19, 72-87.	2.2	18
94	Fineâ€mapping reveals novel alternative splicing of the dopamine transporter. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1434-1447.	1.7	18
95	An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson's Disease Risk and Progression in the PPMI Cohort. International Journal of Molecular Sciences, 2020, 21, 6562.	4.1	18
96	Real-Time Analysis of Preprotachykinin Promoter Activity in Single Cortical Neurons. Journal of Neurochemistry, 2002, 75, 882-885.	3.9	17
97	Hemokinin-1 mediates anxiolytic and anti-depressant-like actions in mice. Brain, Behavior, and Immunity, 2017, 59, 219-232.	4.1	17
98	Molecular models to analyse preprotachykinin-A expression and function. Neuropeptides, 2000, 34, 292-302.	2.2	16
99	Regulation of <i>SPRY3 < /i> by X chromosome and PAR2-linked promoters in an autism susceptibility region. Human Molecular Genetics, 2015, 24, 5126-5141.</i>	2.9	16
100	Genetic Risk Profiling in Parkinson's Disease and Utilizing Genetics to Gain Insight into Disease-Related Biological Pathways. International Journal of Molecular Sciences, 2020, 21, 7332.	4.1	16
101	Expression of activity-dependent neuroprotective protein in the brain of adult rats. Histology and Histopathology, 2008, 23, 309-17.	0.7	16
102	Transcriptional control of neuropeptide gene expression in sensory neurons, using the preprotachykinin-A gene as a model. Canadian Journal of Physiology and Pharmacology, 1995, 73, 957-962.	1.4	15
103	Role of Tachykinins in the Host Response to Murine Gammaherpesvirus Infection. Journal of Virology, 2001, 75, 10467-10471.	3.4	15
104	A long AAAG repeat allele in the $5\hat{a}\in^2$ UTR of the ERR- \hat{l}^3 gene is correlated with breast cancer predisposition and drives promoter activity in MCF-7 breast cancer cells. Breast Cancer Research and Treatment, 2011, 130, 41-48.	2.5	15
105	NR2A contributes to genesis and propagation of cortical spreading depression in rats. Scientific Reports, 2016, 6, 23576.	3.3	15
106	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032.	10.2	15
107	Multiple protein binding sites within the rat preprotachykinin promoter: Demonstration of a site with neuronal specificity that is $3\hat{a}\in^2$ of the major transcriptional start. Molecular and Cellular Neurosciences, 1992, 3, 11-16.	2.2	14
108	Nitric Oxide-NGF Mediated PPTA/SP, ADNP, and VIP Expression in the Peripheral Nervous System. Journal of Molecular Neuroscience, 2007, 33, 268-277.	2.3	14

#	Article	IF	CITATIONS
109	Moodâ€stabilizers differentially affect housekeeping gene expression in human cells. International Journal of Methods in Psychiatric Research, 2014, 23, 279-288.	2.1	14
110	Analysis of the effects of depression associated polymorphisms on the activity of the BICC1 promoter in amygdala neurones. Pharmacogenomics Journal, 2016, 16, 366-374.	2.0	14
111	Non-coding genetic variation shaping mental health. Current Opinion in Psychology, 2019, 27, 18-24.	4.9	14
112	Sarcoma Family Kinase-Dependent Pannexin-1 Activation after Cortical Spreading Depression Is Mediated by NR2A-Containing Receptors. International Journal of Molecular Sciences, 2020, 21, 1269.	4.1	14
113	Multiple protein complexes, including AP2 and Sp1, interact with a specific site within the rat preprotachykinin-A promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1263, 25-34.	2.4	13
114	Src Family Kinases in the Central Nervous System: Their Emerging Role in Pathophysiology of Migraine and Neuropathic Pain. Current Neuropharmacology, 2021, 19, 665-678.	2.9	13
115	The Ku complex is modulated in response to viral infection and other cellular changes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1131, 181-187.	2.4	12
116	Nitric Oxide Regulates Activity-Dependent Neuroprotective Protein (ADNP) in the Dentate Gyrus of the Rodent Model of Kainic Acid-Induced Seizure. Journal of Molecular Neuroscience, 2009, 39, 9-21.	2.3	12
