
Charlotte Jacobsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 2013, 138, 1670-1681.	8.2	312
2	Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Marine Drugs, 2015, 13, 7339-7356.	4.6	301
3	Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation. Trends in Food Science and Technology, 2008, 19, 76-93.	15.1	224
4	Antioxidant activity of yoghurt peptides: Part 2 – Characterisation of peptide fractions. Food Chemistry, 2010, 123, 1090-1097.	8.2	158
5	Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage. Food Chemistry, 2009, 114, 57-65.	8.2	151
6	Protein and Lipid Oxidation during Frozen Storage of Rainbow Trout (<i>Oncorhynchus mykiss</i>). Journal of Agricultural and Food Chemistry, 2007, 55, 8118-8125.	5.2	140
7	Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus) Tj ETQq1 1 (0.784314 8.2	rgBT /Overloc 138
8	Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry, 2010, 123, 1081-1089.	8.2	136
9	Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chemistry, 2010, 123, 221-230.	8.2	134
10	Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry, 2014, 149, 326-334.	8.2	132
11	Chemical and Olfactometric Characterization of Volatile Flavor Compounds in a Fish Oil Enriched Milk Emulsion. Journal of Agricultural and Food Chemistry, 2004, 52, 311-317.	5.2	127
12	Interactions between Iron, Phenolic Compounds, Emulsifiers, and pH in Omega-3-Enriched Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2008, 56, 1740-1750.	5.2	121
13	Lipid Oxidation in Fish Oil Enriched Mayonnaise:Â Calcium Disodium Ethylenediaminetetraacetate, but Not Gallic Acid, Strongly Inhibited Oxidative Deterioration. Journal of Agricultural and Food Chemistry, 2001, 49, 1009-1019.	5.2	112
14	Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering, 2016, 183, 39-49.	5.2	110
15	Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition, 2018, 58, 3097-3129.	10.3	109
16	Oxidative Stability of Marine Phospholipids in the Liposomal Form and Their Applications. Lipids, 2011, 46, 3-23.	1.7	106
17	Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annual Review of Food Science and Technology, 2018, 9, 525-549.	9.9	105
18	Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chemistry, 2016, 204, 409-419.	8.2	104

#	Article	IF	CITATIONS
19	Modeling the Sensory Impact of Defined Combinations of Volatile Lipid Oxidation Products on Fishy and Metallic Off-Flavors. Journal of Agricultural and Food Chemistry, 2004, 52, 1635-1641.	5.2	103
20	Lipid Oxidation in Milk, Yoghurt, and Salad Dressing Enriched with Neat Fish Oil or Pre-Emulsified Fish Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 7802-7809.	5.2	99
21	Oxidation in Fish Oil Enriched Mayonnaise:Â Ascorbic Acid and Low pH Increase Oxidative Deterioration. Journal of Agricultural and Food Chemistry, 2001, 49, 3947-3956.	5.2	97
22	Sensory impact of lipid oxidation in complex food systems. Lipid - Fett, 1999, 101, 484-492.	0.4	93
23	Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk. Food Chemistry, 2015, 167, 236-244.	8.2	92
24	Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 2016, 203, 124-135.	8.2	92
25	Homogenization Conditions Affect the Oxidative Stability of Fish Oil Enriched Milk Emulsions:Â Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2007, 55, 1773-1780.	5.2	87
26	Some strategies for the stabilization of long chain nâ€3 PUFAâ€enriched foods: A review. European Journal of Lipid Science and Technology, 2015, 117, 1853-1866.	1.5	85
27	Enzymatic Interesterification of Butterfat with Rapeseed Oil in a Continuous Packed Bed Reactor. Journal of Agricultural and Food Chemistry, 2005, 53, 5617-5624.	5.2	81
28	Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chemistry, 2014, 142, 318-326.	8.2	80
29	Emulsifier type, metal chelation and pH affect oxidative stability of <i>n</i> â€3â€enriched emulsions. European Journal of Lipid Science and Technology, 2008, 110, 949-961.	1.5	79
30	Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annual Review of Food Science and Technology, 2019, 10, 541-568.	9.9	79
