Matthias C Rillig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tire wear particles: An emerging threat to soil health. Critical Reviews in Environmental Science and Technology, 2023, 53, 239-257.	12.8	37
2	Effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on soil structure and function. Soil Ecology Letters, 2023, 5, 108-117.	4.5	9
3	Functional, not Taxonomic, Composition of Soil Fungi Reestablishes to Pre-mining Initial State After 52 Years of Recultivation. Microbial Ecology, 2023, 86, 213-223.	2.8	4
4	Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecology Letters, 2022, 4, 32-44.	4.5	49
5	Research trends of microplastics in the soil environment: Comprehensive screening of effects. Soil Ecology Letters, 2022, 4, 109-118.	4.5	19
6	Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling. Soil Ecology Letters, 2022, 4, 409-415.	4.5	28
7	Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. ISME Journal, 2022, 16, 521-532.	9.8	148
8	Community response of arbuscular mycorrhizal fungi to extreme drought in a coldâ€ŧemperate grassland. New Phytologist, 2022, 234, 2003-2017.	7.3	35
9	Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity?. New Phytologist, 2022, 233, 1022-1031.	7.3	35
10	Similarity of anthropogenic stressors is multifaceted and scale dependent. Natural Sciences, 2022, 2, .	2.1	10
11	Effects of microplastics on crop nutrition in fertile soils and interaction with arbuscular mycorrhizal fungi. , 2022, 1, 66-72.		10
12	Diversity of archaea and niche preferences among putative ammoniaâ€oxidizing Nitrososphaeria dominating across European arable soils. Environmental Microbiology, 2022, 24, 341-356.	3.8	15
13	Evolutionary betâ€hedging in arbuscular mycorrhizaâ€associating angiosperms. New Phytologist, 2022, 233, 1984-1987.	7.3	14
14	Network traits predict ecological strategies in fungi. ISME Communications, 2022, 2, .	4.2	18
15	Soil conditions drive belowâ€ground trait space in temperate agricultural grasslands. Journal of Ecology, 2022, 110, 1189-1200.	4.0	5
16	Opportunities and Risks of the "Metaverse―For Biodiversity and the Environment. Environmental Science & Technology, 2022, 56, 4721-4723.	10.0	18
17	Polyester microplastic fibers in soil increase nitrogen loss via leaching and decrease plant biomass production and N uptake. Environmental Research Letters, 2022, 17, 054012.	5.2	41
18	Arbuscular Mycorrhiza Reduced Nitrogen Loss via Runoff, Leaching, and Emission of N2O and NH3 from Microcosms of Paddy Fields. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	0

#	Article	IF	CITATIONS
19	Non-Mycorrhizal Fungal Presence Within Roots Increases Across an Urban Gradient in Berlin, Germany. Frontiers in Environmental Science, 2022, 10, .	3.3	1
20	Soil fungi invest into asexual sporulation under resource scarcity, but trait spaces of individual isolates are unique. Environmental Microbiology, 2022, 24, 2962-2978.	3.8	6
21	Precipitation and temperature shape the biogeography of arbuscular mycorrhizal fungi across the Brazilian Caatinga. Journal of Biogeography, 2022, 49, 1137-1150.	3.0	3
22	Concentrationâ€dependent response of soil parameters and functions to trifluoroacetic acid. European Journal of Soil Science, 2022, 73, .	3.9	3
23	Drought legacy effects on root morphological traits and plant biomass via soil biota feedback. New Phytologist, 2022, 236, 222-234.	7.3	12
24	Broaden chemicals scope in biodiversity targets. Science, 2022, 376, 1280-1280.	12.6	10
25	Proximal and distal mechanisms through which arbuscular mycorrhizal associations alter terrestrial denitrification. Plant and Soil, 2022, 476, 315-336.	3.7	7
26	Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type. Soil, 2022, 8, 421-435.	4.9	21
27	Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts. Nature Ecology and Evolution, 2022, 6, 1145-1154.	7.8	54
28	Soil biodiversity enhances the persistence of legumes under climate change. New Phytologist, 2021, 229, 2945-2956.	7.3	28
29	Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters, 2021, 24, 208-218.	6.4	41
30	Below―and aboveground traits explain local abundance, and regional, continental and global occurrence frequencies of grassland plants. Oikos, 2021, 130, 110-120.	2.7	15
31	Impact of high carbon amendments and pre-crops on soil bacterial communities. Biology and Fertility of Soils, 2021, 57, 305-317.	4.3	4
32	Mycorrhizal suppression and phosphorus addition influence the stability of plant community composition and function in a temperate steppe. Oikos, 2021, 130, 354-365.	2.7	6
33	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
34	Tracking, targeting, and conserving soil biodiversity. Science, 2021, 371, 239-241.	12.6	151
35	Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology, 2021, 58, 988-996.	4.0	124
36	Ten simple rules for hosting artists in a scientific lab. PLoS Computational Biology, 2021, 17, e1008675.	3.2	16

#	Article	IF	CITATIONS
37	Stress priming affects fungal competition ―evidence from a combined experimental and modelling study. Environmental Microbiology, 2021, 23, 5934-5945.	3.8	5
38	Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi. Frontiers in Plant Science, 2021, 12, 626709.	3.6	41
39	Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Frontiers in Plant Science, 2021, 12, 616645.	3.6	244
40	The Global Plastic Toxicity Debt. Environmental Science & amp; Technology, 2021, 55, 2717-2719.	10.0	72
41	Microplastic fibers affect dynamics and intensity of CO2 and N2O fluxes from soil differently. Microplastics and Nanoplastics, 2021, 1, .	8.8	51
42	Classifying human influences on terrestrial ecosystems. Global Change Biology, 2021, 27, 2273-2278.	9.5	37
43	Microplastic effects on carbon cycling processes in soils. PLoS Biology, 2021, 19, e3001130.	5.6	220
44	Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent. Frontiers in Environmental Science, 2021, 9, .	3.3	65
45	Fungus–bacterium associations are widespread in fungal cultures isolated from a semi-arid natural grassland in Germany. FEMS Microbiology Ecology, 2021, 97, .	2.7	2
46	Indirect Effects of Microplastic-Contaminated Soils on Adjacent Soil Layers: Vertical Changes in Soil Physical Structure and Water Flow. Frontiers in Environmental Science, 2021, 9, .	3.3	19
47	Global Plastic Pollution Observation System to Aid Policy. Environmental Science & Technology, 2021, 55, 7770-7775.	10.0	59
48	Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss – an experimental and meta-analytical approach. Microplastics and Nanoplastics, 2021, 1, .	8.8	53
49	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	5.3	29
50	Plant and soil biodiversity have nonâ€substitutable stabilising effects on biomass production. Ecology Letters, 2021, 24, 1582-1593.	6.4	43
51	Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Frontiers in Environmental Science, 2021, 9, .	3.3	143
52	Legacy effects of preâ€crop plant functional group on fungal root symbionts of barley. Ecological Applications, 2021, 31, e02378.	3.8	6
53	Soil biota shift with land use change from pristine rainforest and Savannah (Cerrado) to agriculture in southern Amazonia. Molecular Ecology, 2021, 30, 4899-4912.	3.9	10
54	Largeâ€scale drivers of relationships between soil microbial properties and organic carbon across Europe. Global Ecology and Biogeography, 2021, 30, 2070-2083.	5.8	32

