Hisakazu Mihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8880018/publications.pdf

Version: 2024-02-01

234 papers

5,089 citations

38 h-index 138484 58 g-index

243 all docs

243 docs citations

times ranked

243

4776 citing authors

#	Article	IF	CITATIONS
1	Effects of Hydrophobic Residues on the Intracellular Self-Assembly of De Novo Designed Peptide Tags and Their Orthogonality. ACS Synthetic Biology, 2022, 11, 2144-2153.	3.8	6
2	Short selfâ€assembling peptides with a urea bond: A new type of supramolecular peptide hydrogel materials. Peptide Science, 2021, 113, e24214.	1.8	5
3	Selection of fluorescent biosensors against galectin-3 from an NBD-modified phage library displaying designed α-helical peptides. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127835.	2.2	5
4	Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nature Communications, 2021, 12, 3412.	12.8	9
5	Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorganic and Medicinal Chemistry, 2021, 46, 116345.	3.0	8
6	A guide-tag system controlling client enrichment into Y15 peptide-based granules for an in-cell protein recruitment assay. Chemical Communications, 2021, 57, 11338-11341.	4.1	4
7	Affinity Control of Monosaccharide Conjugated Peptides against Lectins with a Set of Amino Acid Substitutions on α-Helical Structures. Bioconjugate Chemistry, 2020, 31, 2533-2540.	3.6	2
8	hDM2 protein-binding peptides screened from stapled α-helical peptide phage display libraries with different types of staple linkers. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127605.	2.2	8
9	Functionalization of self-assembling peptide materials using molecular recognition of supramolecular peptide nanofibers. Polymer Journal, 2020, 52, 913-922.	2.7	6
10	Construction of a Stapled α-Helix Peptide Library Displayed on Phage for the Screening of Galectin-3-Binding Peptide Ligands. ACS Omega, 2020, 5, 5666-5674.	3.5	16
11	Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 391-399.	3.2	83
12	Osteoblastic differentiation on hydrogels fabricated from Ca2+-responsive self-assembling peptides functionalized with bioactive peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 3126-3132.	3.0	15
13	Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface. Protein and Peptide Letters, 2018, 25, 84-89.	0.9	6
14	Signal Enhancement Strategies for Refractive Index-Sensitive Nanobiosensor. Protein and Peptide Letters, 2018, 25, 34-41.	0.9	2
15	Fluorescent and luminescent fusion proteins for analyses of amyloid beta peptide aggregation. Journal of Peptide Science, 2017, 23, 659-665.	1.4	2
16	Screening for concanavalin A binders from a mannose-modified \hat{l}_{\pm} -helix peptide phage library. Molecular BioSystems, 2017, 13, 2222-2225.	2.9	10
17	Development of Nano- and Bio-Materials Using Nanofibers Fabricated from Self-Assembling Peptides. Kobunshi Ronbunshu, 2017, 74, 162-171.	0.2	2
18	Cell differentiation on disk―and stringâ€shaped hydrogels fabricated from Ca ²⁺ â€responsive selfâ€assembling peptides. Biopolymers, 2016, 106, 476-483.	2.4	14

#	Article	IF	Citations
19	A Cell Microarray Format: A Peptide Release System Using a Photo-Cleavable Linker for Cell Toxicity and Cell Uptake Analysis. Methods in Molecular Biology, 2016, 1352, 199-210.	0.9	1
20	Anomalous Reflection of Gold: A Novel Platform for Biochips. Methods in Molecular Biology, 2016, 1352, 97-110.	0.9	2
21	Dihydrofolate reductase inhibitory peptides screened from a structured designed \hat{l}^2 -loop peptide library displayed on phage. Molecular BioSystems, 2015, 11, 2713-2716.	2.9	3
22	Label and Label-Free Detection Techniques for Protein Microarrays. Microarrays (Basel, Switzerland), 2015, 4, 228-244.	1.4	148
23	Cell-selective intracellular drug delivery using doxorubicin and \hat{l}_{\pm} -helical peptides conjugated to gold nanoparticles. Biomaterials, 2014, 35, 3480-3487.	11.4	46
24	Enhanced refractive index sensitivity for anomalous reflection of gold to improve performance of bio-molecular detection. Sensors and Actuators B: Chemical, 2014, 190, 357-362.	7.8	5
25	Interaction of amphiphilic \hat{l} ±-helical cell-penetrating peptides with heparan sulfate. Organic and Biomolecular Chemistry, 2014, 12, 4673.	2.8	29
26	Cellular differentiation assessments by measuring the degree of cellular internalization and membrane adsorption using designed peptides. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4129-4131.	2.2	0
27	Hybrid Hydrogels Composed of Regularly Assembled Filamentous Viruses and Gold Nanoparticles. ACS Macro Letters, 2014, 3, 341-345.	4.8	27
28	A Computational Study of the Interaction of Amphiphilic \hat{l}_{\pm} -Helical Cell-Penetrating Peptides with Heparan Sulfate. Bulletin of the Chemical Society of Japan, 2014, 87, 1074-1082.	3.2	1
29	Selfâ€assembling peptide nanofibers promoting cell adhesion and differentiation. Biopolymers, 2013, 100, 731-737.	2.4	15
30	Soft materials based on designed self-assembling peptides: from design to application. Molecular BioSystems, 2013, 9, 609.	2.9	33
31	Modification of a Small βâ€Barrel Protein, To Give Pseudoâ€Amyloid Structures, Inhibits Amyloid βâ€Peptide Aggregation. Chemistry - A European Journal, 2013, 19, 4525-4531.	3.3	6
32	A monosaccharide-modified peptide phage library for screening of ligands to carbohydrate-binding proteins. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4940-4943.	2.2	37
33	Systematic screening of the cellular uptake of designed alpha-helix peptides. Bioorganic and Medicinal Chemistry, 2013, 21, 2560-2567.	3.0	22
34	A novel array format for monitoring cellular uptake using a photo-cleavable linker for peptide release. Chemical Communications, 2013, 49, 6394.	4.1	17
35	A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer Journal, 2013, 45, 535-539.	2.7	16
36	Peptides as New Smart Bionanomaterials: Molecularâ€Recognition and Selfâ€Assembly Capabilities. Chemical Record, 2013, 13, 172-186.	5.8	40