31	Ascorbyl Palmitate, γ-Tocopherol, and EDTA Affect Lipid Oxidation in Fish Oil Enriched Salad Dressing Differently. Journal of Agricultural and Food Chemistry, 2007, 55, 2369-2375.	5.2	78
32	Influence of Casein–Phospholipid Combinations as Emulsifier on the Physical and Oxidative Stability of Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 1142-1152.	5.2	74
33	Effect of Ascorbic Acid on Iron Release from the Emulsifier Interface and on the Oxidative Flavor Deterioration in Fish Oil Enriched Mayonnaise. Journal of Agricultural and Food Chemistry, 1999, 47, 4917-4926.	5.2	73
34	Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chemistry, 2006, 94, 53-60.	8.2	73
35	Purification and deodorization of structured lipids by short path distillation. European Journal of Lipid Science and Technology, 2002, 104, 745-755.	1.5	72
36	Effects of Lactoferrin, Phytic Acid, and EDTA on Oxidation in Two Food Emulsions Enriched with Long-Chain Polyunsaturated Fatty Acids. Journal of Agricultural and Food Chemistry, 2004, 52, 7690-7699.	5.2	72

#	Article	IF	CITATIONS
37	Homogenization Conditions Affect the Oxidative Stability of Fish Oil Enriched Milk Emulsions:Â Oxidation Linked to Changes in Protein Composition at the Oilâ^Water Interface. Journal of Agricultural and Food Chemistry, 2007, 55, 1781-1789.	5.2	72
38	Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water. Journal of Marine Science and Engineering, 2016, 4, 84.	2.6	71
39	AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Scientific Reports, 2020, 10, 21471.	3.3	71
40	Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chemistry, 2010, 123, 321-330.	8.2	67
41	Oxidative flavour deterioration of fish oil enriched milk. European Journal of Lipid Science and Technology, 2003, 105, 518-528.	1.5	66
42	Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Food Chemistry, 2014, 157, 398-407.	8.2	66
43	Protection against Oxidation of Fish-Oil-Enriched Milk Emulsions through Addition of Rapeseed Oil or Antioxidants. Journal of Agricultural and Food Chemistry, 2005, 53, 5429-5437.	5.2	65
44	Antioxidant Activity of Potato Peel Extracts in a Fishâ€Rapeseed Oil Mixture and in Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1319-1332.	1.9	65
45	Sensory stability and oxidation of fish oil enriched milk is affected by milk storage temperature and oil quality. International Dairy Journal, 2005, 15, 173-182.	3.0	64
46	Antioxidant Properties and Efficacies of Synthesized Alkyl Caffeates, Ferulates, and Coumarates. Journal of Agricultural and Food Chemistry, 2014, 62, 12553-12562.	5.2	64
47	Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chemistry, 2018, 240, 904-909.	8.2	64
48	Activity of caffeic acid in different fish lipid matrices: A review. Food Chemistry, 2012, 131, 730-740.	8.2	61
49	Partitioning of Selected Antioxidants in Mayonnaise. Journal of Agricultural and Food Chemistry, 1999, 47, 3601-3610.	5.2	60
50	Oxidative stability of 70% fish oilâ€inâ€water emulsions: Impact of emulsifiers and pH. European Journal of Lipid Science and Technology, 2011, 113, 1243-1257.	1.5	59
51	Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 2017, 69, 273-285.	10.7	58
52	Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials. Journal of Food Engineering, 2018, 231, 42-53.	5.2	57
53	Microalgae Nannochloropsis oceanica as a future new natural source of vitamin D3. Food Chemistry, 2020, 320, 126627.	8.2	56
54	Effects of fish oil type, lipid antioxidants and presence of rapeseed oil on oxidative flavour stability of fish oil enriched milk. European Journal of Lipid Science and Technology, 2004, 106, 170-182.	1.5	55

#	Article	IF	CITATIONS
55	Emerging Technologies for the Extraction of Marine Phenolics: Opportunities and Challenges. Marine Drugs, 2020, 18, 389.	4.6	54
56	Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research, 2020, 47, 101849.	4.6	54
57	Methods for reducing lipid oxidation in fishâ€oilâ€enriched energy bars. International Journal of Food Science and Technology, 2009, 44, 1536-1546.	2.7	52
58	Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. Journal of Functional Foods, 2015, 19, 828-841.	3.4	50