117	Novel brain expressed RNA identified at the MIR137 schizophrenia-associated locus. Schizophrenia Research, 2017, 184, 109-115.	2.0	12
118	Mismatched Prenatal and Postnatal Maternal Depressive Symptoms and Child Behaviours: A Sex-Dependent Role for NR3C1 DNA Methylation in the Wirral Child Health and Development Study. Cells, 2019, 8, 943.	4.1	12
119	Analysis of repetitive element expression in the blood and skin of patients with Parkinson's disease identifies differential expression of satellite elements. Scientific Reports, 2019, 9, 4369.	3.3	12
120	Treating the "E―in "G × E― Trauma-Informed Approaches and Psychological Therapy Interventions in Psychosis. Frontiers in Psychiatry, 2019, 10, 9.	2.6	12
121	Variation in the composition of the AP1 complex in PC12 cells following induction by NGF and TPA. Molecular and Cellular Neurosciences, 1991, 2, 253-258.	2.2	11
122	The rat vasoactive intestinal polypeptide cyclic AMP response element regulates gene transcriptional responses differently in neonatal and adult rat sensory neurons. Neuroscience Letters, 1994, 167, 19-23.	2.1	11
123	Novel cell lines for the analysis of preprotachykinin A gene expression identify a repressor domain 3′ of the major transcriptional start site. Biochemical Journal, 1999, 341, 847-852.	3.7	11
124	Variable number tandem repeats – Their emerging role in sickness and health. Experimental Biology and Medicine, 2021, 246, 1368-1376.	2.4	11
125	Alleleâ€specific transcriptional activity of the variable number of tandem repeats in 5′ region of the ⟨i⟩ <scp>DRD4</scp> <ir> <ir> <ir> <ir> <ir> <ir> <ir> <i< td=""><td>2.2</td><td>10</td></i<></ir></ir></ir></ir></ir></ir></ir>	2.2	10
126	Role of neurokinin 1 receptors in dextran sulfate-induced colitis: studies with gene-deleted mice and the selective receptor antagonist netupitant. Inflammation Research, 2014, 63, 399-409.	4.0	10

#	Article	IF	Citations
127	Molecular signatures of mood stabilisers highlight the role of the transcription factor REST/NRSF. Journal of Affective Disorders, 2015, 172, 63-73.	4.1	10
128	Expression Quantitative Trait Loci (eQTLs) Associated with Retrotransposons Demonstrate their Modulatory Effect on the Transcriptome. International Journal of Molecular Sciences, 2021, 22, 6319.	4.1	10
129	Multiple Components Are Required for Sequence Recognition of the API Site in the Gibbon Ape Leukemia Virus Enhancer. Molecular and Cellular Biology, 1989, 9, 4713-4721.	2.3	10
130	A role for the octamer-binding protein in preprotachykinin-a gene expression. Neuropeptides, 1998, 32, 79-85.	2.2	9
131	An intronic domain within the rat preprotachykinin-A gene containing a CCCT repetitive motif acts as an enhancer in differentiating embryonic stem cells. Neuroscience Letters, 1999, 263, 141-144.	2.1	9
132	E-box motifs within the human vasopressin gene promoter contribute to a major enhancer in small-cell lung cancer. Biochemical Journal, 1999, 344, 961.	3.7	9
133	Distinct Gene Expression Profiles Directed by the Isoforms of the Transcription Factor Neuron-Restrictive Silencer Factor in Human SK-N-AS Neuroblastoma Cells. Journal of Molecular Neuroscience, 2011, 44, 77-90.	2.3	9
134	Statistical analysis of human microarray data shows that dietary intervention with <i>n </i> -3 fatty acids, flavonoids and resveratrol enriches for immune response and disease pathways. British Journal of Nutrition, 2018, 119, 239-249.	2.3	9
135	Sarcoma family kinase activity is required for cortical spreading depression. Cephalalgia, 2018, 38, 1748-1758.	3.9	9
136	Src family kinases activity is required for transmitting purinergic P2X7 receptor signaling in cortical spreading depression and neuroinflammation. Journal of Headache and Pain, 2021, 22, 146.	6.0	9
137	Novel cell lines for the analysis of preprotachykinin A gene expression identify a repressor domain 3′ of the major transcriptional start site. Biochemical Journal, 1999, 341, 847.	3.7	8