#	Article	IF	CITATIONS
37	Cell penetration and cell-selective drug delivery using α-helix peptides conjugated with gold nanoparticles. Biomaterials, 2013, 34, 4872-4879.	11.4	54
38	Construction of proteins with molecular recognition capabilities using Â3Â3 de novo protein scaffolds. Protein Engineering, Design and Selection, 2013, 26, 705-711.	2.1	2
39	Cell-adhesive hydrogels composed of peptide nanofibers responsive to biological ions. Polymer Journal, 2012, 44, 651-657.	2.7	40
40	Noncompetitive On-Chip Immunoassays for Detection of Nonlabeled Antibodies Based on the Excluded Volume Effect of the Target Itself. Bulletin of the Chemical Society of Japan, 2012, 85, 69-78.	3.2	3
41	Construction of Designed Peptide Microarrays Toward "Omics" Studies. Bunseki Kagaku, 2012, 61, 523-534.	0.2	0
42	Dense surface functionalization using peptides that recognize differences in organized structures of self-assembling nanomaterials. Molecular BioSystems, 2012, 8, 1264.	2.9	22
43	Effects of Group 3 LEA protein model peptides on desiccation-induced protein aggregation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 891-897.	2.3	49
44	FRET detection of amyloid \hat{l}^2 -peptide oligomerization using a fluorescent protein probe presenting a pseudo-amyloid structure. Chemical Communications, 2012, 48, 1568-1570.	4.1	34
45	Gold nanoparticles conjugated with monosaccharide-modified peptide for lectin detection. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6825-6827.	2.2	20
46	Sensitive Detection of Small Molecule–Protein Interactions on a Metal–Insulator–Metal Labelâ€Free Biosensing Platform. Chemistry - an Asian Journal, 2012, 7, 1867-1874.	3.3	13
47	Terminal Sequence Importance of De Novo Proteins from Binary- Patterned Library: Stable Artificial Proteins with 11- or 12-Amino Acid Alphabet. Protein and Peptide Letters, 2012, 19, 673-679.	0.9	1
48	A novel \hat{l}^2 -loop scaffold of phage-displayed peptides for highly specific affinities. Molecular BioSystems, 2011, 7, 2558.	2.9	8
49	A Novel Peptide Array Using a Phage Display System for Protein Detection. Chemistry Letters, 2011, 40, 508-509.	1.3	6
50	Cell fingerprint patterns using designed \hat{l} ±-helical peptides to screen for cell-specific toxicity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6281-6284.	2.2	11
51	Designed Short Peptides that Form Amyloid‣ike Fibrils in Coassembly with Amyloid βâ€Peptide (Aβ) Decrease the Toxicity of Aβ to Neuronal PC12 Cells. ChemBioChem, 2010, 11, 1525-1530.	2.6	10
52	Peptide Nanofibers Modified with a Protein by Using Designed Anchor Molecules Bearing Hydrophobic and Functional Moieties. Chemistry - A European Journal, 2010, 16, 6644-6650.	3.3	10
53	Design and conformational analysis of natively folded βâ€hairpin peptides stabilized by nucleobase interactions. Biopolymers, 2010, 94, 830-842.	2.4	5
54	Rational design of amyloid \hat{l}^2 peptide $\hat{a} \in \hat{b}$ inding proteins: Pseudo $\hat{a} \in \hat{A} \hat{l}^2$ $\hat{l}^2 \hat{a} \in \hat{b}$ heet surface presented in green fluorescent protein binds tightly and preferentially to structured $\hat{A} \hat{l}^2$. Proteins: Structure, Function and Bioinformatics, 2010, 78, 336-347.	2.6	17