#	Article	IF	CITATIONS
55	Microbial self-recycling and biospherics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2113148118.	7.1	0
56	Mechanisms underpinning nonadditivity of global change factor effects in the plant–soil system. New Phytologist, 2021, 232, 1535-1539.	7.3	19
57	Time-Dependent Toxicity of Tire Particles on Soil Nematodes. Frontiers in Environmental Science, 2021, 9, .	3.3	12
58	Scientists need to better communicate the links between pandemics and global environmental change. Nature Ecology and Evolution, 2021, 5, 1466-1467.	7.8	9
59	Drought induces shifts in soil fungal communities that can be linked to root traits across 24 plant species. New Phytologist, 2021, 232, 1917-1929.	7.3	35
60	Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2021, 2, 28-37.	14.0	120
61	Fungal response to abruptly or gradually delivered antifungal agent amphotericin B is growth stage dependent. Environmental Microbiology, 2021, 23, 7701-7709.	3.8	2
62	Mycorrhizal technologies for an agriculture of the middle. Plants People Planet, 2021, 3, 454-461.	3.3	6
63	Local stability properties of complex, speciesâ€rich soil food webs with functional block structure. Ecology and Evolution, 2021, 11, 16070-16081.	1.9	11
64	Soil Physico-Chemical Properties Change Across an Urbanity Gradient in Berlin. Frontiers in Environmental Science, 2021, 9, .	3.3	4
65	Science-informed salmon conservation strategies. Science, 2021, 374, 700-700.	12.6	1
66	Microplastics Reduce the Negative Effects of Litter-Derived Plant Secondary Metabolites on Nematodes in Soil. Frontiers in Environmental Science, 2021, 9, .	3.3	10
67	Machine learning with the hierarchyâ€ofâ€hypotheses (HoH) approach discovers novel pattern in studies on biological invasions. Research Synthesis Methods, 2020, 11, 66-73.	8.7	9
68	Towards an integrative understanding of soil biodiversity. Biological Reviews, 2020, 95, 350-364.	10.4	97
69	Response to the Editor: Assessing the robustness of communities and ecosystems in global change research. Clobal Change Biology, 2020, 26, e4-e5.	9.5	3
70	Arbuscular mycorrhiza contributes to the control of phosphorus loss in paddy fields. Plant and Soil, 2020, 447, 623-636.	3.7	22
71	Arbuscular mycorrhiza has little influence on N2O potential emissions compared to plant diversity in experimental plant communities. FEMS Microbiology Ecology, 2020, 96, .	2.7	9
72	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038

#	Article	IF	CITATIONS
73	Neighbours of arbuscularâ€mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands. New Phytologist, 2020, 227, 10-13.	7.3	17
74	Effects of Different Microplastics on Nematodes in the Soil Environment: Tracking the Extractable Additives Using an Ecotoxicological Approach. Environmental Science & Technology, 2020, 54, 13868-13878.	10.0	118
75	Plastic and plants. Nature Sustainability, 2020, 3, 887-888.	23.7	40
76	Growth rate trades off with enzymatic investment in soil filamentous fungi. Scientific Reports, 2020, 10, 11013.	3.3	19
77	Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology, 2020, 34, 2224-2235.	3.6	65
78	Rate of environmental change across scales in ecology. Biological Reviews, 2020, 95, 1798-1811.	10.4	26
79	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
80	Definition of Core Bacterial Taxa in Different Root Compartments of Dactylis glomerata, Grown in Soil under Different Levels of Land Use Intensity. Diversity, 2020, 12, 392.	1.7	7
81	The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1, 544-553.	29.7	486
82	Excluding arbuscular mycorrhiza lowers variability in soil respiration but slows down recovery from perturbations. Ecosphere, 2020, 11, e03308.	2.2	1
83	Moderate phosphorus additions consistently affect community composition of arbuscular mycorrhizal fungi in tropical montane forests in southern Ecuador. New Phytologist, 2020, 227, 1505-1518.	7.3	27
84	Clear Language for Ecosystem Management in the Anthropocene: A Reply to Bridgewater and Hemming. BioScience, 2020, 70, 374-376.	4.9	2
85	SMART Research: Toward Interdisciplinary River Science in Europe. Frontiers in Environmental Science, 2020, 8, .	3.3	6
86	Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability. Frontiers in Plant Science, 2020, 11, 760.	3.6	23
87	Mimicking climate warming effects on Alaskan soil microbial communities via gradual temperature increase. Scientific Reports, 2020, 10, 8533.	3.3	9
88	Traitâ€based approaches reveal fungal adaptations to nutrientâ€limiting conditions. Environmental Microbiology, 2020, 22, 3548-3560.	3.8	18
89	Soil Saprobic Fungi Differ in Their Response to Gradually and Abruptly Delivered Copper. Frontiers in Microbiology, 2020, 11, 1195.	3.5	7
90	Microplastic Research Should Embrace the Complexity of Secondary Particles. Environmental Science & amp; Technology, 2020, 54, 7751-7753.	10.0	68

