Terence G Langdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 2006, 51, 881-981.	32.8	3,680
2	Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 2008, 53, 893-979.	32.8	2,579
3	Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, 1996, 35, 143-146.	5.2	1,683
4	Producing bulk ultrafine-grained materials by severe plastic deformation. Jom, 2006, 58, 33-39.	1.9	1,350
5	The process of grain refinement in equal-channel angular pressing. Acta Materialia, 1998, 46, 3317-3331.	7.9	1,166
6	The shearing characteristics associated with equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 257, 328-332.	5.6	885
7	An investigation of microstructural evolution during equal-channel angular pressing. Acta Materialia, 1997, 45, 4733-4741.	7.9	778
8	Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia, 2003, 51, 753-765.	7.9	717
9	Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, 2013, 61, 7035-7059.	7.9	649
10	Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 300, 142-147.	5.6	606
11	A unified approach to grain boundary sliding in creep and superplasticity. Acta Metallurgica Et Materialia, 1994, 42, 2437-2443.	1.8	499
12	The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metallurgica, 1974, 22, 779-788.	2.1	472
13	Microhardness measurements and the Hall-Petch relationship in an Alî—,Mg alloy with submicrometer grain size. Acta Materialia, 1996, 44, 4619-4629.	7.9	435
14	Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 691-701.	2.2	408
15	The mechanical properties of superplastic materials. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 689-701.	1.4	404
16	Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Materialia, 1998, 46, 1589-1599.	7.9	398
17	Review: Processing of metals by equal-channel angular pressing. Journal of Materials Science, 2001, 36, 2835-2843.	3.7	391
18	Seventy-five years of superplasticity: historic developments and new opportunities. Journal of Materials Science, 2009, 44, 5998-6010.	3.7	366

#	Article	IF	CITATIONS
19	Creep of ceramics. Journal of Materials Science, 1983, 18, 1-50.	3.7	354
20	Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Materialia, 2003, 51, 3073-3084.	7.9	351
21	Grain boundary sliding revisited: Developments in sliding over four decades. Journal of Materials Science, 2006, 41, 597-609.	3.7	349
22	Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom, 2016, 68, 1216-1226.	1.9	346
23	The evolution of homogeneity in processing by high-pressure torsion. Acta Materialia, 2007, 55, 203-212.	7.9	337
24	Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 393, 344-351.	5.6	325
25	Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Materialia, 2002, 50, 553-564.	7.9	319
26	An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. Journal of Materials Research, 1996, 11, 1880-1890.	2.6	317
27	The principles of grain refinement in equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 3-11.	5.6	311
28	An investigation of microstructural stability in an AlMg alloy with submicrometer grain size. Acta Materialia, 1996, 44, 2973-2982.	7.9	301
29	Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Applied Physics Letters, 2006, 89, 121906.	3.3	295
30	OBSERVATIONS OF HIGH STRAIN RATE SUPERPLASTICITY IN COMMERCIAL ALUMINUM ALLOYS WITH ULTRAFINE GRAIN SIZES. Scripta Materialia, 1997, 37, 1945-1950.	5.2	294
31	Superplastic forming at high strain rates after severe plastic deformation. Acta Materialia, 2000, 48, 3633-3640.	7.9	294
32	Grain boundary sliding as a deformation mechanism during creep. Philosophical Magazine and Journal, 1970, 22, 689-700.	1.7	288
33	Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia, 2004, 51, 825-830.	5.2	284
34	Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Materialia, 2001, 44, 2753-2758.	5.2	282
35	Fundamentals of Superior Properties in Bulk NanoSPD Materials. Materials Research Letters, 2016, 4, 1-21.	8.7	280
36	Deformation mechanisms in h.c.p. metals at elevated temperatures—I. Creep behavior of magnesium. Acta Metallurgica, 1981, 29, 1969-1982.	2.1	277

#	Article	IF	CITATIONS
37	Achieving High Strength and High Ductility in Precipitation-Hardened Alloys. Advanced Materials, 2005, 17, 1599-1602.	21.0	273
38	Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8198-8204.	5.6	273
39	Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Materialia, 2012, 60, 3190-3198.	7.9	271
40	Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2503-2510.	2.2	270
41	An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels. Acta Metallurgica, 1982, 30, 2181-2196.	2.1	265
42	Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2245-2252.	2.2	257
43	Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 402, 250-257.	5.6	257
44	Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Materialia, 2009, 57, 3123-3132.	7.9	253
45	Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys. Acta Materialia, 2008, 56, 809-820.	7.9	251
46	Deformation mechanism maps based on grain size. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1974, 5, 2339-2345.	1.4	249
47	Creep of ceramics. Journal of Materials Science, 1988, 23, 1-20.	3.7	248
48	An evaluation of the strain contributed by grain boundary sliding in superplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 174, 225-230.	5.6	244
49	Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Materialia, 2008, 59, 627-630.	5.2	241
50	Improvement of mechanical properties for Al alloys using equal-channel angular pressing. Journal of Materials Processing Technology, 2001, 117, 288-292.	6.3	239
51	Development of a multi-pass facility for equal-channel angular pressing to high total strains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 281, 82-87.	5.6	234
52	The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 398, 66-76.	5.6	232
53	Factors influencing the shearing patterns in equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 332, 97-109.	5.6	226
54	Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 294-303.	5.6	225

#	Article	IF	CITATIONS
55	The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 318, 34-41.	5.6	222
56	Deformation mechanisms in h.c.p. metals at elevated temperatures—II. Creep behavior of a Mg-0.8% Al solid solution alloy. Acta Metallurgica, 1982, 30, 1157-1170.	2.1	221
57	Optimizing the rotation conditions for grain refinement in equal-channel angular pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2011-2013.	2.2	221
58	Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Materialia, 2003, 51, 6139-6149.	7.9	219
59	Principles of superplasticity in ultrafine-grained materials. Journal of Materials Science, 2007, 42, 1782-1796.	3.7	219
60	Orientation imaging microscopy of ultrafine-grained nickel. Scripta Materialia, 2002, 46, 575-580.	5.2	217
61	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	8.7	215
62	Processing of a low-carbon steel by equal-channel angular pressing. Acta Materialia, 2002, 50, 1359-1368.	7.9	213
63	An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2173-2184.	2.2	211
64	Microstructural evolution in high purity aluminum processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 143-150.	5.6	209
65	Influence of pressing temperature on microstructural development in equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 287, 100-106.	5.6	200
66	Creep and substructure formation in an Al-5% Mg solid solution alloy. Acta Metallurgica, 1981, 29, 1495-1507.	2.1	199
67	An investigation of ductility and microstructural evolution in an Alâ^3% Mg alloy with submicron grain size. Journal of Materials Research, 1993, 8, 2810-2818.	2.6	199
68	Using equal-channel angular pressing for refining grain size. Jom, 2000, 52, 30-33.	1.9	199
69	Microstructural evolution in commercial purity aluminum during high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 277-280.	5.6	198
70	Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 68-77.	5.6	198
71	Factors influencing ductility in the superplastic Zn-22 Pct Al eutectoid. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1977, 8, 933-938.	1.4	196
72	An overview: Fatigue behaviour of ultrafine-grained metals and alloys. International Journal of Fatigue, 2006, 28, 1001-1010.	5.7	188

#	Article	IF	CITATIONS
73	The microstructural characteristics of ultrafine-grained nickel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 391, 377-389.	5.6	185
74	The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 77-85.	5.6	185
75	Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 265, 188-196.	5.6	183
76	The Innovation Potential of Bulk Nanostructured Materials. Advanced Engineering Materials, 2007, 9, 527-533.	3.5	183
77	Influence of stacking fault energy on nanostructure formation under high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 188-193.	5.6	179
78	The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Materialia, 2007, 55, 4769-4779.	7.9	179
79	Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. Journal of Materials Science, 2010, 45, 4827-4836.	3.7	179
80	The fundamentals of nanostructured materials processed by severe plastic deformation. Jom, 2004, 56, 58-63.	1.9	176
81	An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Materialia, 2011, 59, 308-316.	7.9	174
82	Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 422-425.	5.6	173
83	Influence of stacking fault energy on microstructural development in equal-channel angular pressing. Journal of Materials Research, 1999, 14, 4044-4050.	2.6	172
84	Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 501, 105-114.	5.6	171
85	Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 117-124.	5.6	170
86	Experimental Evidence for Grain-Boundary Sliding in Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation. Advanced Materials, 2006, 18, 34-39.	21.0	169
87	The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Materialia, 2008, 56, 5168-5176.	7.9	167
88	Creep at low stress levels in the superplastic Zn-22% Al eutectoid. Acta Metallurgica, 1975, 23, 117-124.	2.1	166
89	Developing high-pressure torsion for use with bulk samples. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 406, 268-273.	5.6	163
90	Influence of ECAP on precipitate distributions in a spray-cast aluminum alloy. Acta Materialia, 2005, 53, 749-758.	7.9	162

#	Article	IF	CITATIONS
91	Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Applied Physics Letters, 2008, 92, .	3.3	158
92	Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 123-129.	5.6	157
93	Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Materialia, 2016, 109, 314-322.	7.9	156
94	Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature. Scripta Materialia, 2008, 59, 542-545.	5.2	155
95	Structural evolution and the Hall-Petch relationship in an Alî—,Mgî—,Liî—,Zr alloy with ultra-fine grain size. Acta Materialia, 1997, 45, 4751-4757.	7.9	153
96	The use of severe plastic deformation for microstructural control. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 82-89.	5.6	153
97	The significance of strain reversals during processing by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 498, 341-348.	5.6	153
98	Structural ceramics. Progress in Materials Science, 1976, 21, 171-425.	32.8	152
99	An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy. Acta Metallurgica Et Materialia, 1993, 41, 949-954.	1.8	150
100	Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. Journal of Materials Research, 1998, 13, 446-450.	2.6	150
101	Creep behaviour in the superplastic Pb–62% Sn eutectic. Philosophical Magazine and Journal, 1975, 32, 697-709.	1.7	149
102	Advances in ultrafine-grained materials. Materials Today, 2013, 16, 85-93.	14.2	148
103	Influence of pressing speed on microstructural development in equal-channel angular pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1989-1997.	2.2	144
104	Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 474, 342-347.	5.6	144
105	The activation energies associated with superplastic flow. Acta Metallurgica, 1975, 23, 1443-1450.	2.1	141
106	The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4959-4966.	5.6	141
107	Ultrafine grains and the Hall–Petch relationship in an Al–Mg–Si alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 139-145.	5.6	141
108	Microstructural characteristics and superplastic ductility in a Zn-22% Al alloy with submicrometer grain size. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 241, 122-128.	5.6	140

#	Article	IF	CITATIONS
109	Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scripta Materialia, 2012, 66, 227-230.	5.2	140
110	Effect of Mg addition on microstructure and mechanical properties of aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 55-59.	5.6	139
111	Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation. Acta Materialia, 2017, 122, 322-331.	7.9	139
112	Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing. Journal of Materials Science, 2009, 44, 4758-4762.	3.7	137
113	Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 411-419.	5.6	137
114	The physics of superplastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 137, 1-11.	5.6	136
115	Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Materials Letters, 2015, 151, 126-129.	2.6	135
116	Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scripta Materialia, 2010, 63, 560-563.	5.2	134
117	The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Materialia, 2012, 60, 3181-3189.	7.9	134
118	A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scripta Materialia, 2002, 47, 255-260.	5.2	133
119	Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials. Scripta Materialia, 2009, 60, 52-55.	5.2	133
120	Superplasticity in ceramics. Journal of Materials Science, 1990, 25, 2275-2286.	3.7	132
121	Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 297, 111-118.	5.6	132
122	Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy. Acta Materialia, 2010, 58, 1379-1386.	7.9	132
123	High-Strain-Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials ISIJ International, 1996, 36, 1423-1438.	1.4	131
124	Identifiying creep mechanisms at low stresses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 283, 266-273.	5.6	131
125	Grain refinement of pure nickel using equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 54-58.	5.6	130
126	An investigation of intercrystalline and interphase boundary sliding in the superplastic Pb-62% Sn eutectic. Acta Metallurgica, 1979, 27, 251-257.	2.1	129

#	Article	IF	CITATIONS
127	Fracture processes in superplastic flow. Metal Science, 1982, 16, 175-183.	0.7	129
128	A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Materialia, 2004, 52, 3555-3563.	7.9	129
129	Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 420, 240-244.	5.6	128
130	Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Materialia, 2010, 58, 919-930.	7.9	128
131	Influence of magnesium on grain refinement and ductility in a dilute Al–Sc alloy. Acta Materialia, 2001, 49, 3829-3838.	7.9	125
132	Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. Journal of Materials Science, 2010, 45, 4718-4724.	3.7	125
133	The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scripta Materialia, 2011, 64, 954-957.	5.2	124
134	An investigation of grain-boundary sliding during creep. Journal of Materials Science, 1967, 2, 313-323.	3.7	123
135	High strain rate superplasticity in an Al-Mg alloy containing scandium. Scripta Materialia, 1998, 38, 1851-1856.	5.2	123
136	Fabrication of bulk ultrafine-grained materials through intense plastic straining. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2237-2243.	2.2	123
137	Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Materialia, 2007, 55, 1083-1091.	7.9	122
138	A model for diffusional cavity growth in superplasticity. Acta Metallurgica, 1987, 35, 1089-1101.	2.1	121
139	The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Materialia, 2019, 164, 499-511.	7.9	121
140	Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 463, 22-26.	5.6	119
141	Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4864-4869.	5.6	119
142	Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP. Scripta Materialia, 2001, 44, 759-764.	5.2	118
143	An investigation of the role of a liquid phase in Alî—,Cuî—,Mg metal matrix composites exhibiting high strain rate superplasticity. Acta Metallurgica Et Materialia, 1994, 42, 1739-1745.	1.8	117
144	Development of fine grained structures using severe plastic deformation. Materials Science and Technology, 2000, 16, 1239-1245.	1.6	116

#	Article	IF	CITATIONS
145	The influence of strain rate on ductility in the superplastic Zn–22% Al eutectoid. Philosophical Magazine and Journal, 1975, 32, 1269-1271.	1.7	113
146	Creep behavior of copper at intermediate temperatures—I. Mechanical characteristics. Acta Metallurgica, 1989, 37, 843-852.	2.1	113
147	Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. Journal of Materials Science, 2007, 42, 1517-1528.	3.7	113
148	Microstructural and Mechanical Characteristics of AZ61 Magnesium Alloy Processed by High-Pressure Torsion. Materials Transactions, 2008, 49, 76-83.	1.2	112
149	The processing of pure titanium through multiple passes of ECAP at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6335-6339.	5.6	111
150	Microstructural evolution and mechanical properties of a two-phase Cu–Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Materialia, 2011, 59, 2783-2796.	7.9	110
151	Deformation mechanism maps for superplastic materials. Scripta Metallurgica, 1976, 10, 759-762.	1.2	109
152	The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 151-156.	5.6	109
153	A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. Journal of Materials Science, 2013, 48, 4653-4660.	3.7	108
154	Structural ceramics. Progress in Materials Science, 1976, 21, 171-285.	32.8	107
155	An evaluation of the roles of intercrystalline and interphase boundary sliding in two-phase superplastic alloys. Acta Metallurgica, 1982, 30, 285-296.	2.1	107
156	The significance of slippage in processing by high-pressure torsion. Scripta Materialia, 2009, 60, 9-12.	5.2	107
157	Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy, 2011, 111, 500-505.	1.9	107
158	Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 409, 234-242.	5.6	106
159	Bulk Nanostructured Metals for Innovative Applications. Jom, 2012, 64, 1134-1142.	1.9	106
160	Significance of adiabatic heating in equal-channel angular pressing. Scripta Materialia, 1999, 41, 791-796.	5.2	104
161	The application of equal-channel angular pressing to an aluminum single crystal. Acta Materialia, 2004, 52, 1387-1395.	7.9	103
162	Developing superplastic properties in an aluminum alloy through severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 272, 63-72.	5.6	101