#	Article	IF	CITATIONS
55	Protein–protein interactions and selection: arrayâ€based techniques for screening diseaseâ€associated biomarkers in predictive/early diagnosis. FEBS Journal, 2010, 277, 1996-2005.	4.7	48
56	Desiccation-Induced Structuralization and Glass Formation of Group 3 Late Embryogenesis Abundant Protein Model Peptides. Biochemistry, 2010, 49, 1093-1104.	2.5	102
57	A New Optical Label-Free Biosensing Platform Based on a Metalâ^'Insulatorâ^'Metal Structure. Langmuir, 2010, 26, 6053-6057.	3.5	21
58	Synthesis of analogs of K-582A, an antibiotic heptapeptide. International Journal of Peptide and Protein Research, 2009, 25, 640-647.	0.1	3
59	Construction of a multiâ€functional extracellular matrix protein that increases number of N1Eâ€115 neuroblast cells having neurites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 425-432.	3.4	11
60	Selection and structural analysis of <i>de novo</i> proteins from an $\hat{l}\pm3\hat{l}^23$ genetic library. Protein Science, 2009, 18, 384-398.	7.6	14
61	Affinity-Based Screening of Peptides Recognizing Assembly States of Self-Assembling Peptide Nanomaterials. Journal of the American Chemical Society, 2009, 131, 14434-14441.	13.7	38
62	Poly(amidoamine)-Dendrimer-Modified Gold Surfaces for Anomalous Reflection of Gold To Detect Biomolecular Interactions. Langmuir, 2009, 25, 3667-3674.	3.5	26
63	RNA aptamers selected against amyloid \hat{l}^2 -peptide (\hat{Al}^2) inhibit the aggregation of \hat{Al}^2 . Molecular BioSystems, 2009, 5, 986.	2.9	62
64	A Designed Peptide Chip: Protein Fingerprinting Technology with a Dry Peptide Array and Statistical Data Mining. Methods in Molecular Biology, 2009, 570, 273-284.	0.9	17
65	Construction of multi-functional extracellular matrix proteins that promote tube formation of endothelial cells. Biomaterials, 2008, 29, 2977-2986.	11.4	41
66	Peptide and Protein Mimetics Inhibiting Amyloid β-Peptide Aggregation. Accounts of Chemical Research, 2008, 41, 1309-1318.	15.6	215
67	1P-068 The Effect of Model Peptides for Group-3 Late Embryogenesis Abundant (G3LEA) Proteins on Protein Aggregation (The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S31.	0.1	0
68	3P024 Model study of the desiccation-induced structural transformations of Group-3 Late Embryogenesis Abundant (G3LEA) proteins(Hemeproteins. Electronic states. Proteins-structure and) Tj ETQq0 0 0	r gB T/Ove	erlock 10 Tf
69	āfšāf—āfēf‰āf ©ā,¤f—āf ©āfªā,'甓ā•,ā,‹ā,¿āf³āf'ā,¯è³³ç›¸ä°'作甓ææå‡ºāfēffāf—. Electrochemistry, 2007	, 7.5 , 981-	9 & 6.
70	Phosphate-Mediated Molecular Memory Driven by Two Different Protein Kinases as Information Input Elements. Journal of the American Chemical Society, 2007, 129, 8345-8352.	13.7	49
71	Embedding the Amyloid \hat{l}^2 -Peptide Sequence in Green Fluorescent Protein Inhibits A \hat{l}^2 Oligomerization. ChemBioChem, 2007, 8, 985-988.	2.6	20
72	Design of Peptides That Form Amyloidâ€Like Fibrils Capturing Amyloid β1–42 Peptides. Chemistry - A European Journal, 2007, 13, 7745-7752.	3.3	28

#	Article	IF	Citations
73	Interactions between peptides containing nucleobase amino acids and T7 phages displayingS. cerevisiae proteins. Biopolymers, 2007, 88, 131-140.	2.4	26
74	Screening of \hat{l} ±-helical peptide ligands controlling a calcineurin-phosphatase activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 167-171.	2.2	24
75	Design of Artificial Proteins and Peptides Targeting to Amyloid .BETA. Peptide (A.BETA.) and Control of A.BETA. Aggregation. Seibutsu Butsuri, 2007, 47, 228-234.	0.1	0
76	A novel peptide microarray for protein detection and analysis utilizing a dry peptide array system. Molecular BioSystems, 2006, 2, 113-121.	2.9	37
77	Protein-fingerprint data mining of a designed \hat{l}_{\pm} -helical peptide array. Molecular BioSystems, 2006, 2, 417-420.	2.9	24
78	Rational design of homogenous protein kinase assay platforms that allow both fluorometric and colorimetric signal readouts. Molecular BioSystems, 2006, 2, 580.	2.9	15
79	Binding Modes of the Precursor of Adenovirus Major Core Protein VII to DNA and Template Activating Factor I: Implication for the Mechanism of Remodeling of the Adenovirus Chromatinâ€. Biochemistry, 2006, 45, 303-313.	2.5	21
80	Designed Peptide Microarrays for Protein Detection and Characterization., 2006,, 731-733.		0
81	Critical current characteristics in MgB2 bulks. Physica C: Superconductivity and Its Applications, 2006, 445-448, 474-477.	1.2	18
82	A PNA–DNA hybridization chip approach for the detection of β-secretase activity. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 503-506.	2.2	19
83	Nonfibrous \hat{i}^2 -structured aggregation of an \hat{A}^2 model peptide (Ad- $2\hat{i}_\pm$) on GM1/DPPC mixed monolayer surfaces. Journal of Colloid and Interface Science, 2006, 294, 295-303.	9.4	9
84	Utilization of L- \hat{l} ±-Nucleobase Amino Acids (NBAs) as Protein Engineering Tools: Construction of NBA-Modified HIV-1 Protease Analogues and Enhancement of Dimerization Induced by Nucleobase Interaction. ChemBioChem, 2006, 7, 729-732.	2.6	8
85	Metal-triggered Nanofiber Formation of His-containing \hat{I}^2 -Sheet Peptide. Supramolecular Chemistry, 2006, 18, 397-403.	1.2	16
86	Construction and Control of Self-Assembly of Amyloid and Fibrous Peptides. Bulletin of the Chemical Society of Japan, 2005, 78, 572-590.	3.2	12
87	A chromism-based assay (CHROBA) technique for in situ detection of protein kinase activity. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1731-1735.	2.2	12
88	A Designed Glycopeptide Array for Characterization of Sugar-Binding Proteins Toward a Glycopeptide Chip Technology. Nanobiotechnology, 2005, 1, 191-200.	1,2	22
89	Protein-Detecting Microarrays: Current Accomplishments and Requirements. ChemBioChem, 2005, 6, 782-799.	2.6	166
90	Difference in Self-Assembling Morphology of Peptide Nanorings. Japanese Journal of Applied Physics, 2005, 44, 8240-8248.	1,5	5