#	Article	IF	CITATIONS
91	Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges. New Phytologist, 2020, 227, 1610-1614.	7.3	13
92	Suitability of Mycorrhiza-Defective Rice and Its Progenitor for Studies on the Control of Nitrogen Loss in Paddy Fields via Arbuscular Mycorrhiza. Frontiers in Microbiology, 2020, 11, 186.	3.5	6
93	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6, .	10.3	377
94	Microplastic in terrestrial ecosystems. Science, 2020, 368, 1430-1431.	12.6	549
95	Movementâ€mediated community assembly and coexistence. Biological Reviews, 2020, 95, 1073-1096.	10.4	62
96	Effects of Microplastic Fibers and Drought on Plant Communities. Environmental Science & Technology, 2020, 54, 6166-6173.	10.0	244
97	Global ecosystem thresholds driven by aridity. Science, 2020, 367, 787-790.	12.6	526
98	Ten simple rules for increased lab resilience. PLoS Computational Biology, 2020, 16, e1008313.	3.2	5
99	Diversity of Growth Responses of Soil Saprobic Fungi to Recurring Heat Events. Frontiers in Microbiology, 2020, 11, 1326.	3.5	7
100	Protists and collembolans alter microbial community composition, CÂdynamics and soil aggregation in simplified consumer–prey systems. Biogeosciences, 2020, 17, 4961-4980.	3.3	16
101	The artist who co-authored a paper and expanded my professional network. Nature, 2020, , .	27.8	2
102	Research experience modifies how participants profit from journal clubs in academia. Journal of Biological Education, 2019, 53, 327-332.	1.5	1
103	Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. Journal of Applied Ecology, 2019, 56, 168-179.	4.0	42
104	Biogeographical constraints in Glomeromycotinan distribution across forest habitats in China. Journal of Ecology, 2019, 107, 684-695.	4.0	10
105	Sounds of Soil: A New World of Interactions under Our Feet?. Soil Systems, 2019, 3, 45.	2.6	27
106	The relative importance of ecological drivers of arbuscular mycorrhizal fungal distribution varies with taxon phylogenetic resolution. New Phytologist, 2019, 224, 936-948.	7.3	17
107	Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria:) Tj ETQq1 1 0.784314	1 rgBT /Ov	erlock 10 Tf
108	Shaping Up: Toward Considering the Shape and Form of Pollutants. Environmental Science & amp;	10.0	58

Technology, 2019, 53, 7925-7926.

10.0 58

#	Article	IF	CITATIONS
109	Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Scientific Reports, 2019, 9, 14152.	3.3	22
110	Collembola laterally move biochar particles. PLoS ONE, 2019, 14, e0224179.	2.5	6
111	The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 2019, 366, 886-890.	12.6	437
112	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	12.6	248
113	Increasing Temperature and Microplastic Fibers Jointly Influence Soil Aggregation by Saprobic Fungi. Frontiers in Microbiology, 2019, 10, 2018.	3.5	60
114	Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change. BioScience, 2019, 69, 888-899.	4.9	55
115	Testing Contrast Agents to Improve Micro Computerized Tomography (μCT) for Spatial Location of Organic Matter and Biological Material in Soil. Frontiers in Environmental Science, 2019, 7, .	3.3	13
116	Microbial biospherics: The experimental study of ecosystem function and evolution. Proceedings of the United States of America, 2019, 116, 11093-11098.	7.1	16
117	Latitudinal constraints in responsiveness of plants to arbuscular mycorrhiza: the â€~sunâ€worshipper' hypothesis. New Phytologist, 2019, 224, 552-556.	7.3	12
118	Basic Principles of Temporal Dynamics. Trends in Ecology and Evolution, 2019, 34, 723-733.	8.7	107
119	Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet?. Frontiers in Microbiology, 2019, 10, 744.	3.5	63
120	Abiotic and Biotic Factors Influencing the Effect of Microplastic on Soil Aggregation. Soil Systems, 2019, 3, 21.	2.6	89
121	Expanding the toolbox of nutrient limitation studies: A novel method of soil microbial inâ€growth bags to evaluate nutrient demands in tropical forests. Functional Ecology, 2019, 33, 1536-1548.	3.6	5
122	Microplastics Can Change Soil Properties and Affect Plant Performance. Environmental Science & Technology, 2019, 53, 6044-6052.	10.0	995
123	Microplastic effects on plants. New Phytologist, 2019, 223, 1066-1070.	7.3	460
124	Distinct communities of Cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiology Ecology, 2019, 95, .	2.7	21
125	Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME Journal, 2019, 13, 1639-1646.	9.8	91
126	Exploring the agricultural parameter space for crop yield and sustainability. New Phytologist, 2019, 223, 517-519.	7.3	10

8

#	Article	IF	CITATIONS
127	The role of active movement in fungal ecology and community assembly. Movement Ecology, 2019, 7, 36.	2.8	18
128	Evolutionary implications of microplastics for soil biota. Environmental Chemistry, 2019, 16, 3.	1.5	114
129	Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi. ISME Journal, 2019, 13, 873-884.	9.8	43
130	Arbuscular Mycorrhizal Fungi Alter the Community Structure of Ammonia Oxidizers at High Fertility via Competition for Soil NH4+. Microbial Ecology, 2019, 78, 147-158.	2.8	35
131	Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biology and Biochemistry, 2019, 131, 100-110.	8.8	71
132	Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist, 2019, 222, 1171-1175.	7.3	164
133	Do soil bacterial communities respond differently to abrupt or gradual additions of copper?. FEMS Microbiology Ecology, 2019, 95, .	2.7	5
134	Arbuscular mycorrhizal fungi increase grain yields: a metaâ€analysis. New Phytologist, 2019, 222, 543-555.	7.3	187
135	Fungal Traits Important for Soil Aggregation. Frontiers in Microbiology, 2019, 10, 2904.	3.5	77
136	Arbuscular mycorrhizal fungal and soil microbial communities in African Dark Earths. FEMS Microbiology Ecology, 2018, 94, .	2.7	7
137	Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits. Journal of Ecology, 2018, 106, 852-864.	4.0	36
138	Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 2018, 220, 1059-1075.	7.3	288
139	Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytologist, 2018, 218, 322-334.	7.3	116
140	Assessing soil ecosystem processes – biodiversity relationships in a nature reserve in Central Europe. Plant and Soil, 2018, 424, 491-501.	3.7	3
141	Application of the microbial community coalescence concept to riverine networks. Biological Reviews, 2018, 93, 1832-1845.	10.4	92
142	Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 2018, 88, 4-21.	5.4	261
143	Do fungi need salt licks? No evidence for fungal contribution to the Sodium Ecosystem Respiration Hypothesis based on lab and field experiments in Southern Ecuador. Fungal Ecology, 2018, 32, 18-28.	1.6	2
144	Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 2018, 24, 1405-1416.	9.5	1,303