#	Article	IF	CITATIONS
163	Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Journal of Materials Research, 2015, 30, 2804-2815.	2.6	101
164	Improving the superplastic properties of a two-phase Mg–8% Li alloy through processing by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 439-442.	5.6	100
165	Wear resistance and electroconductivity in copper processed by severe plastic deformation. Wear, 2013, 305, 89-99.	3.1	100
166	Defect structure and hardness in nanocrystalline CoCrFeMnNi High-Entropy Alloy processed by High-Pressure Torsion. Journal of Alloys and Compounds, 2017, 711, 143-154.	5.5	100
167	Spall strength dependence on grain size and strain rate in tantalum. Acta Materialia, 2018, 158, 313-329.	7.9	100
168	Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 137-148.	5.6	99
169	The effect of surface configuration on grain boundary sliding. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1972, 3, 797-801.	2.1	98
170	Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates. Acta Materialia, 1997, 45, 4797-4806.	7.9	98
171	Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Materialia, 2011, 59, 3903-3914.	7.9	98
172	Influence of a round corner die on flow homogeneity in ECA pressing. Scripta Materialia, 2003, 48, 1-4.	5.2	97
173	Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 24-29.	5.6	96
174	An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. International Journal of Hydrogen Energy, 2013, 38, 8306-8312.	7.1	96
175	Properties of a ZK60 magnesium alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2014, 613, 357-363.	5.5	96
176	Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. Journal of Materials Science, 2016, 51, 19-32.	3.7	96
177	A new type of deformation mechanism map for high-temperature creep. Materials Science and Engineering, 1978, 32, 103-112.	0.1	95
178	Tribological properties of ultrafine-grained materials processed by severe plastic deformation. Journal of Materials Science, 2012, 47, 4779-4797.	3.7	94
179	Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear, 2012, 280-281, 28-35.	3.1	94
180	An investigation of harper-dorn creep—I. Mechanical and microstructural characteristics. Acta Metallurgica, 1982, 30, 871-879.	2.1	93

#	Article	IF	CITATIONS
181	Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Materialia, 2011, 64, 327-330.	5.2	93
182	Strain rate sensitivity studies in an ultrafine-grained Al–30wt.% Zn alloy using micro- and nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 543, 117-120.	5.6	92
183	Grain Boundary Phenomena in an Ultrafineâ€Grained Al–Zn Alloy with Improved Mechanical Behavior for Microâ€Devices. Advanced Engineering Materials, 2014, 16, 1000-1009.	3.5	92
184	Microstructure and strength of severely deformed fcc metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 86-90.	5.6	91
185	Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. Journal of Materials Science, 2016, 51, 7-18.	3.7	91
186	Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 342-348.	5.6	91
187	Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 123-126.	5.6	90
188	Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Materialia, 2014, 63, 16-29.	7.9	90
189	Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining. Scripta Materialia, 1998, 40, 117-122.	5.2	89
190	Developing superplasticity in a magnesium AZ31 alloy by ECAP. Journal of Materials Science, 2008, 43, 7366-7371.	3.7	89
191	Enhanced grain growth in an Al-Mg alloy with ultrafine grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 216, 41-46.	5.6	88
192	The evolution of delta-phase in a superplastic Inconel 718 alloy. Journal of Materials Science, 2007, 42, 421-427.	3.7	88
193	Correlation between microstructure and mechanical properties of severely deformed metals. Journal of Alloys and Compounds, 2009, 483, 271-274.	5.5	88
194	An investigation of grain boundary sliding in superplasticity at high elongations. Journal of Materials Science, 1988, 23, 2712-2722.	3.7	86
195	Achieving Exceptional Grain Refinement through Severe Plastic Deformation: New Approaches for Improving the Processing Technology. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2942-2951.	2.2	85
196	Superplasticity of a nano-grained Mg–Gd–Y–Zr alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 786-794.	5.6	85
197	Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 408, 141-146.	5.6	84
198	Characteristics of face-centered cubic metals processed by equal-channel angular pressing. Journal of Materials Science, 2007, 42, 1594-1605.	3.7	84

#	Article	IF	CITATIONS
199	Equal-channel angular pressing: A novel tool for microstructural control. Metals and Materials International, 1998, 4, 1181-1190.	0.2	83
200	Significance of Microstructural Control for Superplastic Deformation and Forming. Materials Transactions, JIM, 1996, 37, 336-339.	0.9	82
201	Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scripta Materialia, 2008, 58, 1029-1032.	5.2	82
202	Processing of nanostructured metals and alloys via plastic deformation. MRS Bulletin, 2010, 35, 977-981.	3.5	82
203	Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion. Philosophical Magazine, 2011, 91, 3307-3326.	1.6	82
204	Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4500-4506.	5.6	82
205	A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Materialia, 1999, 47, 3395-3403.	7.9	81
206	Equal-channel angular pressing using plate samples. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 361, 258-266.	5.6	81
207	Microstructural development in equal-channel angular pressing using a 60° die. Acta Materialia, 2004, 52, 2497-2507.	7.9	81
208	The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 345-351.	5.6	81
209	Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 9-15.	5.6	81
210	The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 55-66.	5.6	81
211	Exceptional ductility in the superplastic Pb-62 Pct Sn eutectic. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1977, 8, 1832-1833.	1.4	80
212	Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 752-760.	5.6	80
213	Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al–Mg and Al–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 241-250.	5.6	79
214	The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 2824-2831.	3.7	79
215	Factors influencing the flow and hardness of materials with ultrafine grain sizes. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 203-216.	0.6	78
216	Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 249-259.	2.2	78

#	Article	IF	CITATIONS
217	Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing. Scripta Materialia, 2003, 49, 467-472.	5.2	78
218	Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium. Journal of Materials Science, 2017, 52, 5992-6003.	3.7	77
219	Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review. Journal of Magnesium and Alloys, 2022, 10, 313-325.	11.9	77
220	The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP. Journal of Materials Science, 2007, 42, 1542-1550.	3.7	76
221	The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 533-538.	5.6	76
222	Evidence for cavitation in the superplastic Zn-22 Pct Al eutectoid. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1977, 8, 523-525.	1.4	75
223	Creep behavior of an aluminum 2024 alloy produced by powder metallurgy. Acta Materialia, 1997, 45, 529-540.	7.9	75
224	Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 83-86.	5.6	75
225	Creep behavior of a reinforced Al-7005 alloy: Implications for the creep processes in metal matrix composites. Acta Materialia, 1998, 46, 1143-1155.	7.9	74
226	An Evaluation of Superplasticity in Aluminum-Scandium Alloys Processed by Equal-Channel Angular Pressing. Materials Transactions, JIM, 1999, 40, 772-778.	0.9	74
227	Significance of strain reversals in a two-phase alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7008-7016.	5.6	74
228	Evolution of Strength and Homogeneity in a Magnesium AZ31 Alloy Processed by Highâ€Pressure Torsion at Different Temperatures. Advanced Engineering Materials, 2012, 14, 1018-1026.	3.5	74
229	Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 90-98.	5.6	74
230	Effect of temperature rise on microstructural evolution during high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 167-171.	5.6	74
231	Characteristics of creep deformation in ceramics. Materials Science and Technology, 1991, 7, 577-584.	1.6	73
232	Characteristics of diffusion in Al-Mg alloys with ultrafine grain sizes. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2249-2262.	0.6	73
233	The role of back pressure in the processing of pure aluminum by equal-channel angular pressing. Acta Materialia, 2007, 55, 2351-2360.	7.9	73
234	Particle and grain growth in an Al–Si alloy during high-pressure torsion. Scripta Materialia, 2007, 57, 763-765.	5.2	73

#	Article	IF	CITATIONS
235	Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scripta Materialia, 2009, 61, 84-87.	5.2	73
236	Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6140-6145.	5.6	73
237	Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 231-239.	5.6	73
238	Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. Journal of Materials Science, 2012, 47, 7789-7795.	3.7	72
239	Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation. Acta Materialia, 2012, 60, 253-260.	7.9	72
240	An investigation of Harper-Dorn creep—II. The flow process. Acta Metallurgica, 1982, 30, 881-887.	2.1	71
241	Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 248-252.	5.6	71
242	The Art and Science of Tailoring Materials by Nanostructuring for Advanced Properties Using SPD Techniques. Advanced Engineering Materials, 2010, 12, 677-691.	3.5	71
243	Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scripta Materialia, 2012, 67, 871-874.	5.2	71
244	Microstructures, strengthening mechanisms and fracture behavior of Cu–Ag alloys processed by high-pressure torsion. Acta Materialia, 2012, 60, 269-281.	7.9	71
245	Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 223-231.	5.6	71
246	The effect of grain size on the annealing-induced phase transformation in an AlO·3CoCrFeNi high entropy alloy. Materials and Design, 2016, 105, 381-385.	7.0	71
247	Requirements for achieving high-strain-rate superplasticity in cast aluminium alloys. Philosophical Magazine Letters, 1998, 78, 313-316.	1.2	70
248	Flow processes at low temperatures in ultrafine-grained aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 326-334.	5.6	70
249	Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 215-223.	5.6	70
250	An examination of the flow process in superplastic yttria-stabilized tetragonal zirconia. Acta Materialia, 1999, 47, 2485-2495.	7.9	68
251	Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2013, 574, 361-367.	5.5	68
252	Modeling the temperature rise in high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 185-188.	5.6	68

#	Article	IF	CITATIONS
253	Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. Journal of Materials Research, 2016, 31, 88-99.	2.6	68
254	The role of matrix dislocations in the superplastic deformation of a copper alloy. Acta Metallurgica, 1986, 34, 1203-1214.	2.1	67
255	The role of grain boundaries in high temperature deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 166, 67-79.	5.6	67
256	Microstructural Evolution in Pure Aluminum in the Early Stages of Processing by High-Pressure Torsion. Materials Transactions, 2010, 51, 2-7.	1.2	67
257	Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3833-3840.	5.6	67
258	Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing. Journal of Materials Research, 2001, 16, 583-589.	2.6	66
259	Severe plastic deformation as a processing tool for developing superplastic metals. Journal of Alloys and Compounds, 2004, 378, 27-34.	5.5	66
260	Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Materialia, 2009, 57, 1147-1153.	7.9	66
261	Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7708-7714.	5.6	66
262	Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 196-206.	5.6	66
263	Evaluating the influence of pressure and torsional strain on processing by high-pressure torsion. Journal of Materials Science, 2008, 43, 7286-7292.	3.7	65
264	Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. Journal of Materials Science, 2012, 47, 7870-7876.	3.7	65
265	Principles of severe plastic deformation using tube high-pressure shearing. Scripta Materialia, 2012, 67, 810-813.	5.2	65
266	The Strength–Grain Size Relationship in Ultrafine-Grained Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5827-5838.	2.2	65
267	The influence of grain size and strain rate on the mechanical behavior of pure magnesium. Journal of Materials Science, 2016, 51, 3013-3024.	3.7	65
268	Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering Reports, 2022, 150, 100691.	31.8	65
269	The evolution of homogeneity on longitudinal sections during processing by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 449-455.	5.6	64
270	Unusual macroscopic shearing patterns observed in metals processed by high-pressure torsion. Journal of Materials Science, 2010, 45, 4545-4553.	3.7	64

#	Article	IF	CITATIONS
271	Wear resistance of an ultrafine-grained Cu-Zr alloy processed by equal-channel angular pressing. Wear, 2015, 326-327, 10-19.	3.1	64
272	Influence of grain size on the flow properties of an Al-Mg-Sc alloy over seven orders of magnitude of strain rate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 367-376.	5.6	64
273	The mechanical properties of a superplastic quasi-single phase copper alloy. Acta Metallurgica, 1978, 26, 639-646.	2.1	63
274	A comparison of the creep properties of an Al-6092 composite and the unreinforced matrix alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2523-2531.	2.2	63
275	On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 196-202.	5.6	63
276	Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. International Journal of Hydrogen Energy, 2014, 39, 3810-3821.	7.1	63
277	The mechanism of creep in polycrystalline magnesium oxide. Acta Metallurgica, 1970, 18, 505-510.	2.1	62
278	An analysis of cavity growth during superplasticity. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1979, 10, 1869-1874.	1.4	62
279	Grain refinement and superplasticity in a magnesium alloy processed by equal-channel angular pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1705-1711.	2.2	62
280	A visualization of shear strain in processing by high-pressure torsion. Journal of Materials Science, 2010, 45, 765-770.	3.7	62
281	Avoiding cracks and inhomogeneities in billets processed by ECAP. Journal of Materials Science, 2010, 45, 4561-4570.	3.7	62
282	Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3601-3608.	5.6	62
283	The shape of grains in a polycrystal. Metallography, 1969, 2, 171-178.	0.4	61
284	Estimating the equivalent strain in equal-channel angular pressing. Scripta Materialia, 2001, 44, 575-579.	5.2	61
285	Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6059-6065.	5.6	61
286	Review: achieving superplasticity in metals processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 6487-6496.	3.7	61
287	An Unusual Extrusion Texture in Mg–Gd–Y–Zr Alloys. Advanced Engineering Materials, 2016, 18, 1044-1049.	3.5	61
288	Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. Acta Materialia, 2017, 140, 443-451.	7.9	61

#	Article	IF	CITATIONS
289	Mechanical characteristics of a Zn–22% Al alloy processed to very high strains by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 324-328.	5.6	60
290	Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion. Journal of Materials Science, 2015, 50, 7424-7436.	3.7	60
291	Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys. Acta Materialia, 2017, 141, 419-426.	7.9	60
292	Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 468-476.	5.6	60
293	A critical assessment of flow and cavity formation in a superplastic yttria-stabilized zirconia. Acta Metallurgica Et Materialia, 1994, 42, 2753-2761.	1.8	59
294	Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 129-135.	5.6	59
295	Effect of strain reversals on the processing of high-purity aluminum by high-pressure torsion. Journal of Materials Science, 2010, 45, 4583-4593.	3.7	59
296	Microstructural evolution and mechanical properties of a Cu–Zr alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7715-7722.	5.6	59
297	Processing of an ultrafine-grained titanium by high-pressure torsion: An evaluation of the wear properties with and without a TiN coating. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 166-175.	3.1	59
298	Interpretation of hardness evolution in metals processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 6586-6596.	3.7	59
299	Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 635, 109-117.	5.6	59
300	Low-temperature superplasticity in a Cu–Zn–Sn alloy processed by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 307, 23-28.	5.6	58
301	Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 205-211.	5.6	58
302	Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion. Journal of Materials Science, 2012, 47, 7782-7788.	3.7	58
303	Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. Scripta Materialia, 2015, 100, 98-101.	5.2	58
304	Flow localization and neck formation in a superplastic metal. Acta Metallurgica, 1981, 29, 911-920.	2.1	57
305	Microstructural examination of a superplastic yttria-stabilized zirconia: Implications for the superplasticity mechanism. Acta Metallurgica Et Materialia, 1995, 43, 1211-1218.	1.8	57
306	Deformation heating and its effect on grain size evolution during equal channel angular extrusion. Scripta Materialia, 2001, 44, 135-140.	5.2	57

#	Article	IF	CITATIONS
307	Influence of crystal orientation on ECAP of aluminum single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 420, 79-86.	5.6	57
308	Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 153-156.	5.6	57
309	The processing of ultrafine-grained materials through the application of severe plastic deformation. Journal of Materials Science, 2007, 42, 3388-3397.	3.7	57
310	A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 52-58.	5.6	57
311	Neck formation and cavitation in the superplastic Zn-22% Al eutectoid. Journal of Materials Science, 1979, 14, 2913-2918.	3.7	56
312	High strain rate superplasticity in metal matrix composites: the role of load transfer. Acta Materialia, 1998, 46, 3937-3948.	7.9	56
313	Achieving superplasticity in a Cu–40%Zn alloy through severe plastic deformation. Scripta Materialia, 2001, 45, 965-970.	5.2	56
314	An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity. Materials Transactions, 2005, 46, 1951-1956.	1.2	56
315	Three-dimensional representations of hardness distributions after processing by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 71-74.	5.6	56
316	Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scripta Materialia, 2015, 94, 44-47.	5.2	56
317	Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2016, 686, 998-1007.	5.5	56
318	Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1735-1744.	2.2	55
319	Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 318-327.	5.6	55
320	An evaluation of the flow behavior during high strain rate superplasticity in an Alâ^'Mgâ^'Sc alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 707-716.	2.2	54
321	Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 342, 294-301.	5.6	54
322	Direct observations of microstructural evolution in a two-phase Cu–Ag alloy processed by high-pressure torsion. Scripta Materialia, 2010, 63, 65-68.	5.2	54
323	Microstructural evolution and mechanical properties in a Zn–Al eutectoid alloy processed by high-pressure torsion. Acta Materialia, 2014, 72, 67-79.	7.9	54
324	Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scripta Materialia, 2014, 75, 102-105.	5.2	54