59	Potential seaweed-based food ingredients to inhibit lipid oxidation in fish-oil-enriched mayonnaise. European Food Research and Technology, 2016, 242, 571-584.	3.3	48
60	Volatile oxidation products formed in crude herring oil under accelerated oxidative conditions. European Journal of Lipid Science and Technology, 2002, 104, 808-818.	1.5	45
61	Oxidative stability of fish oil enriched drinking yoghurt. International Dairy Journal, 2007, 17, 1478-1485.	3.0	45
62	Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocolloids, 2020, 101, 105529.	10.7	45
63	High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium. Marine Drugs, 2016, 14, 144.	4.6	44
64	Additions of caffeic acid, ascorbyl palmitate or γ-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently. Food Chemistry, 2009, 112, 412-420.	8.2	42
65	Enrichment of foods with omegaâ€3 fatty acids: a multidisciplinary challenge. Annals of the New York Academy of Sciences, 2010, 1190, 141-150.	3.8	42
66	Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. Journal of Food Engineering, 2019, 263, 348-358.	5.2	42
67	Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Scientific Reports, 2020, 10, 690.	3.3	41
68	Human Milk Fat Substitute from Butterfat: Production by Enzymatic Interesterification and Evaluation of Oxidative Stability. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 185-194.	1.9	40
69	Oxidative degradation and non-enzymatic browning due to the interaction between oxidised lipids and primary amine groups in different marine PL emulsions. Food Chemistry, 2012, 135, 2887-2896.	8.2	40
70	Oxidative changes during ice storage of rainbow trout (Oncorhynchus mykiss) fed different ratios of marine and vegetable feed ingredients. Food Chemistry, 2013, 136, 1220-1230.	8.2	40
71	Antioxidative Effect of Seaweed Extracts in Chilled Storage of Minced Atlantic Mackerel (Scomber) Tj ETQq1 1 C	.784314 r 4.7	gBTJOverloci
72	Forage fish quality: seasonal lipid dynamics of herring (Clupea harengus L.) and sprat (Sprattus) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50 6

5

#	Article	IF	CITATIONS
73	Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk. Journal of Functional Foods, 2015, 18, 959-967.	3.4	38
74	The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil. Food Chemistry, 2018, 263, 119-126.	8.2	38
75	Biochemical and Nutritional Composition of Industrial Red Seaweed Used in Carrageenan Production. Journal of Aquatic Food Product Technology, 2019, 28, 967-973.	1.4	38
76	The structure, viscoelasticity and charge of potato peptides adsorbed at the oil-water interface determine the physicochemical stability of fish oil-in-water emulsions. Food Hydrocolloids, 2021, 115, 106605.	10.7	38
77	Mechanism of initiation of oxidation in mayonnaise enriched with fish oil as studied by electron spin resonance spectroscopy. European Food Research and Technology, 2000, 211, 381-386.	3.3	37
78	Fatty acid composition of herring (Clupea harengus L.): influence of time and place of catch on n-3 PUFA content. Journal of the Science of Food and Agriculture, 2007, 87, 710-718.	3.5	37
79	The Efficacy of Compounds with Different Polarities as Antioxidants in Emulsions with Omegaâ€3 Lipids. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 489-502.	1.9	37
80	Does Feed Composition Affect Oxidation of Rainbow Trout (Oncorhynchus mykiss) during Frozen Storage?. Journal of Agricultural and Food Chemistry, 2009, 57, 4185-4194.	5.2	36
81	The choice of homogenisation equipment affects lipid oxidation in emulsions. Food Chemistry, 2012, 134, 803-810.	8.2	36
82	Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture. Marine Drugs, 2015, 13, 4357-4374.	4.6	36
83	Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and phosphatidylcholine as emulsifiers. Food Chemistry, 2019, 276, 110-118.	8.2	36
84	Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres and proximate chemical composition of fillets. Aquaculture, 2011, 314, 159-164.	3.5	35
85	Investigation of oxidative degradation and nonâ€enzymatic browning reactions in krill and fish oils. European Journal of Lipid Science and Technology, 2013, 115, 1357-1366.	1.5	35