#	Article	IF	CITATIONS
145	Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.	4.5	9
146	Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil. Soil Biology and Biochemistry, 2018, 117, 83-86.	8.8	38
147	Soil Biodiversity Effects from Field to Fork. Trends in Plant Science, 2018, 23, 17-24.	8.8	44
148	Predictors of Arbuscular Mycorrhizal Fungal Communities in the Brazilian Tropical Dry Forest. Microbial Ecology, 2018, 75, 447-458.	2.8	22
149	Fungal Decision to Exploit or Explore Depends on Growth Rate. Microbial Ecology, 2018, 75, 289-292.	2.8	14
150	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
151	How Soil Biota Drive Ecosystem Stability. Trends in Plant Science, 2018, 23, 1057-1067.	8.8	145
152	Microplastic Disguising As Soil Carbon Storage. Environmental Science & Technology, 2018, 52, 6079-6080.	10.0	249
153	Impacts of Microplastics on the Soil Biophysical Environment. Environmental Science & Technology, 2018, 52, 9656-9665.	10.0	930
154	Evidence for Subsoil Specialization in Arbuscular Mycorrhizal Fungi. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	14
155	Responsiveness of plants to mycorrhiza regulates coexistence. Journal of Ecology, 2018, 106, 1864-1875.	4.0	26
156	Microplastic and soil protists: A call for research. Environmental Pollution, 2018, 241, 1128-1131.	7.5	147
157	Plant diversity maintains multiple soil functions in future environments. ELife, 2018, 7, .	6.0	54
158	Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests. Ecology and Evolution, 2017, 7, 1181-1189.	1.9	24
159	Where less may be more: how the rare biosphere pulls ecosystems strings. ISME Journal, 2017, 11, 853-862.	9.8	857
160	Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence?. ISME Journal, 2017, 11, 1400-1411.	9.8	78
161	Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 2017, 110, 12-21.	8.8	202
162	Soil aggregates as massively concurrent evolutionary incubators. ISME Journal, 2017, 11, 1943-1948.	9.8	206

#	Article	IF	CITATIONS
163	Specialist nectar-yeasts decline with urbanization in Berlin. Scientific Reports, 2017, 7, 45315.	3.3	12
164	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	1.2	64
165	Microplastic transport in soil by earthworms. Scientific Reports, 2017, 7, 1362.	3.3	546
166	Transport of microplastics by two collembolan species. Environmental Pollution, 2017, 225, 456-459.	7.5	279
167	Mycorrhizas and Soil Aggregation. , 2017, , 241-262.		34
168	Soil biota contributions to soil aggregation. Nature Ecology and Evolution, 2017, 1, 1828-1835.	7.8	257
169	Environmental Filtering Is a Relic. A Response to Cadotte and Tucker. Trends in Ecology and Evolution, 2017, 32, 882-884.	8.7	17
170	Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytologist, 2017, 216, 1130-1139.	7.3	71
171	Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytologist, 2017, 216, 227-238.	7.3	66
172	Physical environmental controls on riparian root profiles associated with black poplar (<scp><i>Populus nigra</i></scp> L.) along the Tagliamento River, Italy. Earth Surface Processes and Landforms, 2017, 42, 1262-1273.	2,5	14
173	Succession of arbuscular mycorrhizal fungi along a 52-years agricultural recultivation chronosequence. FEMS Microbiology Ecology, 2017, 93, .	2.7	19
174	Microbial Ecology: Community Coalescence Stirs Things Up. Current Biology, 2017, 27, R1280-R1282.	3.9	25
175	Applying allometric theory to fungi. ISME Journal, 2017, 11, 2175-2180.	9.8	10
176	Underground riparian wood: Reconstructing the processes influencing buried stem and coarse root structures of Black Poplar (Populus nigra L.). Geomorphology, 2017, 279, 199-208.	2.6	15
177	Mycorrhizal status helps explain invasion success of alien plant species. Ecology, 2017, 98, 92-102.	3.2	77
178	Potential Environmental Impacts of an "Underground Revolution― A Response to Bender et al Trends in Ecology and Evolution, 2017, 32, 8-10.	8.7	18
179	Underground riparian wood: Buried stem and coarse root structures of Black Poplar (Populus nigra) Tj ETQq1 I	1 0.784314 2.6	rgBT /Overloc 19
180	Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere, 2017, 8, e01976.	2.2	92

#	Article	IF	CITATIONS
181	Solving the puzzle of yeast survival in ephemeral nectar systems: exponential growth is not enough. FEMS Microbiology Ecology, 2017, 93, .	2.7	15
182	The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L Frontiers in Plant Science, 2017, 8, 930.	3.6	57
183	Microplastic Incorporation into Soil in Agroecosystems. Frontiers in Plant Science, 2017, 8, 1805.	3.6	392
184	Increases in Soil Aggregation Following Phosphorus Additions in a Tropical Premontane Forest are Not Driven by Root and Arbuscular Mycorrhizal Fungal Abundances. Frontiers in Earth Science, 2016, 3, .	1.8	9
185	Microbial Community Coalescence for Microbiome Engineering. Frontiers in Microbiology, 2016, 7, 1967.	3.5	39
186	Towards an Integrated Mycorrhizal Technology: Harnessing Mycorrhiza for Sustainable Intensification in Agriculture. Frontiers in Plant Science, 2016, 7, 1625.	3.6	101
187	Resilience of Fungal Communities to Elevated CO2. Microbial Ecology, 2016, 72, 493-495.	2.8	13
188	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	10.4	388
189	The influence of sampled biomass on species–area relationships of grassland plants. New Phytologist, 2016, 211, 382-385.	7.3	1
190	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology, 2016, 8, 1048.	3.8	1
191	Relative Importance of Individual Climatic Drivers Shaping Arbuscular Mycorrhizal Fungal Communities. Microbial Ecology, 2016, 72, 418-427.	2.8	20
192	Temperature priming and memory in soil filamentous fungi. Fungal Ecology, 2016, 21, 10-15.	1.6	47
193	Soil microbes and community coalescence. Pedobiologia, 2016, 59, 37-40.	1.2	61
194	Spatial and niche-based ecological processes drive the distribution of endophytic Sebacinales in soil and root of grassland communities. FEMS Microbiology Ecology, 2016, 92, fiw079.	2.7	4
195	Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME Journal, 2016, 10, 2341-2351.	9.8	167
196	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
197	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology Reports, 2016, 8, 1048-1057.	2.4	66
198	The interplay between soil structure, roots, and microbiota as a determinant of plant–soil feedback. Ecology and Evolution, 2016, 6, 7633-7644.	1.9	46