#	Article	IF	CITATIONS
325	Method of estimating stackingâ€fault energies in alkali halide crystals using creep data. Journal of Applied Physics, 1974, 45, 1965-1967.	2.5	53
326	The influence of rolling direction on the mechanical behavior and formation of cavity stringers in the superplastic Zn-22% Al alloy. Acta Metallurgica, 1989, 37, 715-723.	2.1	53
327	Equal-channel angular pressing of an Al-6061 metal matrix composite. Journal of Materials Science, 2000, 35, 1201-1204.	3.7	53
328	Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing. Scripta Materialia, 2010, 63, 504-507.	5.2	53
329	Wear behavior of an aluminum alloy processed by equal-channel angular pressing. Journal of Materials Science, 2011, 46, 123-130.	3.7	53
330	Microstructural evolution and superplasticity in an Mg–Gd–Y–Zr alloy after processing by different SPD techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 577-585.	5.6	53
331	Fabrication of submicrometer-grained Zn–22% Al by torsion straining. Journal of Materials Research, 1996, 11, 2128-2130.	2.6	52
332	Analysis of plastic flow during high-pressure torsion. Journal of Materials Science, 2012, 47, 7807-7814.	3.7	52
333	Effect of heat treatment on microstructure and microhardness evolution in a Ti–6Al–4V alloy processed by high-pressure torsion. Journal of Materials Science, 2013, 48, 4646-4652.	3.7	52
334	Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 482-489.	5.6	52
335	Effect of grain size and specimen dimensions on micro-forming of high purity aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 207-217.	5.6	52
336	Electrochemical behavior of a magnesium ZK60 alloy processed by high-pressure torsion. Corrosion Science, 2019, 154, 90-100.	6.6	52
337	The deviation from creep by viscous glide in solid solution alloys at high stresses—l. Characteristics of the dragging stress. Acta Metallurgica, 1984, 32, 1991-1999.	2.1	51
338	Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni. Journal of Materials Research, 1999, 14, 4200-4207.	2.6	51
339	Influence of scandium on superplastic ductilities in an Al–Mg–Sc alloy. Journal of Materials Research, 2000, 15, 2571-2576.	2.6	51
340	Grain Boundary Sliding in a Superplastic Zinc-Aluminum Alloy Processed Using Severe Plastic Deformation. Materials Transactions, 2008, 49, 84-89.	1.2	51
341	Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 312-318.	5.6	51
342	Processing Magnesium and Its Alloys by Highâ€Pressure Torsion: An Overview. Advanced Engineering Materials, 2019, 21, 1801039.	3.5	51

#	Article	IF	CITATIONS
343	Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1865-1868.	2.2	50
344	Flow and cavitation in a quasi-superplastic two-phase magnesium–lithium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 334-340.	5.6	50
345	Stable and Unstable Flow in Materials Processed by Equal-Channel Angular Pressing with an Emphasis on Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 778-786.	2.2	50
346	Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6624-6629.	5.6	50
347	Microstructural stability and grain growth kinetics in an extruded fine-grained Mg–Gd–Y–Zr alloy. Journal of Materials Science, 2015, 50, 4940-4951.	3.7	50
348	Hardness homogeneity and micro-tensile behavior in a magnesium AZ31 alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 108-114.	5.6	49
349	Superplasticity of a fine-grained Mg–9Gd–4Y–0.4Zr alloy evaluated using shear punch testing. Journal of Materials Research and Technology, 2014, 3, 228-232.	5.8	49
350	Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2017, 712, 185-193.	5.5	49
351	Creep of polycrystalline lithium fluoride. Philosophical Magazine and Journal, 1968, 18, 1181-1192.	1.7	48
352	Influence of high-pressure torsion on microstructural evolution in an Al–Zn–Mg–Cu alloy. Journal of Materials Science, 2010, 45, 4621-4630.	3.7	48
353	Micro-deformation behavior in micro-compression with high-purity aluminum processed by ECAP. Manufacturing Review, 2015, 2, 1.	1.5	48
354	Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall–Petch relationship and strain rate sensitivity. Journal of Materials Research and Technology, 2021, 14, 137-159.	5.8	48
355	The distribution of grain diameters in polycrystalline magnesium oxide. Metallography, 1969, 1, 333-340.	0.4	47
356	The significance of grain boundary sliding in the superplastic Zn–22% Al alloy after processing by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 447-450.	5.6	47
357	Using differential scanning calorimetry as an analytical tool for ultrafine grained metals processed by severe plastic deformation. Materials Science and Technology, 2009, 25, 687-698.	1.6	47
358	Comparison of microstructures and mechanical properties of a Cu–Ag alloy processed using different severe plastic deformation modes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4331-4336.	5.6	47
359	Twenty-five years of severe plastic deformation: recent developments in evaluating the degree of homogeneity through the thickness of disks processed by high-pressure torsion. Journal of Materials Science, 2012, 47, 7719-7725.	3.7	47
360	Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. Journal of Materials Science, 2012, 47, 7815-7820.	3.7	47

#	Article	IF	CITATIONS
361	Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion. Wear, 2013, 306, 304-310.	3.1	47
362	The nucleation and growth of cavities in a superplastic quasi-single phase copper alloy. Acta Metallurgica Et Materialia, 1990, 38, 867-877.	1.8	46
363	Strain-path effects on the evolution of microstructure and texture during the severe-plastic deformation of aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2879-2891.	2.2	46
364	An evaluation of microstructure and microhardness in copper subjected to ultra-high strains. Journal of Materials Science, 2008, 43, 7451-7456.	3.7	46
365	Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion. Scripta Materialia, 2011, 64, 249-252.	5.2	46
366	Laser compression of nanocrystalline tantalum. Acta Materialia, 2013, 61, 7767-7780.	7.9	46
367	Influence of phase volume fractions on the processing of a Ti–6Al–4V alloy by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 861-867.	5.6	46
368	A critical examination of pure tantalum processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 174-182.	5.6	46
369	Shape memory effect in nanocrystalline NiTi alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 203-206.	5.6	46
370	Bulk-State Reactions and Improving the Mechanical Properties of Metals through High-Pressure Torsion. Materials Transactions, 2019, 60, 1131-1138.	1.2	46
371	Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3398-3403.	5.6	45
372	Processing a twinning-induced plasticity steel by high-pressure torsion. Scripta Materialia, 2012, 67, 649-652.	5.2	45
373	Microstructural evolution in two-phase alloys processed by high-pressure torsion. Journal of Materials Science, 2013, 48, 4582-4591.	3.7	45
374	An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 149-155.	5.6	45
375	The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 178-184.	5.6	45
376	Texture evolution in high-pressure torsion processing. Progress in Materials Science, 2022, 125, 100886.	32.8	45
377	The dependence of grain-boundary sliding on shear stress. Journal of Materials Science, 1968, 3, 306-313.	3.7	44
378	Microstructural Control of an Al-Mg-Si Alloy Using Equal-Channel Angular Pressing. Materials Science Forum, 2002, 396-402, 333-338.	0.3	44

#	Article	IF	CITATIONS
379	Factors influencing microstructural development in equal-channel angular pressing. Metals and Materials International, 2003, 9, 141-149.	3.4	44
380	Microstructure and properties of a low-carbon steel processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 312-315.	5.6	44
381	Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing. Acta Materialia, 2008, 56, 2307-2317.	7.9	44
382	Deformation Heterogeneity on the Cross-Sectional Planes of a Magnesium Alloy Processed by High-Pressure Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3013-3021.	2.2	44
383	Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. International Journal of Hydrogen Energy, 2015, 40, 16971-16976.	7.1	44
384	Fracture toughness at cryogenic temperatures of ultrafine-grained Ti-6Al-4V alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 260-267.	5.6	44
385	Creep fracture maps for 316 stainless steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1979, 10, 1635-1641.	1.4	43
386	Identifying creep mechanisms in plastic flow. International Journal of Materials Research, 2005, 96, 522-531.	0.8	43
387	Evaluating plastic anisotropy in two aluminum alloys processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 206-211.	5.6	43
388	Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 500, 170-175.	5.6	43
389	Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures. Journal of Materials Science, 2014, 49, 6558-6564.	3.7	43
390	The determination of the activation energy for superplastic flow. Physica Status Solidi A, 1976, 33, 375-381.	1.7	42
391	Comments on theories of structural superplasticity. Materials Science and Engineering, 1978, 36, 27-33.	0.1	42
392	Achieving superplasticity in ultrafine-grained metals. Mechanics of Materials, 2013, 67, 2-8.	3.2	42
393	Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 498-504.	5.6	42
394	Nano―and Microâ€Mechanical Properties of Ultrafineâ€Grained Materials Processed by Severe Plastic Deformation Techniques. Advanced Engineering Materials, 2017, 19, 1600578.	3.5	42
395	The Effect of Highâ€Pressure Torsion on Microstructure, Hardness and Corrosion Behavior for Pure Magnesium and Different Magnesium Alloys. Advanced Engineering Materials, 2019, 21, 1801081. 	3.5	42
396	Factors Influencing the Exceptional Ductility of a Superplastic Pb-62 pct Sn alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 2309-2311.	2.2	41

#	Article	IF	CITATIONS
397	Developing Ultrafine Grain Sizes Using Severe Plastic Deformation. Advanced Engineering Materials, 2001, 3, 121-125.	3.5	41
398	Mechanical Properties of Bulk Nanocrystalline Aluminum-Tungsten Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2528-2534.	2.2	41
399	Microstructural evolution and electro-resistivity in HPT nickel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 437-445.	5.6	41
400	Fabrication of nanocomposites through diffusion bonding under high-pressure torsion. Journal of Materials Research, 2018, 33, 2700-2710.	2.6	41
401	Abnormal grain growth in a Zn-0.8Ag alloy after processing by high-pressure torsion. Acta Materialia, 2021, 207, 116667.	7.9	41
402	Cyclic grain boundary migration during high temperature fatigue—I. Microstructural observations. Acta Metallurgica, 1983, 31, 927-938.	2.1	40
403	Using atomic force microscopy to evaluate the development of mesoscopic shear planes in materials processed by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 358, 114-121.	5.6	40
404	An investigation of cavity growth in a superplastic aluminum alloy processed by ECAP. Acta Materialia, 2005, 53, 5353-5364.	7.9	40
405	Constructing a deformation mechanism map for a superplastic Pb–Sn alloy processed by equal-channel angular pressing. Scripta Materialia, 2009, 61, 963-966.	5.2	40
406	The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 518, 124-131.	5.6	40
407	Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 118-125.	5.6	40
408	Microstructure, Texture, and Superplasticity of a Fine-Grained Mg-Gd-Zr Alloy Processed by Equal-Channel Angular Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6056-6069.	2.2	40
409	Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 36-43.	5.6	40
410	Bulk Nanostructured Materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5181-5199.	2.2	40
411	Texture and microhardness of Mg-Rare Earth (Nd and Ce) alloys processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 477-485.	5.6	40
412	Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg. Journal of Materials Science, 2018, 53, 16585-16597.	3.7	40
413	The portevin-le chatelier effect in Cu3Au. Acta Metallurgica, 1974, 22, 325-332.	2.1	39
414	Evidence for cavitation in superplastic Zn-22 pct Ai of very high purity. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 1688-1690.	1.4	39

#	Article	IF	CITATIONS
415	Creep behavior of an AZ91 magnesium alloy reinforced with alumina fibers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2059-2066.	2.2	39
416	Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy. Journal of Materials Science, 2002, 37, 4993-4998.	3.7	39
417	Influence of grain size on the density of deformation twins in Cu–30%Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3942-3948.	5.6	39
418	The development of hardness homogeneity in a Cu–Zr alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 526-532.	5.6	39
419	Fabricating Ultrafine-Grained Materials through the Application of Severe Plastic Deformation: a Review of Developments in Brazil. Journal of Materials Research and Technology, 2012, 1, 55-62.	5.8	39
420	Microstructural evolution in a Cu–Zr alloy processed by a combination of ECAP and HPT. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 579, 126-135.	5.6	39
421	Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. Journal of Materials Research and Technology, 2016, 5, 152-158.	5.8	39
422	Stored energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion. Journal of Materials Research and Technology, 2017, 6, 339-347.	5.8	39
423	Low stress creep behavior: An examination of Nabarro—Herring and Harper—Dorn creep. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 216, 20-29.	5.6	38
424	Fundamental aspects of creep in metal matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 315-324.	2.2	38
425	Creep properties of an Al-2024 composite reinforced with SiC particulates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 39-47.	5.6	38
426	Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy. Acta Materialia, 2008, 56, 3800-3809.	7.9	38
427	Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4742-4749.	5.6	38
428	Evolution of texture in a magnesium alloy processed by ECAP through dies with different angles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1709-1718.	5.6	38
429	De-twinning via secondary twinning in face-centered cubic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 110-114.	5.6	38
430	An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu–Ni–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 288-294.	5.6	38
431	An evaluation of the saturation hardness in an ultrafine-grained aluminum 7075 alloy processed using different techniques. Journal of Materials Science, 2015, 50, 4357-4365.	3.7	38
432	Highâ€Cycle Fatigue Behavior of an Ultrafineâ€Grained Ti–6Al–4V Alloy Processed by ECAP and Extrusion. Advanced Engineering Materials, 2016, 18, 2057-2062.	3.5	38

#	Article	IF	CITATIONS
433	Characteristics of the allotropic phase transformation in titanium processed by high-pressure torsion using different rotation speeds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 293-299.	5.6	38
434	Direct influence of recovery behaviour on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP. Journal of Materials Research and Technology, 2017, 6, 369-377.	5.8	38
435	Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments. Journal of Alloys and Compounds, 2018, 769, 631-639.	5.5	38
436	The incorporation of ambipolar diffusion in deformation mechanism maps for ceramics. Journal of Materials Science, 1978, 13, 473-482.	3.7	37
437	Superplasticity of steels and ferrous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 128, 1-13.	5.6	37
438	Using intense plastic straining for high-strain-rate superplasticity. Jom, 1998, 50, 41-45.	1.9	37
439	An examination of a substructure-invariant model for the creep of metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 265, 276-284.	5.6	37
440	Achieving a Superplastic Forming Capability through Severe Plastic Deformation. Advanced Engineering Materials, 2003, 5, 359-364.	3.5	37
441	The aging characteristics of an Al–Ag alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 437, 240-247.	5.6	37
442	Structural and hardness inhomogeneities in Mg–Al–Zn alloys processed by high-pressure torsion. Journal of Materials Science, 2013, 48, 4661-4670.	3.7	37
443	Evaluating the textural and mechanical properties of an Mg-Dy alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2019, 778, 61-71.	5.5	37
444	Low-temperature deformation and dislocation mobility in pure and Mg-doped LiF crystals. Philosophical Magazine and Journal, 1974, 30, 145-160.	1.7	36
445	Cavitation in a Superplastic Al–Zn–Mg Alloy. Transactions of the Japan Institute of Metals, 1980, 21, 123-126.	0.5	36
446	Microstructural characteristics of an ultrafine grain metal processed with equal-channel angular pressing. Materials Characterization, 1996, 37, 277-283.	4.4	36
447	Age hardening and the potential for superplasticity in a fine-grained Al-Mg-Li-Zr alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 169-177.	2.2	36
448	Factors influencing superplastic behavior in a magnesium ZK60 alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 141-144.	5.6	36
449	Evolution of microstructure and hardness in NiTi shape memory alloys processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 2998-3009.	3.7	36
450	The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. Journal of Materials Science, 2015, 50, 3549-3561.	3.7	36

#	Article	IF	CITATIONS
451	Mechanical behavior and impact toughness of the ultrafine-grained Grade 5 Ti alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 166-173.	5.6	36
452	Dependence of Creep Rate on Porosity. Journal of the American Ceramic Society, 1972, 55, 630-631.	3.8	35
453	An evaluation of the rate-controlling flow process in Harper-Dorn creep. Acta Metallurgica Et Materialia, 1994, 42, 2487-2492.	1.8	35
454	An examination of the effect of processing procedure on the creep of metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 245, 1-9.	5.6	35
455	Microstructural characteristics of nickel processed to ultrahigh strains by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 207-212.	5.6	35
456	Enhancement in mechanical properties of a β-titanium alloy by high-pressure torsion. Journal of Materials Research and Technology, 2015, 4, 79-83.	5.8	35
457	Microstructure and microhardness of an Al-6061 metal matrix composite processed by high-pressure torsion. Materials Characterization, 2016, 118, 270-278.	4.4	35
458	Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al-Zn-Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 617-625.	5.6	35
459	Characterization of precipitates in an Al-Zn-Mg alloy processed by ECAP and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 146-156.	5.6	35
460	Development of a magnesium-alumina composite through cold consolidation of machining chips by high-pressure torsion. Journal of Alloys and Compounds, 2019, 780, 422-427.	5.5	35
461	Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 139047.	5.6	35
462	Grain boundary displacements due to diffusional creep. Scripta Metallurgica, 1970, 4, 563-566.	1.2	34
463	A model investigation of the shearing characteristics in equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 347, 223-230.	5.6	34
464	Using Severe Plastic Deformation for the Processing of Advanced Engineering Materials. Materials Transactions, 2009, 50, 1613-1619.	1.2	34
465	Developing Processing Routes for the Equal-Channel Angular Pressing of Age-Hardenable Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 802-809.	2.2	34
466	Plastic behavior of fcc metals over a wide range of strain: Macroscopic and microscopic descriptions and their relationship. Acta Materialia, 2011, 59, 2385-2391.	7.9	34
467	Effect of temperature on the processing of a magnesium alloy by high-pressure torsion. Journal of Materials Science, 2012, 47, 7796-7806.	3.7	34
468	Microstructure and microtexture in pure copper processed by high-pressure torsion. Journal of Materials Science, 2013, 48, 4563-4572.	3.7	34