#	Article	IF	Citations
91	IR Study on Stacking Manner of Peptide Nanorings in Peptide Nanotubes. Japanese Journal of Applied Physics, 2005, 44, 7654-7661.	1.5	8
92	A novel fluorescence sensing system using a photochromism-based assay (P-CHROBA) technique for the detection of target proteins. Journal of Materials Chemistry, 2005, 15, 2732.	6.7	24
93	Anomalous reflection of gold applicable for a practical protein-detecting chip platform. Molecular BioSystems, 2005, 1, 363.	2.9	29
94	Construction of biotinylated peptide nanotubes for arranging proteins. Molecular BioSystems, 2005, 1, 146.	2.9	46
95	Peptide arrays with designed α-helical structures for characterization of proteins from FRET fingerprint patterns. Molecular Diversity, 2004, 8, 209-218.	3.9	39
96	Enantioselective ester hydrolysis catalyzed by \hat{l}^2 -cyclodextrin conjugated with \hat{l}^2 -hairpin peptides. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 723-726.	2.2	19
97	Peptide arrays with designed secondary structures for protein characterization using fluorescent fingerprint patterns. Biopolymers, 2004, 76, 129-139.	2.4	41
98	A Peptide-Cyclodextrin Hybrid System Capable of Detecting Guest Molecules Utilizing Fluorescence Resonance Energy Transfer. Macromolecular Rapid Communications, 2004, 25, 577-581.	3.9	11
99	Fabrication of Nanofibers with Uniform Morphology by Self-Assembly of Designed Peptides. Chemistry - A European Journal, 2004, 10, 2789-2794.	3.3	71
100	Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorganic and Medicinal Chemistry, 2004, 12, 693-699.	3.0	54
101	Construction of a protein array on amyloid-like fibrils using co-assembly of designed peptides. Chemical Communications, 2004, , 2876.	4.1	47
102	De Novo Design of Peptides with l- $\hat{l}\pm$ -Nucleobase Amino Acids and Their Binding Properties to the P22 box B RNA and Its Mutants. Bioconjugate Chemistry, 2004, 15, 694-698.	3.6	14
103	Development of a Practical Protein-Chip Using Designed Synthetic Peptide-Arrays. Kobunshi Ronbunshu, 2004, 61, 523-532.	0.2	4
104	Inhibition of peptide amyloid formation by cationic peptides with homologous sequences. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4051-4054.	2.2	7
105	Fluorescence resonance energy transfer in a novel cyclodextrin–Peptide conjugate for detecting steroid molecules. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4305-4308.	2.2	38
106	Sensing Behavior of Fluorescent Cyclodextrin/Peptide Hybrids Bearing a Macrocyclic Metal Complex. Macromolecular Rapid Communications, 2003, 24, 202-206.	3.9	17
107	Complementary Nucleobase Interaction Enhances Peptide-Peptide Recognition and Self-Replicating Catalysis. Chemistry - A European Journal, 2003, 9, 4829-4837.	3.3	37
108	Construction of a Protein-Detection System Using a Loop Peptide Library with a Fluorescence Label. Chemistry and Biology, 2003, 10, 53-60.	6.0	83

#	Article	IF	CITATIONS
109	Novel Peptides Bearing Pyrene and Coumarin Units with or without β-Cyclodextrin in Their Side Chains Exhibit Intramolecular Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2003, 125, 11178-11179.	13.7	70
110	Theoretical Prediction and Atomic Force Microscope Observations of the Protein Nanotube Consisting of Homo-L-Amino Acid Penta-Peptide Nanorings. Japanese Journal of Applied Physics, 2003, 42, 676-679.	1.5	12
111	Synthesis and atomic force microscopy observations of the single-peptide nanotubes and their micro-order assemblies. Physical Review B, 2002, 66, .	3.2	17
112	Double Naphthalene-Tagged Cyclodextrin-Peptide Capable of Exhibiting Guest-Induced Naphthalene Excimer Fluorescence. Macromolecular Rapid Communications, 2002, 23, 11-15.	3.9	20
113	Fluorescent Cyclodextrin/Peptide Hybrids with a Novel Guest-Responsive Chemosensor in the Peptide Side Chain. Macromolecular Rapid Communications, 2002, 23, 905-908.	3.9	7
114	Nucleobase Amino Acids Incorporated into the HIV-1 Nucleocapsid Protein Increased the Binding Affinity and Specificity for a Hairpin RNA. ChemBioChem, 2002, 3, 543.	2.6	14
115	Amyloid Architecture: Complementary Assembly of Heterogeneous Combinations of Three or Four Peptides into Amyloid Fibrils. ChemBioChem, 2002, 3, 637.	2.6	41
116	Construction of the novel conformationally-restricted peptide library for screening of peptides that control the interaction Between nucleobases. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 955-958.	2.2	2
117	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 43, 271-277.	1.6	8
118	Supramolecular Chemistry of Cyclodextrin-Peptide Hybrids: Azobenzene-Tagged Peptides. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 49-52.	1.6	5
119	Double Naphthalene-Tagged Cyclodextrin-Peptide Capable of Exhibiting Guest-Induced Naphthalene Excimer Fluorescence. Macromolecular Rapid Communications, 2002, 23, 11.	3.9	0
120	Guest-Induced Diminishment in Fluorescence Quenching and Molecule Sensing Ability of A Novel Cyclodextrinâ^'Peptide Conjugate. Journal of the American Chemical Society, 2001, 123, 7435-7436.	13.7	37
121	HIV Rev peptides conjugated with peptide nucleic acids and their efficient binding to RRE RNA. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1169-1172.	2.2	9
122	Construction of peptides with nucleobase amino acids. Bioorganic and Medicinal Chemistry, 2001, 9, 991-1000.	3.0	26
123	Construction of peptide conjugates with peptide nucleic acids containing an anthracene probe and their interactions with DNA. Bioorganic and Medicinal Chemistry, 2001, 9, 1115-1121.	3.0	3
124	Photoinduced hydrogen evolution with peptide dendrimer-multi-Zn(II)-porphyrin, viologen, and hydrogenase. Biopolymers, 2001, 59, 103-109.	2.4	33
125	Design and synthesis of 3?-helix peptides forming a cavity for a fluorescent ligand. Biopolymers, 2001, 59, 65-71.	2.4	12
126	Heterogeneous Assembly of Complementary Peptide Pairs into Amyloid Fibrils with $\hat{l}\pm\hat{l}^2$ Structural Transition. ChemBioChem, 2001, 2, 75-79.	2.6	30