#	Article	IF	CITATIONS
199	Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 2016, 283, 39-47.	5.1	68
200	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
201	Highâ€resolution community profiling of arbuscular mycorrhizal fungi. New Phytologist, 2016, 212, 780-791.	7.3	104
202	Effect of different root endophytic fungi on plant community structure in experimental microcosms. Ecology and Evolution, 2016, 6, 8149-8158.	1.9	30
203	Arbuscular mycorrhizal fungi negatively affect soil seed bank viability. Ecology and Evolution, 2016, 6, 7683-7689.	1.9	14
204	Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across <scp>E</scp> uropean <i><scp>P</scp>inus sylvestris</i> forests: relationships with climate, <scp>N</scp> deposition and tree growth. Functional Ecology, 2016, 30, 676-689.	3.6	99
205	Microbial stress priming: a metaâ€analysis. Environmental Microbiology, 2016, 18, 1277-1288.	3.8	49
206	Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 78-88.	2.7	30
207	Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biology and Biochemistry, 2016, 95, 11-18.	8.8	60
208	Soil substrates affect responses of root feeding larvae to their hosts at multiple levels: Orientation, locomotion and feeding. Basic and Applied Ecology, 2016, 17, 115-124.	2.7	9
209	Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology, 2016, 99, 137-140.	4.3	57
210	Do arbuscular mycorrhizal fungi stabilize litterâ€derived carbon in soil?. Journal of Ecology, 2016, 104, 261-269.	4.0	84
211	Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology and Biochemistry, 2016, 94, 37-47.	8.8	61
212	Selfâ€ <scp>DNA</scp> : a blessing in disguise?. New Phytologist, 2015, 207, 488-490.	7.3	16
213	Reconstructing the development of sampled sites on fluvial island surfaces of the Tagliamento River, Italy, from historical sources. Earth Surface Processes and Landforms, 2015, 40, 629-641.	2.5	8
214	Biodiversity research: data without theoryââ,¬â€ŧheory without data. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	13
215	Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 2015, 18, 834-843.	6.4	578
216	Evidence-Based Data Analysis: Protecting the World From Bad Code? Comment by Veresoglou and Rillig. American Statistician, 2015, 69, 257-257.	1.6	1

#	Article	IF	CITATIONS
217	Landâ€use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytologist, 2015, 205, 1577-1586.	7.3	111
218	Plant community assembly at small scales: Spatial vs. environmental factors in a European grassland. Acta Oecologica, 2015, 63, 56-62.	1.1	21
219	Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Applied Soil Ecology, 2015, 96, 114-121.	4.3	154
220	The evolution of mutualism from reciprocal parasitism: more ecological clothes for the Prisoner's Dilemma. Evolutionary Ecology, 2015, 29, 627-641.	1.2	9
221	Understanding mechanisms of soil biota involvement in soil aggregation: A way forward with saprobic fungi?. Soil Biology and Biochemistry, 2015, 88, 298-302.	8.8	81
222	Interchange of entire communities: microbial community coalescence. Trends in Ecology and Evolution, 2015, 30, 470-476.	8.7	210
223	Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 227-235.	2.7	35
224	Community priming—effects of sequential stressors on microbial assemblages. FEMS Microbiology Ecology, 2015, 91, .	2.7	35
225	Soil biota effects on local abundances of three grass species along a land-use gradient. Oecologia, 2015, 179, 249-259.	2.0	10
226	Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots. Journal of Chemical Ecology, 2015, 41, 253-266.	1.8	35
227	Functional role of microarthropods in soil aggregation. Pedobiologia, 2015, 58, 59-63.	1.2	76
228	Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biology Reviews, 2015, 29, 34-41.	4.7	118
229	Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biology and Biochemistry, 2015, 86, 1-4.	8.8	37
230	Environmental filtering vs. resource-based niche partitioning in diverse soil animal assemblages. Soil Biology and Biochemistry, 2015, 85, 145-152.	8.8	35
231	Above- and belowground linkages of a nitrogen and phosphorus co-limited tropical mountain pasture system – responses to nutrient enrichment. Plant and Soil, 2015, 391, 333-352.	3.7	27
232	Extinction risk of soil biota. Nature Communications, 2015, 6, 8862.	12.8	158
233	Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biology and Biochemistry, 2015, 81, 323-328.	8.8	144
234	Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biology and Biochemistry, 2015, 81, 147-158.	8.8	196

#	Article	IF	CITATIONS
235	Tree diversity modifies distanceâ€dependent effects on seedling emergence but not plant–soil feedbacks of temperate trees. Ecology, 2015, 96, 1529-1539.	3.2	10
236	Foliar elemental composition of <scp>E</scp> uropean forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecology and Biogeography, 2015, 24, 240-255.	5.8	100
237	Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist, 2015, 205, 1385-1388.	7.3	304
238	Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science, 2014, 177, 59-67.	1.9	67
239	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
240	Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecology and Evolution, 2014, 4, 4766-4774.	1.9	42
241	Sebacinales, but not total root associated fungal communities, are affected by landâ€use intensity. New Phytologist, 2014, 203, 1036-1040.	7.3	18
242	Exploring continentalâ€scale stand health – <scp>N</scp> Â:Â <scp>P</scp> ratio relationships for <scp>E</scp> uropean forests. New Phytologist, 2014, 202, 422-430.	7.3	30
243	Determinants of rootâ€associated fungal communities within <scp>A</scp> steraceae in a semiâ€arid grassland. Journal of Ecology, 2014, 102, 425-436.	4.0	62
244	Distinguishing variability from uncertainty. Nature Climate Change, 2014, 4, 153-153.	18.8	36
245	Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytologist, 2014, 204, 968-978.	7.3	157
246	Ecological understanding of root-infecting fungi using trait-based approaches. Trends in Plant Science, 2014, 19, 432-438.	8.8	68
247	The Leinster and Cobbold indices improve inferences about microbial diversity. Fungal Ecology, 2014, 11, 1-7.	1.6	15
248	Do closely related plants host similar arbuscular mycorrhizal fungal communities? A meta-analysis. Plant and Soil, 2014, 377, 395-406.	3.7	64
249	Interactive effects of root endophytes and arbuscular mycorrhizal fungi on an experimental plant community. Oecologia, 2014, 174, 263-270.	2.0	40
250	Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil, 2014, 374, 523-537.	3.7	270
251	Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 2014, 20, 3646-3659.	9.5	194
252	Arbuscular mycorrhizal influence on zinc nutrition in crop plants – A meta-analysis. Soil Biology and Biochemistry, 2014, 69, 123-131.	8.8	193