#	Article	IF	CITATIONS
469	Influence of annealing on ductility of ultrafine-grained titanium processed by equal-channel angular pressing–Conform and drawing. MRS Communications, 2013, 3, 249-253.	1.8	34
470	Achieving superplastic properties in a ZK10 magnesium alloy processed by equal-channel angular pressing. Journal of Materials Research and Technology, 2017, 6, 129-135.	5.8	34
471	Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties. Annual Review of Materials Research, 2022, 52, 357-382.	9.3	34
472	The activation energies for superplasticity. Scripta Metallurgica, 1977, 11, 575-579.	1.2	33
473	On the possibility of Harper-Dorn creep in non-metallic crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1983, 47, L29-L33.	0.6	33
474	Creep processes in magnesium alloys and their composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 883-889.	2.2	33
475	Achieving superplastic behavior in fcc and hcp metals processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 104-110.	5.6	33
476	Dry sliding wear of an AZ31 magnesium alloy processed by equal-channel angular pressing. Journal of Materials Science, 2013, 48, 4117-4127.	3.7	33
477	Influence of Anvil Alignment on Shearing Patterns in Highâ€Pressure Torsion. Advanced Engineering Materials, 2013, 15, 747-755.	3.5	33
478	Microstructure and texture evolution in a magnesium alloy during processing by high-pressure torsion. Materials Research, 2013, 16, 577-585.	1.3	33
479	Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP. Journal of Materials Science, 2017, 52, 305-313.	3.7	33
480	Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 398-405.	5.6	33
481	Using Equal-Channel Angular Pressing for the Production of Superplastic Aluminum and Magnesium Alloys. Journal of Materials Engineering and Performance, 2004, 13, 683-690.	2.5	32
482	An analysis of the shear zone for metals deformed by equal-channel angular processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 239-242.	5.6	32
483	Processing by equal-channel angular pressing: Applications to grain boundary engineering. Journal of Materials Science, 2005, 40, 909-917.	3.7	32
484	Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Communications, 2012, 2, 75-78.	1.8	32
485	Influence of Pressing Temperature on Microstructure Evolution and Mechanical Behavior of Ultrafineâ€Grained Cu Processed by Equalâ€Channel Angular Pressing. Advanced Engineering Materials, 2012, 14, 185-194.	3.5	32
486	A theoretical and experimental evaluation of repetitive corrugation and straightening: Application to Al–Cu and Al–Cu–Sc alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 282-287.	5.6	32

#	Article	IF	CITATIONS
487	Fatigue Life and Failure Characteristics of an Ultrafineâ€Grained Ti–6Al–4V Alloy Processed by ECAP and Extrusion. Advanced Engineering Materials, 2014, 16, 1038-1043.	3.5	32
488	A critical examination of the paradox of strength and ductility in ultrafine-grained metals. Journal of Materials Research, 2014, 29, 2534-2546.	2.6	32
489	Microâ€Mechanical Behavior of an Exceptionally Strong Metal Matrix Nanocomposite Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2016, 18, 1001-1008.	3.5	32
490	Factors influencing superplasticity in the Ti-6Al-4V alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 198-206.	5.6	32
491	Effect of grain size on strength and strain rate sensitivity in metals. Journal of Materials Science, 2022, 57, 5210-5229.	3.7	32
492	The relationship between strain rate sensitivity and ductility in superplastic materials. Scripta Metallurgica, 1977, 11, 997-1000.	1.2	31
493	Texture evolution in an aluminum alloy processed by ECAP with concurrent precipitate fragmentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 219-225.	5.6	31
494	Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating. Journal of Materials Science, 2013, 48, 4742-4748.	3.7	31
495	Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 629, 16-22.	5.6	31
496	Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Materials Letters, 2018, 214, 240-242.	2.6	31
497	Superplasticity in Ultrafine-Grained Materials Reviews on Advanced Materials Science, 2018, 54, 46-55.	3.3	31
498	Cytotoxicity and Corrosion Behavior of Magnesium and Magnesium Alloys in Hank's Solution after Processing by Highâ€Pressure Torsion. Advanced Engineering Materials, 2019, 21, 1900391.	3.5	31
499	Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140546.	5.6	31
500	The mechanical properties of the superplastic AI- 33 Pct Cu eutectic alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 2487-2496.	1.4	30
501	Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy. Materials Characterization, 1996, 37, 285-294.	4.4	30
502	Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing. Materials Letters, 2003, 57, 3588-3592.	2.6	30
503	Achieving enhanced tensile ductility in an Al-6061 composite processed by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 430-434.	5.6	30
504	A quantitative study of cavity development in the tensile testing of an aluminum metal matrix composite processed by equal-channel angular pressing. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 402-407.	5.6	30

#	Article	IF	CITATIONS
505	An investigation of the deformation process during equal-channel angular pressing of an aluminum single crystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 194-200.	5.6	30
506	Using X-ray microtomography to evaluate cavity formation in a superplastic magnesium alloy processed by equal-channel angular pressing. Acta Materialia, 2010, 58, 5737-5748.	7.9	30
507	Achieving superplastic properties in a Pb–Sn eutectic alloy processed by equal-channel angular pressing. Journal of Materials Science, 2011, 46, 155-160.	3.7	30
508	Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion. Journal of Materials Research and Technology, 2015, 4, 2-7.	5.8	30
509	Grain size and microhardness evolution during annealing of a magnesium alloy processed by high-pressure torsion. Journal of Materials Research and Technology, 2015, 4, 14-17.	5.8	30
510	The Requirements for Superplasticity with an Emphasis on Magnesium Alloys. Advanced Engineering Materials, 2016, 18, 127-131.	3.5	30
511	An evaluation of the hexagonal close-packed to face-centered cubic phase transformation in a Ti-6Al-4V alloy during high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 212-217.	5.6	30
512	Direct Bonding of Aluminum–Copper Metals through Highâ€Pressure Torsion Processing. Advanced Engineering Materials, 2018, 20, 1800642.	3.5	30
513	Observations on the magnitude of grain boundary sliding in Region 1 of superplasticity. Journal of Materials Science, 1981, 16, 2613-2616.	3.7	29
514	An examination of grain boundary migration during high temperature fatigue of aluminum—I. Microstructural observations. Acta Metallurgica, 1983, 31, 1595-1603.	2.1	29
515	A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity. Journal of Materials Research, 1996, 11, 1755-1764.	2.6	29
516	Microstructure and microhardness of OFHC copper processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 21-28.	5.6	29
517	Evaluating the flow properties of a magnesium ZK60 alloy processed by high-pressure torsion: A comparison of two different miniature testing techniques. Materials Science & (Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 432-439.	5.6	29
518	Effects on hardness and microstructure of AISI 1020 low-carbon steel processed by high-pressure torsion. Journal of Materials Research and Technology, 2017, 6, 355-360.	5.8	29
519	High temperature thermal stability of nanocrystalline 316L stainless steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 323-331.	5.6	29
520	Enhanced grain refinement and microhardness by hybrid processing using hydrostatic extrusion and high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 513-520.	5.6	29
521	A magnesium-aluminium composite produced by high-pressure torsion. Journal of Alloys and Compounds, 2019, 804, 421-426.	5.5	29
522	Ductility of the superplastic Pb-Sn eutectic at room temperature. Journal of Materials Science Letters, 1983. 2, 59-62.	0.5	28

#	Article	IF	CITATIONS
523	Recent Developments in High Strain Rate Superplasticity. Materials Transactions, JIM, 1999, 40, 716-722.	0.9	28
524	High Strain Rate Superplasticity in a Zn - 22% Al Alloy after Equal-Channel Angular Pressing. Materials Science Forum, 2001, 357-359, 321-326.	0.3	28
525	Fifty years of Harper–Dorn creep: a viable creep mechanism or a Californian artifact?. Journal of Materials Science, 2007, 42, 409-420.	3.7	28
526	Developing Superplastic Ductilities in Ultrafine-Grained Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1891-1898.	2.2	28
527	Plastic behavior of face-centered-cubic metals over a wide range of strain. Acta Materialia, 2010, 58, 5015-5021.	7.9	28
528	An investigation of flow patterns and hardness distributions using different anvil alignments in high-pressure torsion. Journal of Materials Science, 2013, 48, 4533-4542.	3.7	28
529	Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature. Journal of Materials Research and Technology, 2014, 3, 338-343.	5.8	28
530	Evolution of hardness in ultrafine-grained metals processed by high-pressure torsion. Journal of Materials Research and Technology, 2014, 3, 311-318.	5.8	28
531	Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al–Zn alloys processed by high-pressure torsion. Materials Letters, 2017, 186, 334-337.	2.6	28
532	Effect of heat treatments on the microstructures and tensile properties of an ultrafine-grained Al-Zn-Mg alloy processed by ECAP. Journal of Alloys and Compounds, 2018, 749, 567-574.	5.5	28
533	Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg. Scientific Reports, 2019, 9, 17186.	3.3	28
534	A method of distinguishing between diffusion creep and Harper-Dorn creep at low stress levels. Scripta Materialia, 1996, 35, 733-737.	5.2	27
535	The creep behavior of discontinuously reinforced metal-matrix composites. Jom, 2003, 55, 15-20.	1.9	27
536	Influence of scandium on an Al–2% Si alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1702-1706.	5.6	27
537	Using an Al–Cu binary alloy to compare processing by multi-axial compression and high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 280-287.	5.6	27
538	Three-dimensional analysis of plastic flow during high-pressure torsion. Journal of Materials Science, 2013, 48, 4524-4532.	3.7	27
539	Evolution in hardness and microstructure of ZK60A magnesium alloy processed by high-pressure torsion. Journal of Materials Research and Technology, 2015, 4, 18-25.	5.8	27
540	Effect of cold rolling on the structure and hydrogen properties of AZ91 and AM60D magnesium alloys processed by ECAP. International Journal of Hydrogen Energy, 2017, 42, 21822-21831.	7.1	27

#	Article	IF	CITATIONS
541	Principles of superplastic diffusion bonding. Materials Science and Technology, 1988, 4, 669-674.	1.6	26
542	A characterization of microstructure and microhardness on longitudinal planes of an Al–Mg–Si alloy processed by ECAP. Materials Characterization, 2013, 84, 126-133.	4.4	26
543	Adiabatic heating and the saturation of grain refinement during SPD of metals and alloys: experimental assessment and computer modeling. Journal of Materials Science, 2013, 48, 4626-4636.	3.7	26
544	An examination of the elastic distortions of anvils in high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 631, 201-208.	5.6	26
545	Two-Step SPD Processing of a Trimodal Al-Based Nano-Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5877-5886.	2.2	26
546	Microstructural evolution during hot shear deformation of an extruded fine-grained Mg–Gd–Y–Zr alloy. Journal of Materials Science, 2017, 52, 7843-7857.	3.7	26
547	Microstructural Evolution and Mechanical Behavior of Cu/Nb Multilayer Composites Processed by Accumulative Roll Bonding. Advanced Engineering Materials, 2020, 22, 1900702.	3.5	26
548	Synthesis of Hybrid Nanocrystalline Alloys by Mechanical Bonding through Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1901289.	3.5	26
549	A Novel High-Strength Zn-3Ag-0.5Mg Alloy Processed by Hot Extrusion, Cold Rolling, or High-Pressure Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3335-3348.	2.2	26
550	Effect of Microstructure on Deformation of Polycrystalline MgO. Journal of the American Ceramic Society, 1971, 54, 240-246.	3.8	25
551	The activation energies for plastic flow in a superplastic copper alloy. Acta Metallurgica, 1978, 26, 1153-1158.	2.1	25
552	Observations on the differences reported in region I for the superplastic Zn-22% Al eutectoid. Scripta Metallurgica, 1981, 15, 229-236.	1.2	25
553	The inter-relationship between grain boundary sliding and cavitation during creep of polycrystalline copper. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 901-907.	2.2	25
554	An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 707-716.	2.2	25
555	Using the stress–strain relationships to propose regions of low and high temperature plastic deformation in aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 234-238.	5.6	25
556	Influence of crystal orientation on the processing of copper single crystals by ECAP. Journal of Materials Science, 2007, 42, 1501-1511.	3.7	25
557	The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals. International Journal of Materials Research, 2009, 100, 1638-1646.	0.3	25
558	Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion. International Journal of Materials Research, 2009, 100, 1662-1667.	0.3	25

#	Article	IF	CITATIONS
559	Creep mechanisms in an Mg–4Zn alloy in the as-cast and aged conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 564, 423-430.	5.6	25
560	Formation of epsilon martensite by high-pressure torsion in a TRIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 114-118.	5.6	25
561	Achieving superior grain refinement and mechanical properties in vanadium through high-pressure torsion and subsequent short-term annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 60-69.	5.6	25
562	High-pressure torsion-induced phase transformations and grain refinement in Al/Ti composites. Journal of Materials Science, 2017, 52, 12170-12184.	3.7	25
563	An investigation of the limits of grain refinement after processing by a combination of severe plastic deformation techniques: A comparison of Al and Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 373-379.	5.6	25
564	Strain rate dependence of compressive behavior in an Al-Zn-Mg alloy processed by ECAP. Journal of Alloys and Compounds, 2019, 791, 1079-1087.	5.5	25
565	Deformation mechanism maps for solid solution alloys. Scripta Metallurgica, 1975, 9, 137-140.	1.2	24
566	Creep behavior of copper at intermediate temperatures—III. A comparison with theory. Acta Metallurgica Et Materialia, 1991, 39, 1823-1832.	1.8	24
567	Twinning and dislocation activity in silver processed by severe plastic deformation. Journal of Materials Science, 2009, 44, 1656-1660.	3.7	24
568	The significance of grain boundary sliding in the superplastic Zn–22Â% Al alloy processed by ECAP. Journal of Materials Science, 2013, 48, 4730-4741.	3.7	24
569	Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing. Journal of Alloys and Compounds, 2015, 638, 88-94.	5.5	24
570	Anneal hardening of a nanostructured Cu–Al alloy processed by high-pressure torsion and rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 207-215.	5.6	24
571	Mechanical properties and microstructural evolution of nanocrystalline titanium at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 358-366.	5.6	24
572	An examination of the implications of void growth in submicrometer and nanocrystalline structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 168, 225-230.	5.6	23
573	Comment on the role of intragranular dislocations in superplastic yttria-stabilized zirconia. Scripta Materialia, 2003, 48, 599-604.	5.2	23
574	An analysis of superplastic flow after processing by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 476-479.	5.6	23
575	An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 1674-1678.	0.3	23
576	The effect of impurity level on ultrafine-grained microstructures and their stability in low stacking fault energy silver. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8694-8699.	5.6	23

#	Article	IF	CITATIONS
577	Strain hardening behavior of a two-phase Cu–Ag alloy processed by high-pressure torsion. Scripta Materialia, 2011, 65, 477-480.	5.2	23
578	Applied stress controls the production of nano-twins in coarse-grained metals. Applied Physics Letters, 2012, 101, 231903.	3.3	23
579	An analytical approach and experimental confirmation of dislocation–twin boundary interactions in titanium. Journal of Materials Science, 2013, 48, 4476-4483.	3.7	23
580	Evolution of microhardness and microstructure in a cast Al–7Â% Si alloy during high-pressure torsion. Journal of Materials Science, 2013, 48, 4671-4680.	3.7	23
581	A comparison of repetitive corrugation and straightening and high-pressure torsion using an Al-Mg-Sc alloy. Journal of Materials Research and Technology, 2016, 5, 353-359.	5.8	23
582	Annealingâ€Induced Hardening in Ultrafineâ€Grained Ni–Mo Alloys. Advanced Engineering Materials, 2018, 20, 1800184.	3.5	23
583	The Characteristics of Creep in Metallic Materials Processed by Severe Plastic Deformation. Materials Transactions, 2019, 60, 1506-1517.	1.2	23
584	Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138350.	5.6	23
585	An examination of creep data for an Al-Mg composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1271-1273.	2.2	22
586	Réalisation de superplasticité à grande vitesse dans des alliages Al_Mg_Sc_Zr par utilisation de l'extrusion dans des canaux déviés. Annales De Chimie: Science Des Materiaux, 2002, 27, 99-109.	0.4	22
587	Creep and superplasticity in a spray-cast aluminum alloy processed by ECA pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 398-401.	5.6	22
588	Improving the high-temperature mechanical properties of a magnesium alloy by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 435-438.	5.6	22
589	An evaluation of creep behavior in ultrafine-grained aluminum alloys processed by ECAP. Journal of Materials Science, 2010, 45, 271-274.	3.7	22
590	Effect of grain size on compressive behaviour of titanium at different strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 311-317.	5.6	22
591	Effect of Mo addition on the microstructure and hardness of ultrafine-grained Ni alloys processed by a combination of cryorolling and high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 92-100.	5.6	22
592	Characteristics of grain refinement in oxygen-free copper processed by equal-channel angular pressing and dynamic testing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 775, 138985.	5.6	22
593	Creep processes in magnesium alloys and their composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 883-889.	2.2	22
594	Grain-Boundary Sliding and Axial Strain during Diffusional Creep. Metal Science, 1975, 9, 141-144.	0.7	21