#	Article	IF	CITATIONS
127	Multipeptide-Metalloporphyrin Assembly on a Dendrimer Template and Photoinduced Electron Transfer Based on the Dendrimer Structure. Chemistry - A European Journal, 2001, 7, 2449-2458.	3.3	46
128	Remarkable Stabilization of the α-Helix Structure by an Intramolecular Host-Guest Bridge in a Cyclodextrin-Peptide Hybrid. Macromolecular Rapid Communications, 2001, 22, 262-265.	3.9	1
129	Multipeptide-Metalloporphyrin Assembly on a Dendrimer Template and Photoinduced Electron Transfer Based on the Dendrimer Structure. Chemistry - A European Journal, 2001, 7, 2449-2458.	3.3	1
130	Template-Directed Ligation of Peptides with Nucleobase Amino Acids., 2001,, 674-675.		0
131	Complementary Assembly of Heterogeneous Multiple Peptides into Amyloid Fibrils with $\hat{l}\pm\hat{l}^2$ Structural Transitions. , 2001, , 435-437.		0
132	Screening of Peptides that Control Interaction Between Nucleobases from Peptide Libraries Based on Loop Structures., 2001,, 520-521.		0
133	Construction of RNA-Binding Proteins Having Nucleobase Amino Acids Based on HIV-1 Nucleocapsid Protein., 2001,, 518-519.		0
134	Association and Guest-induced Dissociation of a Novel \hat{l}_{\pm} -Helix Peptide Bearing Pyrene and \hat{l}_{\pm} -Cyclodextrin in the Side Chains. Chemistry Letters, 2000, 29, 252-253.	1.3	5
135	Construction ofl±-Helix Peptides withl²-Cyclodextrin and Dansyl Units and Their Conformational and Molecular Sensing Properties. Chemistry - A European Journal, 2000, 6, 1781-1788.	3.3	54
136	Guest-responsive excimer emission in an \hat{l}_{\pm} -helix peptide bearing \hat{l}_{\pm} -cyclodextrin and two naphthalene units. Macromolecular Rapid Communications, 2000, 21, 485-488.	3.9	13
137	Peptide Design Based on an Antibody Complementarity-Determining Region (CDR): Construction of Porphyrin-Binding Peptides and Their Affinity Maturation by a Combinatorial Method. Chemistry - A European Journal, 2000, 6, 3196-3203.	3 . 3	36
138	Construction of HIV Rev peptides containing peptide nucleic acid that bind HIV RRE IIB RNA. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 377-379.	2.2	11
139	Cyclodextrin–peptide hybrid as a hydrolytic catalyst having multiple functional groups. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 741-743.	2.2	17
140	a high-throughput screening utilizing intramolecular fluorescence resonance energy transfer for the discovery of the molecules that bind hiv-1 tar rna specifically. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1857-1861.	2.2	59
141	Construction of two-stranded \hat{l} ±-helix peptides based on influenza virus M1 protein selectively bound to RNA. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2227-2230.	2.2	3
142	Design, synthesis and peroxidase-like activity of $3\hat{l}_{\pm}$ -helix proteins covalently bound to heme. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2719-2722.	2.2	19
143	Construction of Peptides That Undergo Structural Transition from \hat{I}_{\pm} -Helix to \hat{I}_{\pm} -Sheet and Amyloid Fibril Formation by the Introduction of N-Terminal Hydrophobic Amino Acids. Tetrahedron, 2000, 56, 7011-7018.	1.9	31
144	Mutational analysis of designed peptides that undergo structural transition from \hat{l}_{\pm} helix to \hat{l}_{\pm}^2 sheet and amyloid fibril formation. Structure, 2000, 8, 915-925.	3.3	49