#	Article	IF	CITATIONS
253	Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, 2014, 177, 48-58.	1.9	125
254	Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecology, 2014, 12, 32-43.	1.6	41
255	Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology and Biochemistry, 2014, 78, 326-331.	8.8	37
256	Challenging cherished ideas in mycorrhizal ecology: the <scp>B</scp> aylis postulate. New Phytologist, 2014, 204, 1-3.	7.3	13
257	Rotation of hyphal in-growth cores has no confounding effects on soil abiotic properties. Soil Biology and Biochemistry, 2014, 79, 78-80.	8.8	14
258	A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology and Biochemistry, 2014, 77, 252-260.	8.8	184
259	Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. ISME Journal, 2014, 8, 2231-2242.	9.8	88
260	Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field. Soil Biology and Biochemistry, 2014, 78, 76-82.	8.8	43
261	Soil hyphaâ€mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Functional Ecology, 2014, 28, 1020-1029.	3.6	36
262	Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 2014, 4, 3514-3524.	1.9	697
263	Just a matter of time: Fungi and roots significantly and rapidly aggregate soil over four decades along the Tagliamento River, NE Italy. Soil Biology and Biochemistry, 2014, 75, 133-142.	8.8	25
264	Initial and subsequent effects of hydrochar amendment on germination and nitrogen uptake of spring barley. Journal of Plant Nutrition and Soil Science, 2014, 177, 68-74.	1.9	34
265	The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from Mediterranean ecosystems of Southeast Spain. Plant and Soil, 2013, 370, 355-366.	3.7	10
266	Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant and Soil, 2013, 368, 507-518.	3.7	39
267	Accounting for the adaptation deficit of non-mycorrhizal plants in experiments. Plant and Soil, 2013, 366, 33-34.	3.7	4
268	A new tool of the trade: plant-trait based approaches in microbial ecology. Plant and Soil, 2013, 365, 35-40.	3.7	16
269	Land use and host neighbor identity effects on arbuscular mycorrhizal fungal community composition in focal plant rhizosphere. Biodiversity and Conservation, 2013, 22, 2193-2205.	2.6	37
270	Are there temporal trends in root architecture and soil aggregation for Hordeum vulgare breeding lines?. Applied Soil Ecology, 2013, 65, 31-34.	4.3	3

#	Article	IF	CITATIONS
271	Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology, 2013, 62, 961-969.	2.4	150
272	Palatability of carbonized materials to Collembola. Applied Soil Ecology, 2013, 64, 63-69.	4.3	18
273	Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytologist, 2013, 197, 1104-1109.	7.3	266
274	Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil. Soil Biology and Biochemistry, 2013, 64, 96-102.	8.8	47
275	Arbuscular mycorrhizal fungi – shortâ€ŧerm liability but longâ€ŧerm benefits for soil carbon storage?. New Phytologist, 2013, 197, 366-368.	7.3	55
276	How can we bring together empiricists and modellers in functional biodiversity research?. Basic and Applied Ecology, 2013, 14, 93-101.	2.7	24
277	Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology, 2013, 94, 1389-1399.	3.2	150
278	Hydrochar and Biochar Effects on Germination of Spring Barley. Journal of Agronomy and Crop Science, 2013, 199, 360-373.	3.5	165
279	Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biological Conservation, 2013, 159, 119-126.	4.1	76
280	Earthworms can modify effects of hydrochar on growth of Plantago lanceolata and performance of arbuscular mycorrhizal fungi. Pedobiologia, 2013, 56, 219-224.	1.2	20
281	Changes of AM Fungal Abundance along Environmental Gradients in the Arid and Semi-Arid Grasslands of Northern China. PLoS ONE, 2013, 8, e57593.	2.5	29
282	Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters, 2012, 8, 214-217.	2.3	173
283	Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology, 2012, 93, 1115-1124.	3.2	65
284	Relative strengths of relationships between plant, microbial, and environmental parameters in heavy-metal contaminated floodplain soil. Pedobiologia, 2012, 55, 15-23.	1.2	2
285	Temperature- and moisture-dependent soil water repellency induced by the basidiomycete Agaricus bisporus. Pedobiologia, 2012, 55, 59-61.	1.2	15
286	On the application of network theory to arbuscular mycorrhizal fungi–plant interactions: the importance of basic assumptions. New Phytologist, 2012, 194, 891-894.	7.3	45
287	Divergent consequences of hydrochar in the plant–soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Applied Soil Ecology, 2012, 59, 68-72.	4.3	107
288	Microplastic in Terrestrial Ecosystems and the Soil?. Environmental Science & Technology, 2012, 46, 6453-6454.	10.0	1,029

#	Article	IF	CITATIONS
289	Fungal superhighways: do common mycorrhizal networks enhance below ground communication?. Trends in Plant Science, 2012, 17, 633-637.	8.8	140
290	Metacommunities and symbiosis: hosts of challenges. Trends in Ecology and Evolution, 2012, 27, 588-589.	8.7	7
291	Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest. PLoS ONE, 2012, 7, e47128.	2.5	111
292	Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant and Soil, 2012, 355, 231-250.	3.7	116
293	Dissemination biases in ecology: effect sizes matter more than quality. Oikos, 2012, 121, 228-235.	2.7	36
294	Longâ€ŧerm effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Functional Ecology, 2012, 26, 532-540.	3.6	66
295	Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 2012, 46, 53-62.	8.8	280
296	Arbuscular mycorrhizal fungi and collembola non-additively increase soilÂaggregation. Soil Biology and Biochemistry, 2012, 47, 93-99.	8.8	56
297	Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biology and Biochemistry, 2012, 50, 33-39.	8.8	59
298	Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza, 2012, 22, 227-235.	2.8	147
299	Linking Soil Biodiversity and Human Health: Do Arbuscular Mycorrhizal Fungi Contribute to Food Nutrition?. , 2012, , 153-172.		21
300	Compositional Divergence and Convergence in Local Communities and Spatially Structured Landscapes. PLoS ONE, 2012, 7, e35942.	2.5	14
301	Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 2011, 92, 296-303.	3.2	517
302	The Influence of Different Stresses on Glomalin Levels in an Arbuscular Mycorrhizal Fungus—Salinity Increases Glomalin Content. PLoS ONE, 2011, 6, e28426.	2.5	89
303	Ecosystem service and biodiversity trade-offs in two woody successions. Journal of Applied Ecology, 2011, 48, 926-934.	4.0	96
304	Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Molecular Ecology, 2011, 20, 655-666.	3.9	76
305	Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytologist, 2011, 189, 507-514.	7.3	104
306	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7.3	149