86	Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. European Journal of Lipid Science and Technology, 2017, 119, 1600276.	1.5	35
87	Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid. European Journal of Lipid Science and Technology, 2003, 105, 459-470.	1.5	34
88	Lipophilization of dihydrocaffeic acid affects its antioxidative properties in fishâ€oilâ€enriched emulsions. European Journal of Lipid Science and Technology, 2012, 114, 134-145.	1.5	34
89	Development of Fish Oil-Loaded Microcapsules Containing Whey Protein Hydrolysate as Film-Forming Material for Fortification of Low-Fat Mayonnaise. Foods, 2020, 9, 545.	4.3	34
90	The effect of farmed trout on cardiovascular risk markers in healthy men. British Journal of Nutrition, 2010, 104, 1528-1536.	2.3	33

#	Article	IF	CITATIONS
91	Oxidative Stability and Shelf Life of Food Emulsions. , 2016, , 287-312.		33
92	Development of kafirin-based nanocapsules by electrospraying for encapsulation of fish oil. LWT - Food Science and Technology, 2021, 136, 110297.	5.2	33
93	Linking lipid dynamics with the reproductive cycle in Baltic cod Gadus morhua. Marine Ecology - Progress Series, 2012, 471, 215-234.	1.9	33
94	Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 183, 87-96.	1.8	32
95	Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation. Food Chemistry, 2013, 141, 879-888.	8.2	31
96	Effect of emulsifier type, p <scp>H</scp> and iron on oxidative stability of 5% fish oilâ€inâ€water emulsions. European Journal of Lipid Science and Technology, 2013, 115, 874-889.	1.5	31
97	The antioxidative effect of lipophilized rutin and dihydrocaffeic acid in fish oil enriched milk. European Journal of Lipid Science and Technology, 2012, 114, 434-445.	1.5	30
98	Protein derived emulsifiers with antioxidant activity for stabilization of omega-3 emulsions. Food Chemistry, 2020, 329, 127148.	8.2	30
99	Multi-Extraction and Quality of Protein and Carrageenan from Commercial Spinosum (Eucheuma) Tj ETQq1	1 0.784314 rgB 4.3	T / gverlock
100	Characterization of cod (Gadus morhua) frame composition and its valorization by enzymatic hydrolysis. Journal of Food Composition and Analysis, 2020, 89, 103469.	3.9	29
101	Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food Chemistry, 2022, 385, 132699.	8.2	29
102	Effect of structured lipids based on fish oil on the growth and fatty acid composition in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2005, 250, 411-423.	3.5	28
103	Oxidative stability of fish oilâ€enriched mayonnaiseâ€based salads. European Journal of Lipid Science and Technology, 2010, 112, 476-487.	1.5	28
104	Physical and oxidative stability of fish oil-in-water emulsions fortified with enzymatic hydrolysates from common carp (Cyprinus carpio) roe. Food Chemistry, 2017, 237, 1048-1057.	8.2	28
105	Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions. Food Chemistry, 2018, 255, 290-299.	8.2	28
106	Oxygen permeability and oxidative stability of fish oil-loaded electrosprayed capsules measured by Electron Spin Resonance: Effect of dextran and glucose syrup as main encapsulating materials. Food Chemistry, 2019, 287, 287-294.	8.2	28
107	Ironâ€mediated lipid oxidation in 70% fish oilâ€inâ€water emulsions: effect of emulsifier type and pH. International Journal of Food Science and Technology, 2012, 47, 1097-1108.	2.7	27
108	Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid. European Journal of Lipid Science and Technology, 2003, 105, 449-458.	1.5	26

#	Article	IF	CITATIONS
109	Storage stability study of margarines produced from enzymatically interesterified fats compared to margarines produced by conventional methods. I.â€Physical properties. European Journal of Lipid Science and Technology, 2005, 107, 530-539.	1.5	26
110	Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. European Journal of Lipid Science and Technology, 2013, 115, 501-512.	1.5	26
111	Influence of emulsifier type on lipid oxidation in fish oilâ€enriched light mayonnaise. European Journal of Lipid Science and Technology, 2010, 112, 1012-1023.	1.5	25
112	Modification of essential fatty acid composition in broodstock of cultured European eel <i>Anguilla anguilla</i> L. Aquaculture Nutrition, 2013, 19, 172-185.	2.7	25