138	Detection of Small Cell Lung Cancer by RT-PCR for Neuropeptides, Neuropeptide Receptors, or a Splice Variant of the Neuron Restrictive Silencer Factor., 2003, 75, 335-352.		8
139	A proximal E-box modulates NGF effects on rat PPT-A promoter activity in cultured dorsal root ganglia neurones. Neuropeptides, 2005, 39, 475-483.	2.2	8
140	Engineering in Genomics [variable number tandem repeats as agents of functional regulation in the genome]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 103-108.	0.8	8
141	Modulation of orbitofrontal response to amphetamine by a functional variant of DAT1 and in vitro confirmation. Molecular Psychiatry, 2011, 16, 124-126.	7.9	8
142	Polymorphic variation as a driver of differential neuropeptide gene expression. Neuropeptides, 2013, 47, 395-400.	2.2	8
143	Genetic Interaction Between Two VNTRs in the SLC6A4 Gene Regulates Nicotine Dependence in Vietnamese Men. Frontiers in Pharmacology, 2018, 9, 1398.	3.5	8
144	Ku-related antigens are associated with transcriptionally active loci inChironomus polytene chromosomes. Chromosoma, 1996, 105, 150-157.	2.2	7

#	Article	IF	Citations
145	Alleleâ€specific expression of the serotonin transporter and its transcription factors following lamotrigine treatment in vitro. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 474-483.	1.7	7
146	Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Molecular Brain, 2020, 13, 154.	2.6	7
147	At the dawn of the transcriptomic medicine. Experimental Biology and Medicine, 2021, 246, 286-292.	2.4	7
148	Transcript Variants of Genes Involved in Neurodegeneration Are Differentially Regulated by the APOE and MAPT Haplotypes. Genes, 2021, 12, 423.	2.4	7
149	Identification of a novel multifunctional structural domain in the herpes simplex virus type 1 genome: implications for virus latency Journal of General Virology, 1998, 79, 2529-2532.	2.9	7
150	TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. International Journal of Molecular Sciences, 2021, 22, 12273.	4.1	7
151	Characterisation of the Function of a SINE-VNTR-Alu Retrotransposon to Modulate Isoform Expression at the MAPT Locus. Frontiers in Molecular Neuroscience, 2022, 15, 815695.	2.9	7
152	A role for Octamer binding protein motifs in the regulation of the proximal preprotachykinin-A promoter. Neuropeptides, 2000, 34, 348-354.	2.2	6
153	A regulatory domain spanning the repeat sequence RE1 from herpes simplex virus type 1 has cell specific differential functions in trigeminal neurons and fibroblasts. FEBS Letters, 2009, 583, 3335-3338.	2.8	6
154	A SINE-VNTR-Alu in the LRIG2 Promoter Is Associated with Gene Expression at the Locus. International Journal of Molecular Sciences, 2020, 21, 8486.	4.1	6
155	Genetic interaction between two VNTRs in the MAOA gene is associated with the nicotine dependence. Experimental Biology and Medicine, 2020, 245, 733-739.	2.4	6
156	CRISPR Deletion of a SVA Retrotransposon Demonstrates Function as a cis-Regulatory Element at the TRPV1/TRPV3 Intergenic Region. International Journal of Molecular Sciences, 2021, 22, 1911.	4.1	6
157	E-box motifs within the human vasopressin gene promoter contribute to a major enhancer in small-cell lung cancer. Biochemical Journal, 1999, 344 Pt 3, 961-70.	3.7	6
158	Investigation of Van Gogh-like 2 mRNA regulation and localisation in response to nociception in the brain of adult common carp (Cyprinus carpio). Neuroscience Letters, 2009, 465, 290-294.	2.1	5
159	Longitudinal intronic RNA-Seq analysis of Parkinson's disease patients reveals disease-specific nascent transcription. Experimental Biology and Medicine, 2022, 247, 945-957.	2.4	5
160	An NGF-inducible octamer binding protein activity in a C1300 neuroblastoma cell line. Molecular Brain Research, 1992, 15, 174-178.	2.3	4
161	19 The role of the Octamer binding proteins and the NF-kB complex in neuropeptide gene expression. Biochemical Society Transactions, 1997, 25, S573-S573.	3.4	4
162	Preferential expression of an AAV-2 construct in NOS-positive interneurons following intrastriatal injection. Molecular Brain Research, 2005, 141, 74-82.	2.3	4