#	Article	IF	CITATIONS
145	Rate enhancement and enantioselectivity in ester hydrolysis catalysed by cyclodextrin–peptide hybrids. Perkin Transactions II RSC, 2000, , 1813-1818.	1.1	19
146	Association of \hat{l} ±-helix peptides that have \hat{l}^3 -cyclodextrin and pyrene units in their side chain, and induction of dissociation of the association dimer by external stimulant molecules. Perkin Transactions II RSC, 2000, , 1527-1533.	1.1	28
147	Design of a nucleobase-conjugated peptide that recognizes HIV-1 RRE IIB RNA with high affinity and specificity. Chemical Communications, 2000, , 349-350.	4.1	13
148	Peptides with nucleobase moieties as a stabilizing factor for a two-stranded \hat{l}_{\pm} -helix. Chemical Communications, 2000, , 1615-1616.	4.1	10
149	Design and characterization of flavoenzyme models in the course of chemical evolution of four-l±-helix bundle polypeptides. Perkin Transactions II RSC, 2000, , 813-822.	1.1	9
150	Construction of \hat{l} ±-helical peptide dendrimers conjugated with multi-metalloporphyrins: photoinduced electron transfer on dendrimer architecture. Chemical Communications, 2000, , 1741-1742.	4.1	43
151	Construction of -Helix Peptides with -Cyclodextrin and Dansyl Units and Their Conformational and Molecular Sensing Properties. Chemistry - A European Journal, 2000, 6, 1781-1788.	3.3	1
152	Peptide Design Based on an Antibody Complementarity-Determining Region (CDR): Construction of Porphyrin-Binding Peptides and Their Affinity Maturation by a Combinatorial Method. Chemistry - A European Journal, 2000, 6, 3196-3203.	3.3	0
153	Design of peptides derived from anti-IgE antibody for allergic treatment. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2185-2188.	2.2	7
154	Optimization of Hydrophobic Domains in Peptides that Undergo Transformation from \hat{l}_{\pm} -Helix to \hat{l}^{2} -Fibril. Bioorganic and Medicinal Chemistry, 1999, 7, 177-185.	3.0	59
155	Regulation of $\hat{l}\pm/\hat{l}^2$ -folding of a designed peptide by haem binding. Chemical Communications, 1999, , 1111-1112.	4.1	12
156	Effects of amino acids substitution of hydrophobic residues on haem-binding properties of designed two-α-helix peptides. Journal of the Chemical Society Perkin Transactions II, 1999, , 2059-2069.	0.9	24
157	Electron Transfer of Flavin-pendant α-Helical Peptides Self-assembled on an Electrode. Electrochemistry, 1999, 67, 1221-1223.	1.4	3
158	Design and synthesis of haem-binding peptides. Relationship between haem-binding properties and catalytic activities. Journal of the Chemical Society Perkin Transactions II, 1998, , 2395-2404.	0.9	17
159	Design of peptides undergoing self-catalytic \hat{l} ±-to- \hat{l} 2 transition and amyloidogenesis., 1998, 47, 83-92.		37
160	Design of a Peptide Undergoing $\hat{l}\pm\hat{-l}^2$ Structural Transition and Amyloid Fibrillogenesis by the Introduction of a Hydrophobic Defect. Chemistry - A European Journal, 1998, 4, 2475-2484.	3.3	65
161	Design of novel porphyrin-binding peptides based on antibody CDR. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2023-2026.	2.2	21
162	Molecular assembly of two- \hat{l}_{\pm} -helix peptide induced by haem binding. Chemical Communications, 1998, , 1073-1074.	4.1	10

#	Article	IF	CITATIONS
163	Annealing of Two-α-Helix Structure by Metal Ion Binding Regulated with Trifluoroethanol. Chemistry Letters, 1998, 27, 867-868.	1.3	0
164	Interaction of αâ€helical peptides with phospholipid membrane: effects of chain length and hydrophobicity of peptides. Chemical Biology and Drug Design, 1998, 51, 103-109.	1.1	23
165	Structure and property of model peptides of proline/arginineâ€rich region in bactenecin 5. Chemical Biology and Drug Design, 1998, 51, 337-345.	1.1	18
166	Design of a Peptide Undergoing – Structural Transition and Amyloid Fibrillogenesis by the Introduction of a Hydrophobic Defect. Chemistry - A European Journal, 1998, 4, 2475-2484.	3.3	2
167	Binding of Cationic α-Helical Peptides to Plasmid DNA and Their Gene Transfer Abilities into Cells. Journal of Biological Chemistry, 1997, 272, 15307-15312.	3.4	141
168	N-D-Biotinyl-7-amino-4-methylcoumarin as a Novel Fluorigenic Substrate for the Determination of Biotinidase Activity. Chemistry Letters, 1997, 26, 391-392.	1.3	1
169	A pair of pyrene groups as a conformational probe for antiparallel \hat{l}^2 -sheet structure formed in cyclic peptides. Journal of the Chemical Society Perkin Transactions II, 1997, , 517-522.	0.9	20
170	Haem binding and catalytic activity of two- \hat{l} ±-helix peptide annealed by trifluoroethanol. Chemical Communications, 1997, , 1221-1222.	4.1	17
171	Alizarin Yellow-Modified \hat{l}^2 -Cyclodextrin as a Guest-Responsive Absorption Change Sensor. Analytical Chemistry, 1997, 69, 659-663.	6.5	64
172	Engineering peptides and proteins that undergo \hat{l} ±-to- \hat{l} 2 transitions. Current Opinion in Structural Biology, 1997, 7, 749.	5.7	0
173	Engineering peptides and proteins that undergo \hat{l} ±-to- \hat{l} 2 transitions. Current Opinion in Structural Biology, 1997, 7, 501-508.	5.7	74
174	Membrane interaction of synthetic peptides related to the putative fusogenic region of PHâ€30α, a protein in spermâ€egg fusion. Chemical Biology and Drug Design, 1997, 49, 563-569.	1.1	15
175	Interaction of lipophilic peptides derived from mastoparan with phospholipid vesicles. Chemical Biology and Drug Design, 1997, 50, 458-464.	1.1	12
176	Cyclo(-arginyl-sarcosyl-aspartyl-phenylglycyl-)2. Simple synthesis of an RGD-related peptide with inhibitory activity for platelet aggregation. Journal of the Chemical Society Perkin Transactions 1 , 1996 , 939 .	0.9	8
177	Design and synthesis of flavin-conjugated peptides and assembly on a gold electrode. Journal of the Chemical Society Perkin Transactions II, 1996, , 2319.	0.9	12
178	Chiral Assembly of Porphyrins Regulated by Amphiphilicl±-Helix Peptides. Chemistry Letters, 1996, 25, 1-2.	1.3	20
179	Artificial Membrane Protein Functionalized with Electron Transfer System. Chemistry Letters, 1996, 25, 187-188.	1.3	17
180	Synthesis of a 9â€acridinyl nonapeptide containing the DNA recognizing region of 434 phage repressor protein. Journal of Heterocyclic Chemistry, 1996, 33, 2043-2046.	2.6	7