#	Article	IF	CITATIONS
595	The development of cavitation in superplastic aluminum composites reinforced with Si3N4. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 208, 116-121.	5.6	21
596	Creep behavior of an Al-6061 metal matrix composite produced by liquid metallurgy processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 230, 183-187.	5.6	21
597	Recent developments in modelling of microhardness saturation during SPD processing of metals and alloys. Journal of Materials Science, 2013, 48, 4461-4466.	3.7	21
598	Characterization of stress–strain relationships in Al over a wide range of testing temperatures. International Journal of Plasticity, 2014, 54, 178-192.	8.8	21
599	Microâ€Forming Using Ultrafineâ€Grained Aluminum Processed by Equalâ€Channel Angular Pressing. Advanced Engineering Materials, 2015, 17, 1022-1033.	3.5	21
600	An EBSD analysis of Fe-36%Ni alloy processed by HPT at ambient and a warm temperature. Journal of Alloys and Compounds, 2018, 753, 46-53.	5.5	21
601	Thermal Stability of an Mg–Nd Alloy Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2019, 21, 1900801.	3.5	21
602	Effect of dynamic plastic deformation on the microstructure and mechanical properties of an Al–Zn–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 784, 139287.	5.6	21
603	Grain-Boundary Sliding During Creep of MgO. Journal of the American Ceramic Society, 1975, 58, 92-93.	3.8	20
604	Significance of continuous precipitation during creep of a powder mettallurgy aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 216, 161-168.	5.6	20
605	Factors contributing to creep strengthening in discontinuously-reinforced materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 322, 73-78.	5.6	20
606	The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ 91 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 151-156.	5.6	20
607	Microstructural evolution in a spray-cast aluminum alloy during equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 303-307.	5.6	20
608	Evolution of Microstructure and Precipitation in Heat-Treatable Aluminium Alloys during ECA Pressing and Subsequent Heat Treatment. Materials Science Forum, 2006, 503-504, 275-280.	0.3	20
609	Flow behavior of a superplastic Zn–22% Al alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 48-51.	5.6	20
610	An experimental evaluation of a special ECAP die containing two equal arcs of curvature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4173-4179.	5.6	20
611	Effect of applied pressure on microstructure development and homogeneity in an aluminium alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2016, 688, 736-745.	5.5	20
612	Effect of carbon content and annealing on structure and hardness of CrFe2NiMnV0.25 high-entropy alloys processed by high-pressure torsion. Journal of Materials Science, 2018, 53, 11813-11822.	3.7	20

#	Article	IF	CITATIONS
613	On the Heterogeneity of Local Shear Strain Induced by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900477.	3.5	20
614	The significance of strain weakening and self-annealing in a superplastic Bi–Sn eutectic alloy processed by high-pressure torsion. Acta Materialia, 2020, 185, 245-256.	7.9	20
615	Transitions in Creep Behavior. Materials Transactions, JIM, 1996, 37, 359-362.	0.9	19
616	Research on bulk nanostructured materials in Ufa: Twenty years of scientific achievements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 6-9.	5.6	19
617	The many facets of deformation mechanism mapping and the application to nanostructured materials. Journal of Materials Research, 2013, 28, 1827-1834.	2.6	19
618	An evaluation of the shearing patterns introduced by different anvil alignments in high-pressure torsion. Journal of Materials Science, 2014, 49, 3146-3157.	3.7	19
619	On the microstructure and mechanical properties of an Fe-10Ni-7Mn martensitic steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 27-34.	5.6	19
620	The Contribution of Severe Plastic Deformation to Research on Superplasticity. Materials Transactions, 2019, 60, 1123-1130.	1.2	19
621	Analysis of the creep behavior of fine-grained AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139489.	5.6	19
622	Using High-Pressure Torsion to Achieve Superplasticity in an AZ91 Magnesium Alloy. Metals, 2020, 10, 681.	2.3	19
623	Fabrication and characterization of nanostructured immiscible Cu–Ta alloys processed by high-pressure torsion. Journal of Alloys and Compounds, 2020, 832, 155007.	5.5	19
624	The variation in secondary creep rate at large grain sizes. Scripta Metallurgica, 1970, 4, 693-695.	1.2	18
625	A determination of the structural dependence of cyclic migration in polycrystalline aluminum using electron channeling pattern analysis. Acta Metallurgica, 1989, 37, 705-714.	2.1	18
626	An evaluation of the creep properties of two Al-Si alloys produced by rapid solidification processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3871-3879.	2.2	18
627	An Evaluation of Superplastic Anisotropy after Processing by Equal-Channel Angular Pressing. Materials Transactions, 2004, 45, 3079-3081.	1.2	18
628	Cavitation and failure in a fine-grained Inconel 718 alloy having potential superplastic properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 130-133.	5.6	18
629	Using ball-indentation to evaluate the properties of an ultrafine-grained Al–2% Si alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 427, 188-194.	5.6	18
630	Factors influencing creep flow and ductility in ultrafine-grained metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 403-411.	5.6	18

#	Article	IF	CITATIONS
631	Microstructural heterogeneity in hexagonal close-packed pure Ti processed by high-pressure torsion. Journal of Materials Science, 2012, 47, 4838-4844.	3.7	18
632	Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. Journal of Materials Science, 2013, 48, 4637-4645.	3.7	18
633	Strain-induced martensite to austenite reverse transformation in an ultrafine-grained Fe–Ni–Mn martensitic steel. Philosophical Magazine, 2014, 94, 1493-1507.	1.6	18
634	Mechanical properties and microstructure evolution in an aluminum 6082 alloy processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 6597-6607.	3.7	18
635	Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing. Acta Materialia, 2016, 112, 231-241.	7.9	18
636	Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 350-359.	5.6	18
637	Hardness evolution of AZ80 magnesium alloy processed by HPT at different temperatures. Journal of Materials Research and Technology, 2017, 6, 378-384.	5.8	18
638	Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites. Materials Research, 2017, 20, 46-52.	1.3	18
639	Shape memory characteristics of a nanocrystalline TiNi alloy processed by HPT followed by post-deformation annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 445-452.	5.6	18
640	Factors influencing the flow and hardness of materials with ultrafine grain sizes. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 203-215.	0.6	18
641	An Evaluation of Homogeneity and Heterogeneity in Metals Processed by High-Pressure Torsion. Acta Physica Polonica A, 2012, 122, 425-429.	0.5	18
642	Deformation Mechanism Maps: Their Use in Predicting Creep Behavior. Journal of Engineering Materials and Technology, Transactions of the ASME, 1976, 98, 125-130.	1.4	17
643	Creep behavior of copper at intermediate temperatures—II. Surface microstructural observations. Acta Metallurgica Et Materialia, 1991, 39, 1817-1822.	1.8	17
644	Future research directions for interface engineering in high temperature plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 166, 237-241.	5.6	17
645	Evidence for Anelastic Creep Recovery in Silicon Carbide-Whisker-Reinforced Alumina. Journal of the American Ceramic Society, 1994, 77, 1679-1681.	3.8	17
646	Characteristics of thermal cycling in a magnesium alloy composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 320-323.	5.6	17
647	The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials. Materials Science Forum, 0, 667-669, 677-682.	0.3	17
648	An Investigation of Cavity Development during Superplastic Flow in a Zinc–Aluminum Alloy Processed Using Severe Plastic Deformation. Materials Transactions, 2012, 53, 87-95.	1.2	17

#	Article	IF	CITATIONS
649	Microstructure of low stacking fault energy silver processed by different routes of severe plastic deformation. Journal of Alloys and Compounds, 2012, 536, S190-S193.	5.5	17
650	Influence of rolling direction on flow and cavitation in a superplastic magnesium alloy processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 211-220.	5.6	17
651	Effect of temperature on microstructural stabilization and mechanical properties in the dynamic testing of nanocrystalline pure Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 64-70.	5.6	17
652	Influence of grain boundary misorientations on the mechanical behavior of a near-α Ti-6Al-7Nb alloy processed by ECAP. Materials Letters, 2017, 190, 256-259.	2.6	17
653	An examination of the superplastic characteristics of Al–Mg–Sc alloys after processing. Journal of Materials Research, 2017, 32, 4541-4553.	2.6	17
654	Microstructure and Hardness Evolution in Magnesium Processed by HPT. Materials Research, 2017, 20, 2-7.	1.3	17
655	Using Postâ€Deformation Annealing to Optimize the Properties of a ZK60 Magnesium Alloy Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2018, 20, 1700703.	3.5	17
656	Superior strength of tri-layered Al–Cu–Al nano-composites processed by high-pressure torsion. Journal of Alloys and Compounds, 2020, 846, 156380.	5.5	17
657	Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys. Journal of Materials Science and Technology, 2022, 122, 54-67.	10.7	17
658	Low temperature dislocation mechanisms in ordered and disordered Cu ₃ Au. Philosophical Magazine and Journal, 1968, 17, 999-1015.	1.7	16
659	Creep mechanisms in stoichiometric uranium dioxide. Journal of Nuclear Materials, 1971, 38, 88-92.	2.7	16
660	An analysis of cavitation failure incorporating cavity nucleation with strain. Materials Science and Engineering, 1979, 40, 159-166.	0.1	16
661	Cyclic grain boundary migration during high temperature fatigue—II. Measurements of grain boundary sliding. Acta Metallurgica, 1983, 31, 939-946.	2.1	16
662	An examination of the metals deforming by Harper-Dorn creep at high homologous temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 151, 147-151.	5.6	16
663	Ultrafine-grained materials: a personal perspective. International Journal of Materials Research, 2007, 98, 251-254.	0.3	16
664	On the feasibility of using a continuous processing technique incorporating a limited strain imposed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 476-480.	5.6	16
665	The development of internal cavitation in a superplastic zinc–aluminum alloy processed by ECAP. Journal of Materials Science, 2008, 43, 7360-7365.	3.7	16
666	Delayed microstructural recovery in silver processed by equal-channel angular pressing. Journal of Materials Science, 2008, 43, 5672-5676.	3.7	16

#	Article	IF	CITATIONS
667	Achieving homogeneity in a two-phase Cu–Ag composite during high-pressure torsion. Journal of Materials Science, 2013, 48, 4606-4612.	3.7	16
668	High temperature thermal stability of ultrafine-grained silver processed by equal-channel angular pressing. Journal of Materials Science, 2013, 48, 1675-1684.	3.7	16
669	Processing magnesium alloys by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012171.	0.6	16
670	Evaluating the Superplastic Flow of a Magnesium AZ31 Alloy Processed by Equal-Channel Angular Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3197-3204.	2.2	16
671	Effect of annealing on wear resistance and electroconductivity of copper processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 2270-2278.	3.7	16
672	Microstructural Evolution and Microâ€Compression in Highâ€Purity Copper Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2016, 18, 241-250.	3.5	16
673	An investigation of the thermal stability of an Mg Dy alloy after processing by high-pressure torsion. Materials Characterization, 2019, 151, 519-529.	4.4	16
674	Inverse Hall–Petch Behaviour in an AZ91 Alloy and in an AZ91–Al 2 O 3 Composite Consolidated by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900894.	3.5	16
675	Evidence for a phase transition in an AlCrFe2Ni2 high entropy alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2021, 867, 159063.	5.5	16
676	Relationship between strength and uniform elongation of metals based on an exponential hardening law. Acta Materialia, 2022, 231, 117866.	7.9	16
677	Microstructural evolution and microhardness in a low carbon steel processed by high-pressure torsion. Journal of Materials Research and Technology, 2014, 3, 344-348.	5.8	15
678	Mechanical Properties of ZK60 Magnesium Alloy Processed by High-Pressure Torsion. Advanced Materials Research, 0, 922, 767-772.	0.3	15
679	An examination of the saturation microstructures achieved in ultrafine-grained metals processed by high-pressure torsion. Journal of Materials Research and Technology, 2014, 3, 319-326.	5.8	15
680	Using finite element modelling to examine the flow process and temperature evolution in HPT under different constraining conditions. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012041.	0.6	15
681	Using dilatometry to study martensitic stabilization and recrystallization kinetics in a severely deformed NiTi alloy. Journal of Materials Science, 2015, 50, 4003-4011.	3.7	15
682	The sequence and kinetics of pre-precipitation in Mg-Nd alloys after HPT processing: A synchrotron and DSC study. Journal of Alloys and Compounds, 2017, 719, 236-241.	5.5	15
683	Processing of CP-Ti by high-pressure torsion and the effect of surface modification using a post-HPT laser treatment. Journal of Alloys and Compounds, 2019, 784, 653-659.	5.5	15
684	An investigation of the stored energy and thermal stability in a Cu–Ni–Si alloy processed by high-pressure torsion. Philosophical Magazine, 2020, 100, 688-712.	1.6	15

#	Article	IF	CITATIONS
685	Processing and superplastic properties of fine grained Si ₃ N ₄ /Al–Mg–Si composites. Materials Science and Technology, 1995, 11, 1295-1300.	1.6	15
686	The effect of grain size on ductility in the superplastic Pb-Sn eutectic. Journal of Materials Science Letters, 1983, 2, 337-340.	0.5	14
687	A detailed appraisal of steady state flow data for the superplastic Zn-22% Al Alloy. Materials Science and Engineering, 1983, 57, 55-65.	0.1	14
688	An investigation of grain rotation and grain elongation in a superplastic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 187, 161-165.	5.6	14
689	The characteristics of cavitation in superplastic metals and ceramics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 873-878.	2.2	14
690	An evaluation of the creep characteristics of an AZ91 magnesium alloy composite using acoustic emission. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 338, 1-7.	5.6	14
691	A finite element analysis of the superplastic forming of an aluminum alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 456, 236-242.	5.6	14
692	New observations on high-temperature creep at very low stresses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 20-24.	5.6	14
693	Strain softening in nanocrystalline Ni–Fe alloy induced by large HPT revolutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4807-4811.	5.6	14
694	Stability of Ultrafine-Grained Microstructure in Fcc Metals Processed by Severe Plastic Deformation. Key Engineering Materials, 0, 465, 195-198.	0.4	14
695	Using X-ray microbeam diffraction to study the long-range internal stresses in aluminum processed by ECAP. Acta Materialia, 2013, 61, 7741-7748.	7.9	14
696	Dynamic compressive behavior of ultrafine-grained pure Ti at elevated temperatures after processing by ECAP. Journal of Materials Science, 2014, 49, 6640-6647.	3.7	14
697	Evidence for an early softening behavior in pure copper processed by high-pressure torsion. Journal of Materials Science, 2016, 51, 1923-1930.	3.7	14
698	Principle of one-step synthesis for multilayered structures using tube high-pressure shearing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 367-375.	5.6	14
699	Mechanical properties and structural stability of a bulk nanostructured metastable aluminum-magnesium system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 140050.	5.6	14
700	Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1901462.	3.5	14
701	Cavitation in high purity aluminium during fatigue at elevated temperatures. Journal of Materials Science Letters, 1983, 2, 522-524.	0.5	13
702	An examination of cyclic grain boundary migration and cavitation in an Al-3% Mg solid solution alloy. Acta Metallurgica, 1989, 37, 725-737.	2.1	13