113	Biomass composition of Arthrospira platensis during cultivation on industrial process water and harvesting. Journal of Applied Phycology, 2018, 30, 943-954.	2.8	25
114	Modified phosphatidylcholine with different alkyl chain length and covalently attached caffeic acid affects the physical and oxidative stability of omega-3 delivery 70% oil-in-water emulsions. Food Chemistry, 2019, 289, 490-499.	8.2	25
115	Optimization of phenolic antioxidants extraction from Fucus vesiculosus by pressurized liquid extraction. Journal of Applied Phycology, 2021, 33, 1195-1207.	2.8	25
116	FATE OF THE SYNERGISTIC ANTIOXIDANT SYSTEM ASCORBIC ACID, LECITHIN, AND TOCOPHEROL IN MAYONNAISE: PARTITION OF ASCORBIC ACID. Journal of Food Lipids, 1996, 3, 139-147.	1.0	24
117	COMPARISON OF WET-CHEMICAL METHODS FOR DETERMINATION OF LIPID HYDROPEROXIDES. Journal of Food Lipids, 2003, 10, 35-50.	1.0	23
118	Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid. European Food Research and Technology, 2004, 219, 32-41.	3.3	23
119	Physicoâ€chemical Properties of Marine Phospholipid Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 2011-2024.	1.9	23
120	A review on broodstock nutrition of marine pelagic spawners: the curious case of the freshwater eels (<i>Anguilla</i> spp.). Aquaculture Nutrition, 2013, 19, 1-24.	2.7	23
121	Antioxidant Activity of Seaweed Extracts: In Vitro Assays, Evaluation in 5 % Fish Oilâ€inâ€Water Emulsions and Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 571-587.	1.9	23
122	Effects of Different Lipophilized Ferulate Esters in Fish Oil-Enriched Milk: Partitioning, Interaction, Protein, and Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2017, 65, 9496-9505.	5.2	23
123	Stabilization of Fish Oilâ€Loaded Electrosprayed Capsules with Seaweed and Commercial Natural Antioxidants: Effect on the Oxidative Stability of Capsuleâ€Enriched Mayonnaise. European Journal of Lipid Science and Technology, 2019, 121, 1800396.	1.5	23
124	Rational Engineering of Hydratase from <i>Lactobacillus acidophilus</i> Reveals Critical Residues Directing Substrate Specificity and Regioselectivity. ChemBioChem, 2020, 21, 550-563.	2.6	23
125	Oxidative stability of structured lipids produced from sunflower oil and caprylic acid. European Journal of Lipid Science and Technology, 2003, 105, 436-448.	1.5	22
126	Oxidative Stability of Dispersions Prepared from Purified Marine Phospholipid and the Role of α-Tocopherol. Journal of Agricultural and Food Chemistry, 2012, 60, 12388-12396.	5.2	22

#	Article	IF	CITATIONS
127	Oxidative stability and microstructure of 5% fish-oil-enriched granola bars added natural antioxidants derived from brown algaFucus vesiculosus. European Journal of Lipid Science and Technology, 2017, 119, 1500578.	1.5	22
128	Effects of Modified DATEMs with Different Alkyl Chain Lengths on Improving Oxidative and Physical Stability of 70% Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 12512-12520.	5.2	22
129	Food enrichment with omega-3 fatty acids. , 2013, , .		22
130	Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn2-position – as bulk lipids and in milk drinks. Innovative Food Science and Emerging Technologies, 2004, 5, 249-261.	5.6	21
131	Assessment of Washing with Antioxidant on the Oxidative Stability of Fatty Fish Mince during Processing and Storage. Journal of Agricultural and Food Chemistry, 2010, 58, 6182-6189.	5.2	21
132	Addition of Fish Oil to Cream Cheese Affects Lipid Oxidation, Sensory Stability and Microstructure. Agriculture (Switzerland), 2012, 2, 359-375.	3.1	21
133	Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chemistry, 2021, 362, 130217.	8.2	21
134	OXIDATION MECHANISMS IN REAL FOOD EMULSIONS: METHOD FOR SEPARATION OF MAYONNAISE BY ULTRACENTRIFUGATION. Journal of Food Lipids, 1998, 5, 87-101.	1.0	20
135	Effect of ingredients on oxidative stability of fish oilâ€enriched drinking yoghurt. European Journal of Lipid Science and Technology, 2009, 111, 337-345.	1.5	20
136	RETARDATION OF LIPID OXIDATION IN FISH OIL-ENRICHED FISH PÃ,TÉ- COMBINATION EFFECTS. Journal of Food Biochemistry, 2013, 37, 88-97.	2.9	20