#	Article	IF	Citations
181	Construction of Membrane-Penetrating Peptide Super-Structures for Design of Artificial Membrane Proteins Kobunshi Ronbunshu, 1995, 52, 797-808.	0.2	O
182	Super-Secondary Structure with Amphiphilic \hat{l}^2 -Strands Probed by Pyrenylalanine. Chemistry Letters, 1995, 24, 965-966.	1.3	13
183	Enhanced Membrane-Perturbing Activities of Bundled Amphiphilicα-Helix Polypeptides on Interaction with Phospholipid Bilayer. Bulletin of the Chemical Society of Japan, 1995, 68, 2931-2939.	3.2	9
184	Synthesis of Protected Peptides Containing Phosphoserine with Oxime Resin. Chemistry Letters, 1995, 24, 399-400.	1.3	1
185	Peptide Synthesis Mediated by Thiolsubtilisin Using Peptide Thioester as Building Block. Chemistry Letters, 1995, 24, 397-398.	1.3	6
186	A Membrane Protein Model: Polypeptides with Fourα-Helix Bundle Structure on 5,10,15,20-Tetrakis[2-(carboxymethoxy)phenyl]porphyrin. Bulletin of the Chemical Society of Japan, 1995, 68, 1989-1998.	3.2	23
187	A pair of pyrene groups as a conformational probe for designed four-α-helix bundle polypeptides. Journal of the Chemical Society Perkin Transactions II, 1995, , 1915-1921.	0.9	10
188	A pair of pyrene groups as a conformational probe for designed two $\hat{l}\pm$ -helix polypeptides. Journal of the Chemical Society Perkin Transactions II, 1995, , 1133-1140.	0.9	11
189	Peptide and Protein Synthesis by Solid-Phase Synthesis and Segment Condensation Approach with Oxime Resin Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 370-380.	0.1	2
190	Design, synthesis, and conformation of a model peptide of endothelin with cystine-stabilized ?-helix motif. Biopolymers, 1994, 34, 963-967.	2.4	7
191	Disulfide cyclization of protected peptide assembled on oxime resin. Tetrahedron Letters, 1993, 34, 1295-1298.	1.4	5
192	Aminoporphyrinic acid as a new template for polypeptide design. Journal of the Chemical Society Chemical Communications, 1993, , 162.	2.0	9
193	Synthesis of the 60 amino acid homeo domain and smaller fragments of the Drosophila gene regulatory protein Antennapedia by a segment synthesis-condensation approach. Journal of Organic Chemistry, 1993, 58, 2209-2215.	3.2	17
194	Dansyl and Indolyl Groups as a Probing Pair for Intersegmental Arrangement in Four α-Helix Bundle Structure of a Polypeptide. Chemistry Letters, 1993, 22, 53-56.	1.3	5
195	De NovoDesign and Synthesis of Four α-Helix Bundle Proteins with Flavin Function. Chemistry Letters, 1993, 22, 1533-1536.	1.3	6
196	5,10,15,20-Tetrakis (2-amino-6-methoxycarbonylphenyl) porphyrin. Synthesis and Separation of Atropisomers Useful for Porphyrin Architecture. Chemistry Letters, 1993, 22, 279-282.	1.3	4
197	Use of organic solvents paired by a hydrogen bond for peptide synthesis mediated by proteases. , 1993, , 173-175.		0
198	Design and synthesis of four \hat{l}_{\pm} -helix bundle peptides with various chromophores in close proximity. , 1993, , 506-508.		0