#	Article	IF	CITATIONS
703	The Variation of Strain Rate with Stress in Superplastic Zirconia. Materials Science Forum, 1996, 243-245, 357-362.	0.3	13
704	Influence of Equal-Channel Angular Pressing on the Superplastic Properties of Commercial Aluminum Alloys. Materials Research Society Symposia Proceedings, 1999, 601, 359.	0.1	13
705	Flow processes in superplastic yttria-stabilized zirconia: A Deformation Limit Diagram. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 409, 46-51.	5.6	13
706	An Investigation of Deformation in Copper Single Crystals Using Equal-Channel Angular Pressing. Materials Science Forum, 2006, 503-504, 113-118.	0.3	13
707	Influence of strain rate on strength and ductility in an aluminum alloy processed by equal-channel angular pressing. Journal of Materials Science, 2009, 44, 3913-3916.	3.7	13
708	A convergent-beam electron diffraction study of strain homogeneity in severely strained aluminum processed by equal-channel angular pressing. Acta Materialia, 2011, 59, 7388-7395.	7.9	13
709	Forty-Five Years of Superplastic Research: Recent Developments and Future Prospects. Materials Science Forum, 0, 838-839, 3-12.	0.3	13
710	Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature. Journal of Materials Research and Technology, 2017, 6, 348-354.	5.8	13
711	Features of Duplex Microstructural Evolution and Mechanical Behavior in the Titanium Alloy Processed by Equalâ€Channel Angular Pressing. Advanced Engineering Materials, 2018, 20, 1700813.	3.5	13
712	Grain refining of a Ti-6Al-4V alloy by high-pressure torsion and low temperature superplasticity. Letters on Materials, 2015, 5, 281-286.	0.7	13
713	Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142666.	5.6	13
714	Observations of cyclic grain boundary migration in aluminium after large numbers of fatigue cycles. Journal of Materials Science Letters, 1983, 2, 180-182.	0.5	12
715	The activation energy for superplastic deformation in the Al-33% Cu eutectic alloy. Scripta Metallurgica, 1987, 21, 1669-1673.	1.2	12
716	The Mechanical Properties at High Temperatures of SiC Whisker-Reinforced Alumina. Materials Research Society Symposia Proceedings, 1988, 120, 265.	0.1	12
717	High temperature deformation of an alumina composite reinforced with silicon carbide whiskers. Acta Metallurgica Et Materialia, 1995, 43, 1421-1427.	1.8	12
718	Metallographic investigation of reinforcement damage in creep of an AZ 91 matrix composite. Materials Letters, 1999, 39, 179-183.	2.6	12
719	The role of Harper–Dorn creep at high temperatures and very low stresses. Journal of Materials Science, 2008, 43, 4801-4810.	3.7	12
720	Wear Behaviour of Al-1050 Alloy Processed by Severe Plastic Deformation. Materials Science Forum, 0, 667-669, 1101-1106.	0.3	12

#	Article	IF	CITATIONS
721	Martensitic Phase Transformation and Deformation Behavior of Fe–Mn–C–Al Twinningâ€Induced Plasticity Steel during Highâ€Pressure Torsion. Advanced Engineering Materials, 2014, 16, 927-932.	3.5	12
722	The effect of microstructure heterogeneity on the microscale deformation of ultrafine-grained aluminum. Journal of Materials Research, 2014, 29, 1664-1674.	2.6	12
723	Long-term self-annealing of copper and aluminium processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 6529-6535.	3.7	12
724	Temperature and strain rate dependence of microstructural evolution and dynamic mechanical behavior in nanocrystalline Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 29-36.	5.6	12
725	An investigation into the effect of substrate on the load-bearing capacity of thin hard coatings. Journal of Materials Science, 2016, 51, 4390-4398.	3.7	12
726	Magnesium-Based Bioactive Composites Processed at Room Temperature. Materials, 2019, 12, 2609.	2.9	12
727	Effect of Cu on Amorphization of a TiNi Alloy during HPT and Shape Memory Effect after Postâ€Deformation Annealing. Advanced Engineering Materials, 2020, 22, 1900387.	3.5	12
728	An examination of microstructural evolution and homogeneity in a magnesium AZ80 alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140832.	5.6	12
729	Microstructural properties, thermal stability and superplasticity of a ZK60 Mg alloy processed by high-pressure torsion. Letters on Materials, 2015, 5, 287-293.	0.7	12
730	Fabrication of hybrid nanocrystalline Al–Ti alloys by mechanical bonding through high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142549.	5.6	12
731	Simple reverse bending machine for low cycle fatigue at elevated temperatures. Review of Scientific Instruments, 1983, 54, 353-356.	1.3	11
732	Characteristics of creep deformation in discontinuously reinforced metal matrix composites. Materials Science and Technology, 1999, 15, 357-365.	1.6	11
733	Achieving superplasticity at high strain rates using equal channel angular pressing. Materials Science and Technology, 2000, 16, 1330-1333.	1.6	11
734	Creep properties of a fiber-reinforced magnesium alloy. Journal of Materials Science, 2004, 39, 1647-1652.	3.7	11
735	Achieving Superplasticity of Al-1%Mg-0.2%Sc Alloy in Plate Samples Processed by Equal-channel Angular Pressing. Materials Transactions, 2004, 45, 2521-2524.	1.2	11
736	The characteristics of aluminum–scandium alloys processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1448-1452.	5.6	11
737	Microstructure and microtexture evolution in pure metals after ultra-high straining. Journal of Materials Science, 2012, 47, 7888-7893.	3.7	11
738	Effect of anvil roughness on the flow patterns and hardness development in high-pressure torsion. Journal of Materials Science, 2014, 49, 6517-6528.	3.7	11

#	Article	IF	CITATIONS
739	Mechanical property evaluation of an Al-2024 alloy subjected to HPT processing. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012085.	0.6	11
740	The influence of chemical heterogeneities on the local mechanical behavior of a high-entropy alloy: A micropillar compression study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 165-167.	5.6	11
741	Using Plane Strain Compression Test to Evaluate the Mechanical Behavior of Magnesium Processed by HPT. Metals, 2022, 12, 125.	2.3	11
742	The planar distribution of grain size in a polycrystalline ceramic. Metallography, 1973, 6, 9-15.	0.4	10
743	Further comments on theories of structural superplasticity. Materials Science and Engineering, 1979, 40, 293-295.	0.1	10
744	Deformation mechanism maps for applications at high temperatures. Ceramurgia International, 1980, 6, 11-18.	0.3	10
745	Superplastic-like flow in ceramics: Recent developments and potentials applications. Ceramics International, 1993, 19, 279-286.	4.8	10
746	Yield stress measurements on an Al-1.5% Mg alloy with submicron grain size using a miniature bending procedure. Materials Letters, 1995, 23, 283-287.	2.6	10
747	A model study of cavity growth in superplasticity using single premachined holes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2532-2539.	2.2	10
748	Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 472-475.	5.6	10
749	The characteristics of superplastic flow in a magnesium alloy processed by ECAP. International Journal of Materials Research, 2009, 100, 843-846.	0.3	10
750	Using ball indentation to determine the mechanical properties of an Al-7475 alloy processed by high-pressure torsion. Journal of Materials Science, 2013, 48, 4773-4779.	3.7	10
751	Shape memory effect of NiTi alloy processed by equal-channel angular pressing followed by post deformation annealing. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012111.	0.6	10
752	An Investigation of Hardness Homogeneity and Microstructure in Pure Titanium Processed by High Pressure Torsion. Materials Science Forum, 0, 783-786, 2701-2706.	0.3	10
753	Evaluating a New Coreâ€5heath Procedure for Processing Hard Metals by Equalâ€Channel Angular Pressing. Advanced Engineering Materials, 2014, 16, 918-926.	3.5	10
754	Microstructures and mechanical properties of pure tantalum processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012100.	0.6	10
755	Evolution of the microstructure during annealing of ultrafine-grained Ni with different Mo contents. Materials Characterization, 2017, 130, 56-63.	4.4	10
756	Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi _{0.1} high-entropy alloy processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012017.	0.6	10

#	Article	IF	CITATIONS
757	Microstructural Evolution and Properties of a Hot Extruded and HPTâ€Processed Resorbable Magnesium WE43 Alloy. Advanced Engineering Materials, 2017, 19, 1600698.	3.5	10
758	Examining the Thermal Stability of an Al-Mg-Sc Alloy Processed by High-Pressure Torsion. Materials Research, 2017, 20, 39-45.	1.3	10
759	Consolidation of Magnesium and Magnesium Alloy Machine Chips Using High-Pressure Torsion. Materials Science Forum, 2018, 941, 851-856.	0.3	10
760	Microâ€Embossing Formability of a Superlight Dualâ€Phase Mg–Li Alloy Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2019, 21, 1800961.	3.5	10
761	Effect of Numbers of Turns of Highâ€Pressure Torsion on the Development of Exceptional Ductility in Pure Magnesium. Advanced Engineering Materials, 2020, 22, 1900565.	3.5	10
762	The fabrication of high strength Zr/Nb nanocomposites using high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139693.	5.6	10
763	Interface structures in Al-Nb2O5 nanocomposites processed by high-pressure torsion at room temperature. Materials Characterization, 2020, 162, 110222.	4.4	10
764	Using high-pressure torsion to fabricate an Al–Ti hybrid system with exceptional mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140114.	5.6	10
765	A stored energy analysis of grains with shear texture orientations in Cu-Ni-Si and Fe-Ni alloys processed by high-pressure torsion. Journal of Alloys and Compounds, 2021, 864, 158142.	5.5	10
766	High Temperature Creep of Al-Mg Alloys. , 1985, , 797-802.		10
767	Creep behavior of metals processed by equal-channel angular pressing. Metallic Materials, 2021, 49, 75-83.	0.3	10
768	A general physics-based hardening law for single phase metals. Acta Materialia, 2022, 231, 117877.	7.9	10
769	Grain-Boundary Sliding in Ceramics. Journal of the American Ceramic Society, 1972, 55, 430-430.	3.8	9
770	Evidence for Coble creep in the relaxation of surfaceâ€compressive stresses in tempered polycrystalline aluminum oxide. Journal of Applied Physics, 1974, 45, 3729-3731.	2.5	9
771	The significance of grain boundaries in high-temperature creep. Canadian Metallurgical Quarterly, 1974, 13, 223-228.	1.2	9
772	An examination of grain boundary migration during high temperature fatigue of aluminum—II. Measurements of migration. Acta Metallurgica, 1983, 31, 1605-1610.	2.1	9
773	Application of Equal-Channel Angular Pressing to Aluminum and Copper Single Crystals. Materials Science Forum, 2007, 539-543, 2853-2858.	0.3	9
774	Texture evolution during room temperature ageing of silver processed by equal-channel angular pressing. Scripta Materialia, 2011, 64, 1007-1010.	5.2	9

#	Article	IF	CITATIONS
775	Possible self-organized criticality in the Portevin-Le Chatelier effect during decomposition of solid solution alloys. MRS Communications, 2012, 2, 1-4.	1.8	9
776	Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion. Journal of Materials Science, 2013, 48, 4613-4619.	3.7	9
777	High-cycle fatigue behavior of Zn–22% Al alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 37-40.	5.6	9
778	Evaluating the Room Temperature ECAP Processing of a NiTi Alloy via Simulation and Experiments. Advanced Engineering Materials, 2015, 17, 532-538.	3.5	9
779	Thermal stability and superplastic behaviour of an Al-Mg-Sc alloy processed by ECAP and HPT at different temperatures. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012013.	0.6	9
780	A Lifetime of Research in Creep, Superplasticity, and Ultrafineâ€Grained Materials. Advanced Engineering Materials, 2020, 22, 1900442.	3.5	9
781	The Background to Superplastic Forming and Opportunities Arising from New Developments. Solid State Phenomena, 0, 306, 1-8.	0.3	9
782	Examining the mechanical properties and superplastic behaviour in an Al-Mg-Sc alloy after processing by HPT. Letters on Materials, 2015, 5, 294-300.	0.7	9
783	Microstructure and mechanical properties of an Fe–Mn–Al–C lightweight steel after dynamic plastic deformation processing and subsequent aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142566.	5.6	9
784	The significance of grain boundary dislocations in mechanical behavior. Materials Science and Engineering, 1971, 7, 117-118.	0.1	8
785	A Microscopic Examination Of Void Formation In Superplastic Materials. Journal of Microscopy, 1979, 116, 47-54.	1.8	8
786	Grain boundary sliding at high temperatures in torsional fatigue. Journal of Materials Science Letters, 1983, 2, 25-27.	0.5	8
787	Processing by severe plastic deformation:an ancient skill adapted for the modern world. International Journal of Materials Research, 2009, 100, 1623-1631.	0.3	8
788	Principles of deformation in single crystals of two different orientations processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 21-27.	5.6	8
789	The high-temperature creep properties of materials processed using severe plastic deformation. International Journal of Materials Research, 2009, 100, 750-756.	0.3	8
790	Effect of Equal-Channel Angular Pressing on the Creep Resistance of Precipitation-Strengthened Alloys. Materials Science Forum, 2010, 667-669, 897-902.	0.3	8
791	Elemental redistribution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7500-7505.	5.6	8
792	Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. Journal of Materials Science, 2012, 47, 7726-7734.	3.7	8

#	Article	IF	CITATIONS
793	The significance of self-annealing in two-phase alloys processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012126.	0.6	8
794	Reassessment of temperature increase and equivalent strain calculation during high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012052.	0.6	8
795	Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion. Journal of Materials Research, 2014, 29, 578-585.	2.6	8
796	Microstructural Evolution and Grain Refinement in a Cu-Zr Alloy Processed by High-Pressure Torsion. Materials Science Forum, 0, 783-786, 2635-2640.	0.3	8
797	Comparisons of self-annealing behaviour of HPT-processed high purity Cu and a Pb–Sn alloy. Journal of Materials Research and Technology, 2017, 6, 390-395.	5.8	8
798	Effect of Longâ€Term Storage on Microstructure and Microhardness Stability in OFHC Copper Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2019, 21, 1801300.	3.5	8
799	Corrosion Behavior in Hank's Solution of a Magnesium–Hydroxyapatite Composite Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 2000765.	3.5	8
800	Recrystallization in an Mg-Nd alloy processed by high-pressure torsion: a calorimetric analysis. Journal of Materials Research and Technology, 2020, 9, 3047-3054.	5.8	8
801	Microstructural Evolution and Mechanical Properties of Ultrafineâ€Grained Ti Fabricated by Cryorolling and Subsequent Annealing. Advanced Engineering Materials, 2020, 22, 1901463.	3.5	8
802	The nature of the maximum microhardness and thickness of the gradient layer in surface-strengthened Cu-Al alloys. Acta Materialia, 2021, 215, 117073.	7.9	8
803	Exploiting tube high-pressure shearing to prepare a microstructure in Pb-Sn alloys for unprecedented superplasticity. Scripta Materialia, 2022, 209, 114390.	5.2	8
804	The strain dependence of vacancy creation and dislocation density during serrated yielding. Scripta Metallurgica, 1973, 7, 1199-1203.	1.2	7
805	A first report on the use of a non-destructive technique to investigate cavitation in a superplastic aluminum alloy. Scripta Metallurgica Et Materialia, 1992, 26, 423-428.	1.0	7
806	An examination of creep behaviour at low stresses in non-metallic materials. Journal of Materials Science Letters, 1996, 15, 1664-1666.	0.5	7
807	A new miniature mechanical testing procedure: Application to intermetallics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2577-2582.	2.2	7
808	Achieving Microstructural Refinement in Magnesium Alloys through Severe Plastic Deformation. Materials Transactions, 2009, 50, 111-116.	1.2	7
809	Characteristics of High Temperature Creep in Pure Aluminum Processed by Equal-Channel Angular Pressing. Materials Science Forum, 0, 638-642, 1965-1970.	0.3	7
810	Microstructure and microtexture evolution with aging treatment in an Al–Mg–Si alloy severely deformed by HPT. Journal of Materials Science, 2013, 48, 4573-4581.	3.7	7