137	Oocyte and egg quality indicators in European eel: Lipid droplet coalescence and fatty acid composition. Aquaculture, 2018, 496, 30-38.	3.5	20
138	Storage stability of margarines produced from enzymatically interesterified fats compared to those prepared by conventional methods – Chemical properties. European Journal of Lipid Science and Technology, 2006, 108, 227-238.	1.5	19
139	Challenges when developing omega-3 enriched foods. Oleagineux Corps Gras Lipides, 2010, 17, 251-258.	0.2	19
140	Comparison of Three Methods for Extraction of Volatile Lipid Oxidation Products from Food Matrices for GC–MS Analysis. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 929-942.	1.9	19
141	Isolation of Fucoxanthin from Brown Algae and Its Antioxidant Activity: <i>In Vitro</i> and 5% Fish Oilâ€Inâ€Water Emulsion. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 835-843.	1.9	19
142	Interfacial structure of 70% fish oil-in-water emulsions stabilized with combinations of sodium caseinate and phosphatidylcholine. Journal of Colloid and Interface Science, 2019, 554, 183-190.	9.4	19
143	Oxidative stability of diacylglycerol oil and butter blends containing diacylglycerols. European Journal of Lipid Science and Technology, 2006, 108, 336-350.	1.5	18
144	Comparison of Methods to Reduce Dioxin and Polychlorinated Biphenyls Contents in Fishmeal:Â Extraction and Enzymatic Treatments. Journal of Agricultural and Food Chemistry, 2007, 55, 1620-1626.	5.2	18

#	Article	IF	CITATIONS
145	Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1541-1550.	1.9	18
146	Organic plant ingredients in the diet of Rainbow trout (<scp><i>O</i></scp> <i>ncorhynchus) Tj ETQq0 0 0 rgB Science and Technology, 2013, 115, 1367-1377.</i>	3T /Overloc 1.5	k 10 Tf 50 707 17
147	Marine ecosystem connectivity mediated by migrant–resident interactions and the concomitant crossâ€system flux of lipids. Ecology and Evolution, 2016, 6, 4076-4087.	1.9	17
148	Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants. Journal of Agricultural and Food Chemistry, 2016, 64, 8359-8368.	5.2	17
149	Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss). Animal, 2013, 7, 394-403.	3.3	16
150	Fish oil extracted from fish-fillet by-products is weakly linked to the extraction temperatures but strongly linked to the omega-3 content of the raw material. European Journal of Lipid Science and Technology, 2016, 118, 874-884.	1.5	16
151	Antioxidant efficacies of rutin and rutin esters in bulk oil and oilâ€inâ€water emulsion. European Journal of Lipid Science and Technology, 2017, 119, 1600049.	1.5	15
152	Dietary amino acids impact sperm performance traits for a catadromous fish, Anguilla anguilla reared in captivity. Aquaculture, 2020, 518, 734602.	3.5	15
153	Effects of essential fatty acids and feeding regimes on egg and offspring quality of European eel: Comparing reproductive success of farm-raised and wild-caught broodstock. Aquaculture, 2020, 529, 735581.	3.5	15
154	Enrichment of mayonnaise with a high fat fish oil-in-water emulsion stabilized with modified DATEM C14 enhances oxidative stability. Food Chemistry, 2021, 341, 128141.	8.2	15
155	Deodorization of lipase-interesterified butterfat and rapeseed oil blends in a pilot deodorizer. European Journal of Lipid Science and Technology, 2006, 108, 182-192.	1.5	14
156	Recovery of microalgal biomass and metabolites from homogenized, swirl flash-dried microalgae. Journal of Applied Phycology, 2019, 31, 2355-2363.	2.8	14
157	Deodorization optimization of Camelina sativa oil: Oxidative and sensory studies. European Journal of Lipid Science and Technology, 2011, 113, 513-521.	1.5	13
158	Oxidative stability of pullulan electrospun fibers containing fish oil: Effect of oil content and natural antioxidants addition. European Journal of Lipid Science and Technology, 2017, 119, 1600305.	1.5	13
159	Extraction of unsaturated fatty acidâ€rich oil from common carp (<scp><i>Cyprinus carpio</i></scp>) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties. Journal of the Science of Food and Agriculture, 2018, 98, 1407-1415.	3.5	13