#	Article	IF	CITATIONS
307	Mycorrhizal, Endophytic and Ecomorphological Status of Tree Roots in the Canopy of a Montane Rain Forest. Biotropica, 2011, 43, 401-404.	1.6	6
308	Independent effects of arbuscular mycorrhiza and earthworms on plant diversity and newcomer plant establishment. Journal of Vegetation Science, 2011, 22, 1021-1030.	2.2	44
309	Are power laws that estimate fractal dimension a good descriptor of soil structure and its link to soil biological properties?. Soil Biology and Biochemistry, 2011, 43, 359-366.	8.8	22
310	Direct, positive feedbacks produce instability in models of interrelationships among soil structure, plants and arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2011, 43, 1198-1206.	8.8	14
311	Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 2011, 43, 1812-1836.	8.8	3,514
312	Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. Oecologia, 2011, 167, 913-924.	2.0	42
313	Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: an investigation across successional gradients and soil depth. Aquatic Sciences, 2011, 73, 35-42.	1.5	39
314	Weak conspecific feedbacks and exotic dominance in a species-rich savannah. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2939-2945.	2.6	29
315	Additive effects of functionally dissimilar above- and belowground organisms on a grassland plant community. Journal of Plant Ecology, 2011, 4, 221-227.	2.3	19
316	Potential of Arbuscular Mycorrhizal Technology in Date Palm Production. , 2011, , 449-476.		5
317	The Fungal Fast Lane: Common Mycorrhizal Networks Extend Bioactive Zones of Allelochemicals in Soils. PLoS ONE, 2011, 6, e27195.	2.5	123
318	Indigenous Arbuscular Mycorrhizal Fungal Assemblages Protect Grassland Host Plants from Pathogens. PLoS ONE, 2011, 6, e27381.	2.5	35
319	Arbuscular mycorrhizal fungi enhance spotted knapweed growth across a riparian chronosequence. Biological Invasions, 2010, 12, 1481-1490.	2.4	60
320	Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses?. Plant Ecology, 2010, 211, 19-26.	1.6	36
321	Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology and Biochemistry, 2010, 42, 1189-1191.	8.8	195
322	Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology and Biochemistry, 2010, 42, 2316-2324.	8.8	130
323	Does herbivory really suppress mycorrhiza? A metaâ€analysis. Journal of Ecology, 2010, 98, 745-753.	4.0	123
324	Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology, 2010, 91, 1591-1597.	3.2	85

#	Article	IF	CITATIONS
325	Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity?. Pedobiologia, 2010, 53, 197-201.	1.2	228
326	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
327	Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Applied Soil Ecology, 2010, 45, 238-242.	4.3	262
328	Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Applied Soil Ecology, 2010, 46, 450-456.	4.3	207
329	Untangling the biological contributions to soil stability in semiarid shrublands. Ecological Applications, 2009, 19, 110-122.	3.8	148
330	Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4237-4245.	2.6	283
331	Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biology and Biochemistry, 2009, 41, 1173-1179.	8.8	81
332	Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil, 2009, 314, 183-196.	3.7	159
333	Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant and Soil, 2009, 317, 257-266.	3.7	64
334	Heterogeneity in mycorrhizal inoculum potential of flood-deposited sediments. Aquatic Sciences, 2009, 71, 331-337.	1.5	19
335	Improving soil protein extraction for metaproteome analysis and glomalinâ€related soil protein detection. Proteomics, 2009, 9, 4970-4973.	2.2	51
336	Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from longâ€ŧerm field experiments. Ecology Letters, 2009, 12, 452-461.	6.4	600
337	Hyporheic Microbial Community Development Is a Sensitive Indicator of Metal Contamination. Environmental Science & Technology, 2009, 43, 6158-6163.	10.0	51
338	Arbuscular mycorrhizal fungal abundance in the Mojave Desert: Seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 2009, 73, 834-843.	2.4	55
339	Mycorrhizal Symbioses and Plant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 699-715.	8.3	388
340	Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv) Tj ETQq0 0 0 rgBT	/Ovgrlock	10 Tf 50 142
341	Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiology Letters, 2008, 279, 8-14.	1.8	55

342Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale
in a temperate grassland. FEMS Microbiology Ecology, 2008, 64, 260-270.2.790

#	Article	IF	CITATIONS
343	Dynamics of mycorrhizae during development of riparian forests along an unregulated river. Ecography, 2008, 31, 245-253.	4.5	41
344	Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 2008, 406, 154-160.	8.0	218
345	Evaluation of loop-mediated isothermal amplification (LAMP) to rapidly detect arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2008, 40, 540-543.	8.8	23
346	Inhibition of colonization by a native arbuscular mycorrhizal fungal community via Populus trichocarpa litter, litter extract, and soluble phenolic compounds. Soil Biology and Biochemistry, 2008, 40, 709-717.	8.8	57
347	Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Clomus intraradices. Soil Biology and Biochemistry, 2008, 40, 1000-1003.	8.8	34
348	Succession of Arbuscular Mycorrhizal Fungi: Patterns, Causes, and Considerations for Organic Agriculture. Advances in Agronomy, 2008, 97, 111-130.	5.2	33
349	Intraradical protein and glomalin as a tool for quantifying arbuscular mycorrhizal root colonization. Pedobiologia, 2008, 52, 41-50.	1.2	38
350	Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. Journal of Microbiological Methods, 2007, 70, 200-204.	1.6	53
351	The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia, 2007, 51, 123-130.	1.2	133
352	Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Global Change Biology, 2007, 13, 2171-2183.	9.5	69
353	Losses of glomalin-related soil protein under prolonged arable cropping: A chronosequence study in sandy soils of the South African Highveld. Soil Biology and Biochemistry, 2007, 39, 445-453.	8.8	65
354	Mycorrhizal responses to biochar in soil $\hat{a} \in $ concepts and mechanisms. Plant and Soil, 2007, 300, 9-20.	3.7	940
355	Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry, 2007, 85, 25-44.	3.5	225
356	Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza, 2007, 17, 175-183.	2.8	92
357	Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia, 2006, 50, 275-280.	1.2	123
358	The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters, 2006, 263, 93-101.	1.8	161
359	Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiology Ecology, 2006, 57, 389-395.	2.7	71
360	Mycorrhizas and soil structure. New Phytologist, 2006, 171, 41-53.	7.3	1,300