#	Article	IF	CITATIONS
811	An overview of flow patterns development on disc lower surfaces when processing by high-pressure torsion. Journal of Materials Research and Technology, 2014, 3, 303-310.	5.8	7
812	The potential for achieving superplasticity in high-entropy alloys processed by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012040.	0.6	7
813	Thermal stability and mechanical properties of HPT-processed CP-Ti. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012012.	0.6	7
814	The effect of high-pressure torsion on the microstructure and outstanding pseudoelasticity of a ternary Fe–Ni–Mn shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140647.	5.6	7
815	Advanced Materials for Mechanical Engineering: Ultrafineâ€Grained Alloys with Multilayer Coatings. Advanced Engineering Materials, 2021, 23, 2100145.	3.5	7
816	An Evaluation of the Mechanical Properties, Microstructures, and Strengthening Mechanisms of Pure Mg Processed by Highâ€Pressure Torsion at Different Temperatures. Advanced Engineering Materials, 2022, 24, .	3.5	7
817	A method of printing grids on to metal surfaces for deformation studies. Journal of Scientific Instruments, 1965, 42, 896-896.	0.5	6
818	Activation Energies for Creep of Pyrolytic and Glassy Carbon. Nature: Physical Science, 1972, 236, 60-60.	0.8	6
819	The characteristics of microcavitation in high strain rate superplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 246, 117-123.	5.6	6
820	Superplasticity in a Mg-8 mass%Li Two-Phase Alloy Processed by an ECAP Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 729-734.	0.4	6
821	Developing a Model for Grain Refinement in Equal-Channel Angular Pressing. Materials Science Forum, 2006, 503-504, 19-24.	0.3	6
822	The Effect of Equal-Channel Angular Pressing on Structure-Phase Changes and Superplastic Properties of Al-Mg-Li Alloy. Materials Science Forum, 2006, 503-504, 983-988.	0.3	6
823	Monitoring of Self-Annealing in Ultrafine-Grained Silver Using Nanoindentation. Nanoscience and Nanotechnology Letters, 2010, 2, 294-297.	0.4	6
824	Evolution of Microstructure, Phase Composition and Hardness in 316L Stainless Steel Processed by High-Pressure Torsion. Materials Science Forum, 0, 879, 502-507.	0.3	6
825	The effect of high-pressure torsion on the microstructure and properties of magnesium. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012039.	0.6	6
826	Effect of Initial Annealing Temperature on Microstructural Development and Microhardness in Highâ€Purity Copper Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2018, 20, 1700503.	3.5	6
827	Low Temperature Superplasticity in Ultrafine-Grained AZ31 Alloy. Defect and Diffusion Forum, 0, 385, 59-64.	0.4	6
828	A possible stabilizing effect of work hardening on the tensile performance of superplastic materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 448-454.	5.6	6

#	Article	IF	CITATIONS
829	Microstructural and Hardness Evolution in a Duplex Stainless Steel Processed by High-Pressure Torsion. Crystals, 2020, 10, 1138.	2.2	6
830	Enhanced Creep Resistance of an Ultrafineâ€Grained Ti–6Al–4V Alloy with Modified Surface by Ion Implantation and (Ti + V)N Coating. Advanced Engineering Materials, 2020, 22, 1901219.	3.5	6
831	An examination of microstructural evolution in a Pb–Sn eutectic alloy processed by high-pressure torsion and subsequent self-annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140653.	5.6	6
832	In situ TEM observations of thickness effect on grain growth in pure titanium thin films. Materials Characterization, 2021, 173, 110929.	4.4	6
833	Effect of grain size and crystallographic structure on the corrosion and tribocorrosion behaviour of a CoCrMo biomedical grade alloy in simulated body fluid. Wear, 2021, 478-479, 203884.	3.1	6
834	A Constant Stress Tensile Creep Machine for Very Low Stresses. Journal of Testing and Evaluation, 1982, 10, 174-178.	0.7	6
835	Developing magnesium-based composites through high-pressure torsion. Letters on Materials, 2019, 9, 541-545.	0.7	6
836	Effect of High-pressure Torsion on Corrosion Behavior of a Solution-treated Al-Mg-Sc Alloy in a Saline Solution. Materials Research, 2019, 22, .	1.3	6
837	Superplasticity in Al–33Cu eutectic alloy in as extruded condition. Materials Science and Technology, 1989, 5, 435-442.	1.6	5
838	Observations on diffusional cavity growth in superplastic materials. Scripta Metallurgica Et Materialia, 1992, 26, 1239-1244.	1.0	5
839	Influence of whisker volume fraction on the creep behavior of alumina composites reinforced with silicon carbide. Journal of Materials Research, 1995, 10, 2925-2932.	2.6	5
840	A simple technique for the preparation of tensile specimens of yttria-stabilized zirconia. Materials Letters, 1996, 27, 211-214.	2.6	5
841	Superplasticity of ultrafine-grained Al-3%Mg-0.2%Sc alloy produced by equal-channel angular pressing Keikinzoku/Journal of Japan Institute of Light Metals, 2000, 50, 376-380.	0.4	5
842	Strengthening of a commercial Al-5754 alloy using equal-channel angular pressing. Journal of Materials Science Letters, 2001, 20, 1601-1603.	0.5	5
843	Diffusion in Fine-Grained Al Alloys Having Low and High Angle Grain Boundaries. Materials Science Forum, 2002, 396-402, 1061-1066.	0.3	5
844	Processing of Aluminium Alloys by Severe Plastic Deformation. Materials Science Forum, 2006, 519-521, 45-54.	0.3	5
845	Creep and Mechanical Properties of a Commercial Aluminum Alloy Processed by ECAP. Materials Science Forum, 2006, 503-504, 77-82.	0.3	5
846	Microstructural Evolution in an Al-6061 Alloy Processed by High-Pressure Torsion and Rapid Annealing. Materials Science Forum, 0, 667-669, 223-228.	0.3	5

#	Article	IF	CITATIONS
847	Microstructural Evolution of Mg-4Nd Alloy Processed by High-Pressure Torsion. Materials Science Forum, 2010, 667-669, 391-396.	0.3	5
848	Inhomogeneous softening during annealing of ultrafine-grained silver processed by HPT. Journal of Materials Science, 2013, 48, 7384-7391.	3.7	5
849	Producing ultrafine-grained materials through severe plastic deformation. Emerging Materials Research, 2014, 3, 252-260.	0.7	5
850	Grain boundary character distribution of CuNiSi and FeNi alloys processed by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012076.	0.6	5
851	The microstructure length scale of strain rate sensitivity in ultrafine-grained aluminum. Journal of Materials Research, 2015, 30, 981-992.	2.6	5
852	Development of an ω-Phase in Grade 2 Titanium Processed by HPT at High Hydrostatic Pressure. Materials Research, 2016, 19, 1144-1148.	1.3	5
853	Evidence for a transition in deformation mechanism in nanocrystalline pure titanium processed by high-pressure torsion. Philosophical Magazine, 2016, 96, 1632-1642.	1.6	5
854	Investigation of Lattice Defects in a Plastically Deformed High-Entropy Alloy. Materials Science Forum, 0, 885, 74-79.	0.3	5
855	Influence of Mo alloying on the thermal stability and hardness of ultrafine-grained Ni processed by high-pressure torsion. Journal of Materials Research and Technology, 2017, 6, 361-368.	5.8	5
856	Controlling the high temperature mechanical behavior of Al alloys by precipitation and severe straining. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 36-47.	5.6	5
857	Developing Superplasticity in High-Entropy Alloys Processed by Severe Plastic Deformation. Materials Science Forum, 0, 941, 1059-1064.	0.3	5
858	High-pressure torsion and equal-channel angular pressing. , 2019, , 3-19.		5
859	A Comparison of Warm and Combined Warm and Lowâ€Temperature Processing Routes for the Equalâ€Channel Angular Pressing of Pure Titanium. Advanced Engineering Materials, 2020, 22, 1900698.	3.5	5
860	A multiscale experimental analysis of mechanical properties and deformation behavior of sintered copper–silicon carbide composites enhanced by high-pressure torsion. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	5
861	Deformation of Olivine, and the Application to Lunar and Planetary Interiors. , 1982, , 757-762.		5
862	Strengthening and weakening in the processing of ultrafine-grained metals. Metallic Materials, 2016, 53, 213-219.	0.3	5
863	Study on the Surface Modification of Nanostructured Ti Alloys and Coarse-Grained Ti Alloys. Metals, 2022, 12, 948.	2.3	5
864	Thinning of Polycrystalline MgO for Transmission Electron Microscopy. Review of Scientific Instruments, 1967, 38, 125-127.	1.3	4

#	Article	IF	CITATIONS
865	A Re-Appraisal of Cavity Growth Processes in Superplasticity. Materials Research Society Symposia Proceedings, 1990, 196, 39.	0.1	4
866	An Investigation of the Mechanical Behavior of a Superplastic Yttria-Stabilized Zirconia. Materials Research Society Symposia Proceedings, 1990, 196, 325.	0.1	4
867	Cyclic grain boundary migration and sliding in pure aluminum. Acta Metallurgica Et Materialia, 1990, 38, 497-507.	1.8	4
868	An Investigation of Cavitation in the Tensile Testing of a Spray-Cast Aluminum Alloy Processed by ECAP. Materials Science Forum, 2006, 503-504, 83-90.	0.3	4
869	Effect of Pre-Aging on the Microstructure and Strength of Supersaturated AlZnMg Alloys Processed by ECAP. Materials Science Forum, 0, 584-586, 501-506.	0.3	4
870	Microstructures of Aluminum and Copper Single Crystals Processed by Equal-Channel Angular Pressing. Materials Science Forum, 2010, 638-642, 1946-1951.	0.3	4
871	Structural Evolution on the Cross-Section of an AZ31 Magnesium Alloy Processed by High-Pressure Torsion. Materials Science Forum, 2010, 667-669, 247-252.	0.3	4
872	The Influence of Impurity Content on Thermal Stability of Low Stacking Fault Energy Silver Processed by Severe Plastic Deformation. Materials Science Forum, 2012, 729, 222-227.	0.3	4
873	Heterogeneous flow during high-pressure torsion. Materials Research, 2013, 16, 571-576.	1.3	4
874	Microhardness and EBSD microstructure mapping in partially-pressed al and cu through 90º ECAP die. Materials Research, 2013, 16, 586-591.	1.3	4
875	High-Pressure Torsion of Ti: Synchrotron characterization of phase volume fraction and domain sizes. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012147.	0.6	4
876	Strain weakening and superplasticity in a Bi-Sn eutectic alloy processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012107.	0.6	4
877	Processing Different Magnesium Alloys through HPT. Materials Science Forum, 0, 783-786, 2617-2622.	0.3	4
878	Micro-Tensile Behavior at a High Temperature in an AZ31 Magnesium Alloy Processed by ECAP. Materials Science Forum, 0, 783-786, 2726-2731.	0.3	4
879	Report of International NanoSPD Steering Committee and statistics on recent NanoSPD activities. IOP Conference Series: Materials Science and Engineering, 2014, 63, 011002.	0.6	4
880	Microstructural homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Journal of Materials Science, 2015, 50, 6700-6712.	3.7	4
881	Influence of Initial Heat Treatment on the Microhardness Evolution of an Al-Mg-Sc Alloy Processed by High-Pressure Torsion. Materials Science Forum, 0, 879, 1471-1476.	0.3	4
882	Influence of High-Pressure Torsion on the Microstructure and the Hardness of a Ti-Rich High-Entropy Alloy. Materials Science Forum, 2016, 879, 732-737.	0.3	4

#	Article	IF	CITATIONS
883	Microtextural Changes and Superplasticity in an Al-7075 Alloy Processed by High-Pressure Torsion. Materials Science Forum, 2016, 838-839, 445-450.	0.3	4
884	The Influence of Plastic Deformation on Lattice Defect Structure and Mechanical Properties of 316L Austenitic Stainless Steel. Materials Science Forum, 0, 885, 13-18.	0.3	4
885	Fabrication of hybrid metal systems through the application of high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012002.	0.6	4
886	Thirty Years of Superplastic Ultrafine-Grained Materials: Examining the Legacy of Oscar Kaibyshev. Defect and Diffusion Forum, 2018, 385, 3-8.	0.4	4
887	Development of an Al 7050-10â€ ⁻ vol.% alumina nanocomposite through cold consolidation of particles by high-pressure torsion. Journal of Materials Research and Technology, 2020, 9, 12626-12633.	5.8	4
888	An investigation by EXAFS of local atomic structure in an Mg-Nd alloy after processing by high-pressure torsion and ageing. Materials Letters, 2020, 264, 127379.	2.6	4
889	Phase evolution and mechanical properties of an intercritically-annealed Fe–10Ni–7Mn (wt. %) martensitic steel severely deformed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140519.	5.6	4
890	Engineering mechanical properties by controlling the microstructure of an Fe–Ni–Mn martensitic steel through pre-cold rolling and subsequent heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140760.	5.6	4
891	Micro-mechanical response of ultrafine grain and nanocrystalline tantalum. Journal of Materials Research and Technology, 2021, 12, 1804-1815.	5.8	4
892	Process Modeling the Superplastic Forming Behavior of Inconel Alloy 718SPF. , 1997, , .		4
893	Formation of ultrafine grains and twins in the β-phase during superplastic deformation of two-phase brasses. Scripta Materialia, 2022, 218, 114804.	5.2	4
894	On the nature of superplastic deformation in the Mgî—,Al eutectic. Scripta Metallurgica, 1970, 4, 337-339.	1.2	3
895	The Significance of Diffusion Creep in Simple and Multicomponent Ceramics. Defect and Diffusion Forum, 1991, 75, 89-106.	0.4	3
896	Observations on the use of a fractal model to predict superplastic ductility. Scripta Metallurgica Et Materialia, 1993, 28, 241-246.	1.0	3
897	A quantitative measure of internal cavitation in superplastic alloys using photoacoustic analysis. Journal of Materials Research, 1994, 9, 2238-2243.	2.6	3
898	Fracture behaviour at elevated temperatures of alumina matrix composites reinforced with silicon carbide whiskers. Journal of Materials Science, 1996, 31, 5487-5492.	3.7	3
899	Superplastic Behavior in Ultrafine-Grained Materials Produced by Equal-Channel Angular Pressing. Materials Science Forum, 0, 579, 29-40.	0.3	3
900	Processing Age-Hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies and Advantages. Materials Science Forum, 0, 633-634, 527-534.	0.3	3

#	Article	IF	CITATIONS
901	Preface to the Special Issue on Ultrafine Grained Materials. Journal of Materials Science, 2010, 45, 4543-4544.	3.7	3
902	The Evolution of Homogeneity during Processing of Aluminium Alloys by HPT. Materials Science Forum, 2010, 667-669, 277-282.	0.3	3
903	Seventy-Five Years of Superplastic Research: An Overall Perspective for the Superplasticity Conferences. Key Engineering Materials, 0, 433, 3-8.	0.4	3
904	Intrinsically Ductile Failure in a Nanocrystalline Beta Titanium Alloy. Advanced Engineering Materials, 2011, 13, 1108-1113.	3.5	3
905	Evaluating the flow processes in ultrafine-grained materials at elevated temperatures. Materials Research, 2013, 16, 565-570.	1.3	3
906	Analysis of Plastic Deformation and Sample Geometry during the Compression Stage in High-Pressure Torsion. Advanced Materials Research, 0, 922, 592-597.	0.3	3
907	An Investigation of Mechanical Properties and Microstructural Evolution in an Aluminum Alloy Processed by Severe Plastic Deformation. Advanced Materials Research, 0, 922, 610-615.	0.3	3
908	Microstructure Development and Superplasticity in a Zn-22% Al Eutectoid Alloy Processed by Severe Plastic Deformation. Materials Science Forum, 0, 783-786, 2647-2652.	0.3	3
909	An evaluation of formability using micro-embossing on an ultrafine-grained magnesium AZ31 alloy processed by high-pressure torsion. MATEC Web of Conferences, 2015, 21, 09005.	0.2	3
910	Microstructural evolution and microhardness variations in a Cu–36Zn–2Pb alloy processed by high-pressure torsion. Journal of Materials Science, 2015, 50, 1535-1543.	3.7	3
911	Superplasticity and superplastic-like flow in cubic zirconia with silica. Journal of Materials Science, 2015, 50, 3716-3726.	3.7	3
912	Superplastic Flow and Micro-Mechanical Response of Ultrafine-Grained Materials. Defect and Diffusion Forum, 0, 385, 9-14.	0.4	3
913	Influence of Inhomogeneity on Mechanical Properties of Commercially Pure Titanium Processed by HPT. Defect and Diffusion Forum, 0, 385, 284-289.	0.4	3
914	An Evaluation of the Microstructure and Microhardness in an Al–Zn–Mg Alloy Processed by ECAP and Postâ€ECAP Heat Treatments. Advanced Engineering Materials, 2020, 22, 1901040.	3.5	3
915	Effect of post-deformation annealing on the microstructure and mechanical behavior of an Fe–Ni–Mn steel processed by high-pressure torsion. Journal of Materials Research and Technology, 2021, 15, 1537-1546.	5.8	3
916	Fabrication of High Strength Hybrid Materials through the Application of High-Pressure Torsion. Acta Physica Polonica A, 2018, 134, 615-623.	0.5	3
917	The flow characteristics of superplasticity. Letters on Materials, 2014, 4, 78-83.	0.7	3
918	Microstructural saturation, hardness stability and superplasticity in ultrafine-grained metals processed by a combination of severe plastic deformation techniques. Letters on Materials, 2015, 5, 335-340.	0.7	3