#	Article	IF	CITATIONS
163	Altered host response to murine gammaherpesvirus 68 infection in mice lacking the tachykinin 1 gene and the receptor for substance P. Neuropeptides, 2011, 45, 49-53.	2.2	4
164	An evolutionary conserved region (ECR) in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex. BMC Neuroscience, 2011, 12, 46.	1.9	4
165	Characterisation of multiple regulatory domains spanning the major transcriptional start site of the FUS gene, a candidate gene for motor neurone disease. Brain Research, 2015, 1595, 1-9.	2.2	4
166	Potential impact of primate-specific SVA retrotransposons during the evolution of human cognitive function. Trends in Evolutionary Biology, 2017, 6, .	0.4	4
167	CTCF and Sp1 interact with the Murine gammaherpesvirus 68 internal repeat elements. Virus Genes, 2012, 45, 265-273.	1.6	3
168	Mental health and behaviour. Neuropeptides, 2013, 47, 361.	2.2	3
169	Identification and Potential Regulatory Properties of Evolutionary Conserved Regions (ECRs) at the Schizophrenia-Associated MIR137 Locus. Journal of Molecular Neuroscience, 2016, 60, 239-247.	2.3	3
170	Distinct chromatin structures at the monoamine oxidaseâ€A promoter correlate with alleleâ€specific expression in SHâ€SY5Y cells. Genes, Brain and Behavior, 2019, 18, e12483.	2.2	3
171	Novel cell lines for the analysis of preprotachykinin A gene expression identify a repressor domain 3' of the major transcriptional start site. Biochemical Journal, 1999, 341 (Pt 3), 847-52.	3.7	3
172	Evolution of enhancer domains within the preprotachykinin promoter. Biochemical Society Transactions, 1993, 21, 371S-371S.	3.4	2
173	Generation of a transgenic model to address regulation and function of the human neurokinin 1 receptor (NK1R). Neuropeptides, 2007, 41, 195-205.	2.2	2
174	Research dissemination and knowledge translation. British Journal of Cardiac Nursing, 2010, 5, 600-604.	0.1	2
175	Epigenetical mechanisms of susceptibility to complex human diseases. Russian Journal of Genetics: Applied Research, 2011, 1, 436-447.	0.4	2
176	Intronic Tandem Repeat in the Serotonin Transporter Gene in Old World Monkeys: a New Transcriptional Regulator?. Journal of Molecular Neuroscience, 2012, 47, 401-407.	2.3	2
177	Locus specific reduction of L1 expression in the cortices of individuals with amyotrophic lateral sclerosis. Molecular Brain, 2022, 15, 25.	2.6	2
178	Identification of potential regulatory elements within the rat pre-protachykinin A promoter. Biochemical Society Transactions, 1993, 21, 372S-372S.	3.4	1
179	Lithium Chloride Regulation of the Substance P Encoding Preprotachykinin A, Tac1 Gene in Rat Hippocampal Primary Cells. Journal of Molecular Neuroscience, 2011, 45, 94-100.	2.3	1
180	Assessing the Impact of Genetic Variation on Transcriptional Regulation In Vitro. Methods in Molecular Biology, 2010, 628, 195-214.	0.9	1

#	Article	IF	CITATIONS
181	Identification of a neuronal specific DNA-binding protein within the rat preprotachykinin promoter. Biochemical Society Transactions, 1992, 20, 264S-264S.	3.4	О
182	The preprotachykinin A promoter interacts with a sequence specific single stranded DNA binding protein. Biochemical Society Transactions, 1993, 21, 373S-373S.	3.4	0
183	Neuronal specific and NGF inducible expression directed by the Preprotachykinin-A promoter delivered by an adeno-associated viral vector. Biochemical Society Transactions, 1999, 27, A94-A94.	3.4	0
184	Neuron restrictive silencer factor (NRSF) regulates the substance P encoding preprotachykinin-A gene. Biochemical Society Transactions, 1999, 27, A95-A95.	3.4	0
185	Neuropeptides-2015, Aberdeen University, Scotland. Neuropeptides, 2017, 64, 1.	2.2	O
186	Substance P and the Tachykinins. , 2006, , 427-461.		0
187	Letter to the editor regarding "TGM6 variants in Parkinson's disease: clinical findings and functional evidenceâ€. Journal of Integrative Neuroscience, 2020, 19, 735.	1.7	0