160	Biofunctionality of Enzymatically Derived Peptides from Codfish (Gadus morhua) Frame: Bulk In Vitro Properties, Quantitative Proteomics, and Bioinformatic Prediction. Marine Drugs, 2020, 18, 599.	4.6	13
161	Enzymatic extraction improves intracellular protein recovery from the industrial carrageenan seaweed Eucheuma denticulatum revealed by quantitative, subcellular protein profiling: A high potential source of functional food ingredients. Food Chemistry: X, 2021, 12, 100137.	4.3	13
162	Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Marine Drugs, 2022, 20, 263.	4.6	13

#	Article	IF	CITATIONS
163	Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 375-384.	1.9	12
164	Oxidative Stability and Sensory Attributes of Fermented Milk Product Fortified with Fish Oil and Marine Phospholipids. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1673-1683.	1.9	12
165	Storage Conditions Affect Oxidative Stability and Nutritional Composition of Freezeâ€Dried <i>Nannochloropsis salina</i> . European Journal of Lipid Science and Technology, 2017, 119, 1600477.	1.5	12
166	Characterization of Oxidative Stability of Fish Oil―and Plant Oilâ€Enriched Skimmed Milk. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 113-122.	1.9	11
167	Physical and oxidative stability of high fat fish oilâ€inâ€water emulsions stabilized with combinations of sodium caseinate and sodium alginate. European Journal of Lipid Science and Technology, 2017, 119, 1600484.	1.5	11
168	Antioxidant effect of water and acetone extracts ofFucus vesiculosuson oxidative stability of skin care emulsions. European Journal of Lipid Science and Technology, 2017, 119, 1600072.	1.5	11
169	Twoâ€Step Direct Transesterification as a Rapid Method for the Analysis of Fatty Acids in Microalgae Biomass. European Journal of Lipid Science and Technology, 2019, 121, 1700409.	1.5	11
170	UV Treatment of Fishmeal:Â A Method To Remove Dioxins?. Journal of Agricultural and Food Chemistry, 2005, 53, 7091-7097.	5.2	10
171	Effect of α-lactalbumin and β-lactoglobulin on the oxidative stability of 10% fish oil-in-water emulsions depends on pH. Food Chemistry, 2013, 141, 574-581.	8.2	10
172	The effect of thermal treatment on the quality changes of Antartic krill meal during the manufacturing process: High processing temperatures decrease product quality. European Journal of Lipid Science and Technology, 2015, 117, 411-420.	1.5	10
173	Maillard reaction and lipid peroxidation contribute to nonâ€enzymatic browning in krillâ€based products: A model study on proposed mechanisms. European Journal of Lipid Science and Technology, 2015, 117, 421-430.	1.5	10
174	Investigation of Lipid Oxidation in the Raw Materials of a Topical Skin Formulation: A Topical Skin Formulation Containing a High Lipid Content. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 185-196.	1.9	10
175	Processing of brewing by-products to give food ingredient streams. European Food Research and Technology, 2019, 245, 545-558.	3.3	10
176	Effect of clove (Syzygium aromaticum) and seaweed (Kappaphycus alvarezii) water extracts pretreatment on lipid oxidation in sunâ€dried sardines (Rastrineobola argentea) from Lake Victoria, Tanzania. Food Science and Nutrition, 2019, 7, 1406-1416.	3.4	10
177	Role of Hydrophobicity on Antioxidant Activity in Lipid Dispersions. , 2013, , 261-296.		9
178	Oxidative stability and non-enzymatic browning reactions in Antarctic krill oil (Euphausia superba). Lipid Technology, 2014, 26, 111-114.	0.3	9
179	Oxidative Rancidity. , 2019, , 261-269.		9
180	Seasonal patterns in round goby (Neogobius melanostromus) catch rates, catch composition, and dietary quality. Fisheries Research, 2020, 222, 105412.	1.7	9

#	Article	IF	CITATIONS
181	Small-Angle Neutron Scattering Study of High Fat Fish Oil-In-Water Emulsion Stabilized with Sodium Caseinate and Phosphatidylcholine. Langmuir, 2020, 36, 2300-2306.	3.5	9
182	Enzymatic extraction of antioxidant ingredients from Danish seaweeds and characterization of active principles. Algal Research, 2021, 56, 102292.	4.6	9