#	Article	IF	CITATIONS
919	Microstructural Evolution and Tensile Testing of a Bi–Sn (57/43) Alloy Processed by Tube High-Pressure Shearing. Crystals, 2021, 11, 1229.	2.2	3
920	Achieving an excellent combination of strength and plasticity in a low carbon steel through dynamic plastic deformation and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143051.	5.6	3
921	Achieving Superplastic Elongations in an AZ80 Magnesium Alloy Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2022, 24, .	3.5	3
922	Examination of fracture surfaces of SiC whisker-reinforced alumina after high temperature creep deformation. Journal of Materials Science Letters, 1995, 14, 188-189.	0.5	2
923	Characteristics of grain boundary migration and sliding during fatigue of high purity lead. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 222, 9-13.	5.6	2
924	Achieving Superplasticity and Superplastic Forming through Severe Plastic Deformation. Materials Research Society Symposia Proceedings, 2000, 634, 851.	0.1	2
925	Developing High Strain Rate Superplasticity in Aluminum Alloys. Materials Science Forum, 2005, 475-479, 2949-2954.	0.3	2
926	Effect of Microstructures on Tensile Properties of AZ31 Mg Alloy Processed by ECAP. Materials Science Forum, 2005, 488-489, 473-476.	0.3	2
927	Microstructures after Processing by Aging and ECAP for Al-Mg ₂ Si Alloys Containing Excess Si or Mg. Materials Science Forum, 2005, 475-479, 4047-4050.	0.3	2
928	Flow Mechanisms in Creep of an AZ 91 Magnesium-based Composite. , 2006, , 246-251.		2
929	Microstructural Evolution of a Mg-8 mass%Li Alloy Processed by ECAP during Superplastic Deformation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 775-779.	0.4	2
930	Superplastic Deformation of a Mg-8% Li Alloy Processed at Room Temperature by ECAP. Materials Science Forum, 2007, 539-543, 2940-2946.	0.3	2
931	Factors Influencing Ductility in Ultrafine-Grained Metals Processed by Equal-Channel Angular Pressing. Materials Science Forum, 0, 633-634, 341-352.	0.3	2
932	Grain Size Effect on Deformation Twinning and De-Twinning in a Nanocrystalline Ni-Fe Alloy. Materials Science Forum, 2010, 667-669, 181-186.	0.3	2
933	Preface to the special issue on ultrafine-grained materials. Journal of Materials Science, 2012, 47, 7717-7718.	3.7	2
934	The characteristics of two-phase Al-Cu and Zn-Al alloys processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012106.	0.6	2
935	Evolution of hardness, microstructure, and strain rate sensitivity in a Zn-22% Al eutectoid alloy processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012101.	0.6	2
936	Factors Influencing the Shearing Patterns in High-Pressure Torsion. Materials Science Forum, 0, 783-786, 45-50.	0.3	2

#	Article	IF	CITATIONS
937	An X-ray absorption spectroscopy investigation of the local atomic structure in Cu–Ni–Si alloy after severe plastic deformation and ageing. Philosophical Magazine, 2015, 95, 2482-2490.	1.6	2
938	Description of the Superplastic Flow Process by Deformation Mechanism Maps in Ultrafine-Grained Materials. Materials Science Forum, 2016, 838-839, 51-58.	0.3	2
939	Studies on the Superplasticity Effect in UFA: History and Development (In Memory of Prof. O.A.) Tj ETQq1 1 0.78	4314 rgB1 3.3	-/Qverlock 1(
940	Micro-Scale Mechanical Behavior of Ultrafine-Grained Materials Processed by High-Pressure Torsion. Materials Science Forum, 2018, 941, 1495-1500.	0.3	2
941	Microstructure and Microhardness Evolution in Pure Molybdenum Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1901022.	3.5	2
942	Ultrafineâ€Grained Metallic Materials and Coatings. Advanced Engineering Materials, 2020, 22, 2001012.	3.5	2
943	Thermal Stability of Ultrafine-Grained Pure Titanium Processed by High-Pressure Torsion. Materials Science Forum, 0, 1016, 338-344.	0.3	2
944	An examination of strain weakening and self-annealing in a Bi-Sn alloy processed by high-pressure torsion. Materials Letters, 2021, 301, 130321.	2.6	2
945	Stability of microstructure in silver processed by severe plastic deformation. International Journal of Materials Research, 2009, 100, 884-887.	0.3	2
946	Structural Evolution and Deformation in an Aluminum-Based Solid Solution Alloy with Submicron Grain Size. Materials Research Society Symposia Proceedings, 1993, 319, 293.	0.1	1
947	Mechanical properties and microstructure of 6061 aluminum alloy matrix composite reinforced with alumina microspheres Keikinzoku/Journal of Japan Institute of Light Metals, 1994, 44, 286-291.	0.4	1
948	Creep Behavior of a Superplastic Y-TZP/Al2O3 Composite: An Examination of the Possibility for Diffusion Creep. Materials Research Society Symposia Proceedings, 1999, 601, 111.	0.1	1
949	Processing and Properties of Bulk Ultrafine-Grained Materials Produced through Severe Plastic Deformation. Solid State Phenomena, 2003, 94, 3-12.	0.3	1
950	Superplasticity of a Cu-Zn-Sn Alloy Processed by Equal-Channel Angular Pressing. Materials Science Forum, 2004, 447-448, 483-488.	0.3	1
951	Grain Refinement and Microstructural Evolution in Nickel during High-Pressure Torsion. , 2005, , 387-392.		1
952	Mechanical Properties of a Spray-Cast Aluminum Alloy Processed by Severe Plastic Deformation. Materials Science Forum, 2007, 539-543, 141-148.	0.3	1
953	The Processing of Ultrafine-Grained Materials Using High-Pressure Torsion. Materials Science Forum, 2007, 558-559, 1283-1294.	0.3	1
954	Mechanical Properties of Al-6061 and an Al-6061 Metal Matrix Composite Processed by High-Pressure Torsion. Materials Science Forum, 2010, 667-669, 689-694.	0.3	1

#	Article	IF	CITATIONS
955	Unique Features of Ultrafine-Grained Microstructures in Materials Having Low Stacking Fault Energy. Materials Science Forum, 2010, 659, 171-176.	0.3	1
956	Developing the Technique of Severe Plastic Deformation Processing through High-Pressure Torsion. Materials Science Forum, 2010, 667-669, 397-402.	0.3	1
957	Effect of a Special ECAP Die Configuration on Microhardness Distributions in Pure Aluminum. Materials Science Forum, 2010, 667-669, 69-74.	0.3	1
958	Application of High-Pressure Torsion to Al-Si Alloys with and without Scandium Additions. Materials Science Forum, 2010, 667-669, 743-748.	0.3	1
959	THE PROPERTIES OF BULK ULTRAFINE-GRAINED METALS PROCESSED THROUGH THE APPLICATION OF SEVERE PLASTIC DEFORMATION. International Journal of Modern Physics Conference Series, 2012, 05, 299-306.	0.7	1
960	Evaluating the Flow Properties of Ultrafine-Grained Materials. Advanced Materials Research, 0, 829, 3-9.	0.3	1
961	Development of Homogeneity in an Al-6061 Alloy Processed by ECAP and ECAP-Conform. Materials Science Forum, 0, 783-786, 294-299.	0.3	1
962	Developing ultrafine-grained materials with high strength and good ductility for micro-forming applications. MATEC Web of Conferences, 2015, 21, 07002.	0.2	1
963	Recovery or Non-Recovery in Al-0.1% Mg and Al-1% Mg Alloy during High-Pressure Torsion Processing. Materials Science Forum, 2016, 879, 773-778.	0.3	1
964	Resolving the Strength-Ductility Paradox through Severe Plastic Deformation of a Cast Al-7% Si Alloy. Materials Science Forum, 0, 879, 1043-1048.	0.3	1
965	Micro-Mechanical Responses of Ultrafine-Grained Materials Processed through High-Pressure Torsion. Materials Science Forum, 2016, 879, 42-47.	0.3	1
966	Mechanical Properties and Microstructural Behavior of a Metal Matrix Composite Processed by Severe Plastic Deformation Techniques. MRS Advances, 2016, 1, 3865-3870.	0.9	1
967	Applying Conventional Creep Mechanisms to Ultrafine-Grained Materials. Minerals, Metals and Materials Series, 2017, , 117-131.	0.4	1
968	Effect of equal-channel angular pressing on the mechanical behavior of a Bi-Sn eutectic alloy. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012042.	0.6	1
969	Effect of high-pressure torsion on the microstructural evolution and mechanical properties of an Fe-10Ni-7Mn (wt. %) lath martensitic steel. AIP Conference Proceedings, 2018, , .	0.4	1
970	The Stability of Oxygenâ€Free Copper Processed by Highâ€Pressure Torsion after Room Temperature Storage for 12 Months. Advanced Engineering Materials, 2020, 22, 1901015.	3.5	1
971	Achieving Superplasticity in Fine-Grained Al-Mg-Sc Alloys. Materials Science Forum, 0, 1016, 11-17.	0.3	1
972	Recent Developments in the Processing of Advanced Materials Using Severe Plastic Deformation. Materials Science Forum, 0, 1016, 3-8.	0.3	1

#	Article	IF	CITATIONS
973	Hardness Development of Mechanically-Bonded Hybrid Nanostructured Alloys through High-Pressure Torsion. Materials Science Forum, 0, 1016, 177-182.	0.3	1
974	The 7th International Conference on Nanomaterials by Severe Plastic Deformation: a report of the International NanoSPD Steering Committee. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012001.	0.6	1
975	Severe plastic deformation. Series in Materials Science and Engineering, 2004, , .	0.1	1
976	Achieving superplasticity through severe plastic deformation. Letters on Materials, 2015, 5, 233-239.	0.7	1
977	Achieving superplasticity in a Bi-Sn alloy processed by high-pressure torsion. Letters on Materials, 2015, 5, 301-305.	0.7	1
978	An evaluation of high temperature tensile properties for a magnesium AZ31 alloy processed by high-pressure torsion. Letters on Materials, 2015, 5, 341-346.	0.7	1
979	Macroscopic and Microscopic Descriptions of the Plastic Deformation of Fcc Metals over a Wide Range of Strain and Temperature. Acta Physica Polonica A, 2012, 122, 630-633.	0.5	1
980	Numerical Investigation of Plastic Strain Homogeneity during Equal-Channel Angular Pressing of a Cu-Zr Alloy. Crystals, 2021, 11, 1505.	2.2	1
981	Discussion: "A Constitutive Equation for High-Temperature Flow―(Paton, N., 1975, ASME J. Eng. Mater.) Tj E 1976, 98, 190-190.	TQq1 1 0 1.4	0.784314 rg
982	A Quantitative Study of Cavity Evolution in An Al-Cu-Zr Alloy. Materials Research Society Symposia Proceedings, 1990, 196, 215.	0.1	0
983	A New Analytical Procedure for the Identification of High Temperature Deformation Mechanisms Using the Strain Rate Change Test. Materials Transactions, JIM, 1991, 32, 339-344.	0.9	0
984	Miniaturized Double-Shear Testing Procedure for Evaluation of High Temperature Deformation in Al and Al–Mg Solid Solution Alloy. Materials Transactions, JIM, 1996, 37, 349-352.	0.9	0
985	An Investigation of the Role of Processing in the High Temperature Creep of Whisker-Reinforced Alumina Composites. Materials and Manufacturing Processes, 1996, 11, 589-604.	4.7	Ο
986	Creep Behavior of Ceramics and Geological Materials at Low Stress Levels. Key Engineering Materials, 1999, 166, 81-86.	0.4	0
987	A Discussion of Flow Mechanisms in Superplastic Yttria-Stabilized Tetragonal Zirconia. Materials Research Society Symposia Proceedings, 1999, 601, 105.	0.1	0
988	An Examination of the Deformation Process in Equal-Channel Angular Pressing. Materials Research Society Symposia Proceedings, 1999, 601, 347.	0.1	0
989	Superplastic Properties of an Aluminum-Based Alloy After Equal-Channel Angular Pressing. Materials Research Society Symposia Proceedings, 1999, 601, 353.	0.1	0
990	Processing by Equal-Channel Angular Pressing: Potential for Achieving Superplasticity. Materials Research Society Symposia Proceedings, 1999, 601, 365.	0.1	0

#	Article	IF	CITATIONS
991	Microstructure and Properties of a Low Carbon Steel after Equal Channel Angular Pressing. , 2005, , 829-834.		0
992	Microstructural Evolution in the Processing of Bulk Samples Using High-Pressure Torsion. Materials Science Forum, 2007, 539-543, 80-85.	0.3	0
993	Extending Creep and Superplasticity to Materials with Submicrometer Grain Sizes. Key Engineering Materials, 2007, 345-346, 539-544.	0.4	0
994	Decomposition of Nanostructured Martensite in Cu-Al Alloys Processed by High-Pressure Torsion. Materials Science Forum, 2010, 667-669, 469-474.	0.3	0
995	Mechanical Characteristics of Zn-22% Al and Al-3% Mg Alloys Processed to High Strains by ECAP. Materials Science Forum, 2010, 667-669, 695-700.	0.3	0
996	Developing Hardness and Microstructural Homogeneity in High-Pressure Torsion. Materials Science Forum, 0, 706-709, 1805-1810.	0.3	0
997	Recrystallization and Grain Growth due to Annealing of an Ultrafine-Grained Al Alloy. Materials Science Forum, 2013, 753, 303-306.	0.3	0
998	The Flow Behavior of Ultrafine-Grained Materials. Advanced Materials Research, 0, 1013, 7-14.	0.3	0
999	Investigating Anvil Alignment and Anvil Roughness on Flow Pattern Development in High-Pressure Torsion. Materials Research Society Symposia Proceedings, 2016, 1818, 1.	0.1	0
1000	Mechanical Behavior of a Metal Matrix Nanocomposite Synthesized by High-Pressure Torsion via Diffusion Bonding. Materials Science Forum, 2016, 879, 1068-1073.	0.3	0
1001	Developments in Processing by Severe Plastic Deformation at the 3rd Pan American Materials Congress. Jom, 2017, 69, 2022-2023.	1.9	0
1002	Microstructure evolution of Al-7wt%Si-2wt%Fe alloy processed by high-pressure torsion. MATEC Web of Conferences, 2018, 192, 02068.	0.2	0
1003	Effect of Different Initial Lamellar Plate Thicknesses on Grain Refinement and Superplastic Behaviour in HPT-Processed Ti-6Al-4V Alloy. Defect and Diffusion Forum, 0, 385, 182-188.	0.4	0
1004	Thirty years of collaboration and research from 1989 to 2019: a tribute to Ruslan Z. Valiev. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012001.	0.6	0
1005	An Investigation of Strainâ€Softening Phenomenon in Al–0.1% Mg Alloy during Highâ€Pressure Torsion Processing. Advanced Engineering Materials, 2020, 22, 1901578.	3.5	0
1006	The mechanics and physics of gradient nanomaterials: Dedicated to the memory of Alexander Zhilyaev (1959–2020). Materials Letters, 2021, 302, 130369.	2.6	0
1007	The Influence of HPT on Microstructure and Wear Resistance of Al-7wt%Si-2wt%Fe Alloy. Materials Science Forum, 0, 1016, 1618-1623.	0.3	0
1008	New Developments in the Processing of Bulk Nanoscale Metals Using High-Pressure Torsion. Nanoscience and Nanotechnology Letters, 2010, 2, 303-307.	0.4	0

#	Article	IF	CITATIONS
1009	Enhanced Mechanical Properties of Nanostructured Metals Produced by SPD Techniques. , 2011, , 31-59.		0
1010	Recent Advances in the Processing and Properties of Ultrafine-Grained Metals Prepared Using Severe Plastic Deformation. Advanced Structured Materials, 2013, , 241-250.	0.5	0
1011	The Deformation Characteristics of Pure Aluminum Processed by Equal-Channel Angular Pressing. , 2006, , 201-208.		0
1012	Closure to "Discussion of †Deformation Mechanism Maps: Their Use in Predicting Creep Behavior'― (1976, ASME J. Eng. Mater. Technol., 98, p. 130). Journal of Engineering Materials and Technology, Transactions of the ASME, 1976, 98, 130-131.	1.4	0