#	Article	IF	CITATIONS
361	The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil, 2006, 288, 81-90.	3.7	196
362	A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi. Biotechnology Letters, 2006, 28, 1071-1076.	2.2	14
363	Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. Soil Biology and Biochemistry, 2006, 38, 1608-1614.	8.8	47
364	Glomalin-related soil protein: Assessment of current detection and quantification tools. Soil Biology and Biochemistry, 2006, 38, 2205-2211.	8.8	150
365	Minimal direct contribution of arbuscular mycorrhizal fungi to DOC leaching in grassland through losses of glomalin-related soil protein. Soil Biology and Biochemistry, 2006, 38, 2967-2970.	8.8	21
366	Climate Change Effects on Fungi in Agroecosystems. Advances in Agroecology, 2006, , 211-230.	0.3	2
367	Application of Phi29 DNA polymerase mediated whole genome amplification on single spores of arbuscular mycorrhizal (AM) fungi. FEMS Microbiology Letters, 2005, 242, 65-71.	1.8	32
368	Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecology Letters, 2005, 8, 1201-1210.	6.4	63
369	Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature, 2005, 433, 621-624.	27.8	171
370	Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2005, 37, 101-106.	8.8	334
371	Mine waste contamination limits soil respiration rates: a case study using quantile regression. Soil Biology and Biochemistry, 2005, 37, 1177-1183.	8.8	23
372	Plant invasion of native grassland on serpentine soils has no major effects upon selected physical and biological properties. Soil Biology and Biochemistry, 2005, 37, 2277-2282.	8.8	16
373	Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil, 2005, 271, 83-90.	3.7	116
374	Suitability of genomic DNA synthesized by strand displacement amplification (SDA) for AFLP analysis: genotyping single spores of arbuscular mycorrhizal (AM) fungi. Journal of Microbiological Methods, 2005, 63, 157-164.	1.6	19
375	Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia, 2005, 49, 251-259.	1.2	61
376	A connection between fungal hydrophobins and soil water repellency?. Pedobiologia, 2005, 49, 395-399.	1.2	101
377	POLYMERS AND MICROORGANISMS. , 2005, , 287-294.		5
378	Seasonal Dynamics of Shallow-Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient. Applied and Environmental Microbiology, 2004, 70, 2323-2331.	3.1	55

#	Article	IF	CITATIONS
379	Determining Rates of Change and Evaluating Group-Level Resiliency Differences in Hyporheic Microbial Communities in Response to Fluvial Heavy-Metal Deposition. Applied and Environmental Microbiology, 2004, 70, 4756-4765.	3.1	26
380	Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters, 2004, 7, 740-754.	6.4	481
381	Protein accumulation and distribution in floodplain soils and river foam. Ecology Letters, 2004, 7, 829-836.	6.4	80
382	The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytologist, 2004, 164, 365-373.	7.3	142
383	Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 2004, 84, 355-363.	1.2	776
384	Influence of spotted knapweed (Centaurea maculosa) management treatments on arbuscular mycorrhizae and soil aggregation. Weed Science, 2004, 52, 172-177.	1.5	24
385	Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant and Soil, 2003, 253, 293-299.	3.7	241
386	Title is missing!. Plant and Soil, 2003, 254, 383-391.	3.7	47
387	Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant and Soil, 2003, 257, 71-83.	3.7	84
388	Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of the estern United States. Microbial Ecology, 2003, 46, 200-215.	2.8	41
389	Structure and Seasonal Dynamics of Hyporheic Zone Microbial Communities in Free-Stone Rivers of the Western United States. Microbial Ecology, 2003, 46, 200-215.	2.8	45
390	Glomalin content of forest soils in relation to fire frequency and landscape position. Mycorrhiza, 2003, 13, 205-210.	2.8	24
391	Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry, 2003, 35, 191-194.	8.8	182
392	Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biology and Biochemistry, 2003, 35, 1257-1260.	8.8	105
393	Global Change and Mycorrhizal Fungi. Ecological Studies, 2002, , 135-160.	1.2	61
394	Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification?. Soil Biology and Biochemistry, 2002, 34, 1371-1374.	8.8	206
395	Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos, 2002, 97, 52-58.	2.7	174
396	Title is missing!. Plant and Soil, 2002, 238, 325-333.	3.7	463

#	Article	IF	CITATIONS
397	Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biology, 2001, 7, 333-337.	9.5	89
398	Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 2001, 233, 167-177.	3.7	487
399	Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecology Letters, 2000, 3, 475-478.	6.4	60
400	Fungal root colonization responses in natural grasslands after longâ€ŧerm exposure to elevated atmospheric CO2. Global Change Biology, 1999, 5, 577-585.	9.5	40
401	Rise in carbon dioxide changes soil structure. Nature, 1999, 400, 628-628.	27.8	175
402	What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO 2 ?. Mycorrhiza, 1999, 9, 1-8.	2.8	88
403	Soil biota responses to long-term atmospheric CO 2 enrichment in two California annual grasslands. Oecologia, 1999, 119, 572-577.	2.0	167
404	Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology, 1999, 12, 227-238.	4.3	152
405	Plant species-specific changes in root-inhabiting fungi in a California annual grassland: responses to elevated CO 2 and nutrients. Oecologia, 1998, 113, 252-259.	2.0	63
406	Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytologist, 1998, 138, 599-605.	7.3	84
407	Arbuscular mycorrhizae of Gutierrezia sarothrae and elevated carbon dioxide: evidence for shifts in C allocation to and within the mycobiont. Soil Biology and Biochemistry, 1998, 30, 2001-2008.	8.8	28
408	Arbuscular Mycorrhizal Percent Root Infection and Infection Intensity of Bromus hordeaceus Grown in Elevated Atmospheric CO2. Mycologia, 1998, 90, 199.	1.9	13
409	Arbuscular mycorrhizal percent root infection and infection intensity of <i>Bromus hordeaceus</i> grown in elevated atmospheric CO ₂ . Mycologia, 1998, 90, 199-205.	1.9	25
410	Increased levels of airborne fungal spores in response to <i>Populus tremuloides</i> grown under elevated atmospheric CO ₂ . Canadian Journal of Botany, 1997, 75, 1670-1673.	1.1	47
411	Microbial carbon-substrate utilization in the rhizosphere of Gutierrezia sarothrae grown in elevated atmospheric carbon dioxide. Soil Biology and Biochemistry, 1997, 29, 1387-1394.	8.8	43
412	Soil fungalâ€arthropod responses to Populus tremuloides grown under enriched atmospheric CO 2 under field conditions. Global Change Biology, 1997, 3, 473-478.	9.5	85
413	Below-Ground Microbial and Microfaunal Responses to Artemisia tridentata Grown Under Elevated Atmospheric Co 2. Functional Ecology, 1996, 10, 527.	3.6	141
414	Toward a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution, 0, 3, .	2.2	24

#	Article	IF	CITATIONS
415	Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. Research Ideas and Outcomes, 0, 8, .	1.0	10