183	Improving Oxidative Stability of Skinâ€Care Emulsions with Antioxidant Extracts from Brown Alga <scp><i>Fucus vesiculosus</i></scp> . JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1509-1520.	1.9	8
184	Fatty acids, carotenoids, and tocopherols from microalgae: targeting the accumulation by manipulating the light during growth. Journal of Applied Phycology, 2021, 33, 2783-2793.	2.8	7
185	Effects of antioxidants on the lipase-catalyzed acidolysis during production of structured lipids. European Journal of Lipid Science and Technology, 2005, 107, 464-468.	1.5	6
186	Comparison of two methods for extraction of volatiles from marine PL emulsions. European Journal of Lipid Science and Technology, 2013, 115, 246-251.	1.5	6
187	New parameters for evaluating the quality of commercial krill oil capsules from the aspect of lipid oxidation and non-enzymatic browning reactions. European Journal of Lipid Science and Technology, 2015, 117, 1214-1224.	1.5	6
188	Oxidative stability during storage of fish oil from filleting byâ€products of rainbow trout (<i>Oncorhynchus mykiss</i>) is largely independent of the processing and production temperature. European Journal of Lipid Science and Technology, 2016, 118, 967-973.	1.5	6
189	Oxidative stability of cod liver oil in the presence of herring roe phospholipids. Food Chemistry, 2020, 310, 125868.	8.2	6
190	APPLICATION OF ANTIOXIDANTS DURING SHORT-PATH DISTILLATION OF STRUCTURED LIPIDS. Journal of Food Lipids, 2007, 14, 244-262.	1.0	5
191	Influence of Dietary Lipid and Protein Sources on the Sensory Quality of Organic Rainbow Trout (<i>Oncorhynchus mykiss</i>) After Ice Storage. Journal of Aquatic Food Product Technology, 2014, 23, 333-346.	1.4	4
192	New natural antioxidants for protecting omega-3 rich products. Lipid Technology, 2012, 24, 59-62.	0.3	3
193	Novel sources of omega-3 for food and feed. European Journal of Lipid Science and Technology, 2013, 115, 1347-1347.	1.5	3
194	Quality changes of Antarctic krill powder during long term storage. European Journal of Lipid Science and Technology, 2017, 119, 1600085.	1.5	3
195	Improving oxidative stability of liquid fish oil supplements for pets. European Journal of Lipid Science and Technology, 2017, 119, 1600492.	1.5	3
196	Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly (Hermetia illucens) Larvae Protein Concentrate. Foods, 2021, 10, 2977.	4.3	3
197	Optimization of oxidative stability of omega-3 enriched foods. , 2012, , 197-217.		2
198	Odour Detection Threshold Determination of Volatile Compounds in Topical Skin Formulations. European Journal of Lipid Science and Technology, 2018, 120, 1700231.	1.5	2

#	Article	IF	CITATIONS
199	Lipid Oxidation and Degradation Products in Raw Materials: Lowâ€Fat Topical Skinâ€Care Formulations. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 853-864.	1.9	2
200	Food enrichment with omega-3 polyunsaturated fatty acids. , 2021, , 395-425.		2
201	Fish Liver Discards as a Source of Long-Chain Omega-3 Polyunsaturated Fatty Acids. Foods, 2022, 11, 905.	4.3	2
202	Lipid oxidation and traditional methods for evaluation. , 2021, , 183-200.		1
203	Introduction to the Special Issue: "Advance in Recovery and Application of Bioactive Compounds from Seafood― Foods, 2021, 10, 266.	4.3	1
204	II-24. Sensory evaluation of mayonnaise with fish oil. Food Quality and Preference, 1996, 7, 342.	4.6	0
205	Application of Functional Lipids in Foods. Nutraceutical Science and Technology, 2006, , 341-364.	0.0	Ο
206	Exploring the possibility of predicting long-term oxidative stability in prototype skincare formulations using various lipid oxidation initiators. International Journal of Cosmetic Science, 2019, 41, 89-98.	2.6	0
207	Introduction to delivery systems and stability issues. , 2021, , 107-117.		0
208	High fat (>50%) oil-in-water emulsions as omega-3 delivery systems. , 2021, , 255-273.		0
209	Omega-3 nano-microencapsulates produced by electrohydrodynamic processing. , 2021, , 345-370.		0
210	Physical and oxidative stability of nâ€3 delivery emulsions added seaweedâ€based polysaccharide extracts from Nordic brown algae <i>Saccharina latissima</i> . JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 239-251.	1.9	0