#	Article	IF	CITATIONS
199	Spectroscopic properties of a pair of pyrene rings on the amphiphilic cyclic peptides., 1993,, 509-511.		O
200	A Hybrid of Amphiphilic α-Helical Peptides andmeso-Tetra(α,α,α-o-carboxyphenyl)porphyrin. Membrane-Penetrating Porphyrin-4α-Helix Artificial Protein. Chemistry Letters, 1992, 21, 1805-1808.	1.3	21
201	Design of a Hybrid of Two α-Helix Peptides and Ruthenium Trisbipyridine Complex for Photo-induced Electron Transfer System in Bilayer Membrane. Chemistry Letters, 1992, 21, 1813-1816.	1.3	11
202	Synthesis of [L-α-Aminomyristic Acid3,3′]gramicidin S and Its Interaction with Phospholipid Bilayer. Bulletin of the Chemical Society of Japan, 1992, 65, 228-233.	3.2	11
203	Synthesis of [D-Pyrenylalanine4,4′]gramicidin S by Solid-Phase-Synthesis and Cyclization-Cleavage Method with Oxime Resin. Chemistry Letters, 1992, 21, 191-194.	1.3	22
204	Efficient Preparation of $\hat{l}\pm\hat{l}^2\hat{l}\pm\hat{l}^2$ -Atropisomer ofmeso-Tetra(o-aminophenyl)porphyrin. Chemistry Letters, 1992, 21, 1991-1994.	1.3	7
205	Sequence Dependent Cyclization-Cleavage of Dipeptides from the Oxime Resin and Its Prevention. Bulletin of the Chemical Society of Japan, 1992, 65, 991-994.	3.2	25
206	Probing Behavior of 1-Pyrenylalanine for Interaction of Two α-Helices Anchored on a Bipyridyl Group. Chemistry Letters, 1992, 21, 1809-1812.	1.3	8
207	Hexafluoroisopropyl Alcohol is a Useful Cosolvent with Dimethylformamide for Tryptic Synthesis of Peptides. Chemistry Letters, 1992, 21, 327-330.	1.3	12
208	Facile synthesis of cyclic peptides containing \hat{l} ±-aminosuberic acid with oxime resin. Journal of the Chemical Society Chemical Communications, 1992, , 180-181.	2.0	8
209	Induced circular dichroism of atropisomeric porphyrins by combined amino acid residues. Journal of the Chemical Society Chemical Communications, 1992, , 692.	2.0	12
210	Tryptic condensation combined with peptide segment synthesis $\hat{a} \in \text{``condensation strategy for the efficient synthesis of human growth hormone releasing factor (1$\hat{a} \in \text{''29}) amide. Journal of the Chemical Society Chemical Communications, 1992, , 648-650.$	2.0	5
211	Peptide synthesis in fluorinated alcohols mixed with proton accepting partners. Tetrahedron Letters, 1992, 33, 7007-7010.	1.4	9
212	Use of hexafluoroisopropyl alcohol in tryptic condensation for partially protected precursor of î±-melanocyte stimulating hormone. Tetrahedron Letters, 1992, 33, 3137-3140.	1.4	10
213	Sequence dependence in solid-phase-synthesis-cyclization-cleavage for Cyclo(-arginyl-glycyl-aspartyl-phenylglycyl-). Tetrahedron Letters, 1992, 33, 1479-1482.	1.4	50
214	Design and synthesis of a polypeptide containing 1-pyrenylalanines as fluorescent probe for four \hat{l} ±-Helix bundle structure. Tetrahedron Letters, 1992, 33, 5767-5770.	1.4	32
215	Design and synthesis of basic peptides having amphipathic \hat{l}^2 -structure and their interaction with phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1022, 237-244.	2.6	40
216	Peptide and protein synthesis by segment synthesis-condensation. Science, 1989, 243, 187-192.	12.6	118

#	Article	IF	Citations
217	The spectroscopic analysis for binding of amphipathic and antimicrobial model peptides containing pyrenylalanine and tryptophan to lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 1989, 984, 174-182.	2.6	23
218	A chemically synthesized Antennapedia homeo domain binds to a specific DNA sequence. Science, 1988, 242, 925-927.	12.6	62
219	Biophysical studies of the fragments of the extension peptide of cytochrome P-450 (SCC) precursor. , 1988, , 325-327.		0
220	Interaction of Synthetic Fragments of the Extension Peptide of Cytochrome P-450(SCC) Precursor with Phospholipid Bilayer. Journal of Biochemistry, 1987, 102, 813-820.	1.7	11
221	Design and Synthesis of Amphiphilic Basic Peptides with Antibacterial Activity and Their Interaction with Model Membrane. Bulletin of the Chemical Society of Japan, 1987, 60, 697-706.	3.2	25
222	Synthesis of Enantio AM-toxin. Agricultural and Biological Chemistry, 1987, 51, 1707-1709.	0.3	0
223	Synthesis, receptor binding activity and fluorescence property of fluorescent enkephalin analogs containing Lâ€1â€pyrenylalanine. International Journal of Peptide and Protein Research, 1987, 30, 605-612.	0.1	12
224	Tyr1-substituted and fluorescent Pya1-enkephalins bind strongly and selectively to $\hat{l}\frac{1}{4}$ and \hat{l} opiate receptors. Biochemical and Biophysical Research Communications, 1986, 136, 1170-1176.	2.1	12
225	Relationship between antimicrobial activity and amphiphilic property of basic model peptides. Biochimica Et Biophysica Acta - Biomembranes, 1986, 862, 211-219.	2.6	82
226	Cyclic Peptides. XXII. Synthesis of [2-Amino-2,3-dehydrobutanoic Acid4]AM-Toxin I. Bulletin of the Chemical Society of Japan, 1986, 59, 2041-2043.	3.2	8
227	Cyclic Peptides. XXIII. Synthesis of Retro-Enantio-AM-Toxin I. Bulletin of the Chemical Society of Japan, 1986, 59, 2651-2653.	3.2	5
228	Cyclic peptides. International Journal of Peptide and Protein Research, 1986, 28, 141-145.	0.1	2
229	Effects of Synthetic Model Peptides Resembling the Extension Peptides of Mitochondrial Enzyme Precursors on Import of the Precursors into Mitochondria1. Journal of Biochemistry, 1985, 98, 1571-1582.	1.7	82
230	\hat{l}' and \hat{l}'_{4} opiate receptor probes: fluorescent enkephalins with high receptor affinity and specificity. FEBS Letters, 1985, 193, 35-38.	2.8	26
231	Cyclic peptides. XVIII. Syntheses of AMâ€toxin I analogs containing bulky Lâ€amino acid residues instead of an Lâ€alanine*. International Journal of Peptide and Protein Research, 1985, 25, 144-148.	0.1	4
232	Cyclic peptides. International Journal of Peptide and Protein Research, 1984, 24, 402-406.	0.1	1
233	Cyclic peptides International Journal of Peptide and Protein Research, 1984, 23, 447-453.	0.1	7
234	SYNTHESES OF AM-TOXIN I ANALOGS CONTAINING A LOWER OR HIGHER HOMOLOG OF L-2-AMINO-5-(p-METHOXYPHENYL)PENTANOIC ACID. Chemistry Letters, 1983, 12, 811-814.	1.3	1