
Maria C Paiva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering hybrid textile braids for tendon and ligament repair application. Journal of Applied Polymer Science, 2022, 139, 52013.	2.6	4
2	<scp>3D</scp> â€printed cryomilled poly(εâ€caprolactone)/graphene composite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 961-972.	3.4	20
3	Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing. Applied Sciences (Switzerland), 2021, 11, 2580.	2.5	8
4	3D printing of graphene-based polymeric nanocomposites for biomedical applications. Functional Composite Materials, 2021, 2, .	1.4	26
5	Insight into the Effects of Solvent Treatment of Natural Fibers Prior to Structural Composite Casting: Chemical, Physical and Mechanical Evaluation. Fibers, 2021, 9, 54.	4.0	11
6	Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. Nanomaterials, 2021, 11, 2796.	4.1	7
7	Laser welding of thermoplastics: An overview on lasers, materials, processes and quality. Infrared Physics and Technology, 2021, 119, 103931.	2.9	20
8	Development of electrically conductive polymer nanocomposites for the automotive cable industry. Polimeros, 2021, 31, .	0.7	2
9	Rheologically Assisted Design of Conductive Adhesives for Stencil Printing on PCB. Materials, 2021, 14, 7734.	2.9	5
10	Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesives. Journal of Composites Science, 2020, 4, 105.	3.0	5
11	Potential of Graphene–Polymer Composites for Ligament and Tendon Repair: A Review. Advanced Engineering Materials, 2020, 22, 2000492.	3.5	12
12	Health and Safety Concerns Related to CNT and Graphene Products, and Related Composites. Journal of Composites Science, 2020, 4, 106.	3.0	23
13	Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials, 2020, 10, 557.	4.1	97
14	Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. Journal of Nanobiotechnology, 2020, 18, 23.	9.1	91
15	Assessment of English language performance scores and academic performance in an English-based curriculum for pharmacy students with English as a second language. Currents in Pharmacy Teaching and Learning, 2020, 12, 423-428.	1.0	4
16	Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications. Nano Express, 2020, 1, 030032.	2.4	1
17	A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes. Nanomaterials, 2019, 9, 1416.	4.1	10
18	Composite Films of Waterborne Polyurethane and Few-Layer Graphene—Enhancing Barrier, Mechanical, and Electrical Properties. Journal of Composites Science, 2019, 3, 35.	3.0	8

#	Article	IF	CITATIONS
19	Advanced electrically conductive adhesives for high complexity PCB assembly. AIP Conference Proceedings, 2019, , .	0.4	4
20	Evaluation of the role of carbon nanotubes on the electrical properties of poly(butylene) Tj ETQq0 0 0 rgBT /Ov 51, 3-25.	verlock 10 T 1.5	f 50 707 Td (⁻ 5
21	Could Alfa Fibers Substitute Glass Fibers in Composite Materials?. International Polymer Processing, 2019, 34, 133-142.	0.5	2
22	Nanostructured Biopolymer/Few‣ayer Graphene Freestanding Films with Enhanced Mechanical and Electrical Properties. Macromolecular Materials and Engineering, 2018, 303, 1700316.	3.6	6
23	Grapheneâ€polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies, 2018, 29, 687-700.	3.2	70
24	Effects of Particle Size and Surface Chemistry on the Dispersion of Graphite Nanoplates in Polypropylene Composites. Polymers, 2018, 10, 222.	4.5	25
25	Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling. Polymers, 2018, 10, 925.	4.5	71
26	Production of cellulose nanofibers from Alfa grass and application as reinforcement for polyvinyl alcohol. Plastics, Rubber and Composites, 2018, 47, 297-305.	2.0	13
27	Water Dispersible Few-Layer Graphene Stabilized by a Novel Pyrene Derivative at Micromolar Concentration. Nanomaterials, 2018, 8, 675.	4.1	9
28	Tracking the progression of dispersion of graphite nanoplates in a polypropylene matrix by melt mixing. Polymer Composites, 2017, 38, 947-954.	4.6	10
29	A novel approach of developing micro crystalline cellulose reinforcedÂcementitious composites with enhanced microstructureÂand mechanical performance. Cement and Concrete Composites, 2017, 78, 146-161.	10.7	44
30	Biomedical films of graphene nanoribbons and nanoflakes with natural polymers. RSC Advances, 2017, 7, 27578-27594.	3.6	15
31	Few-layer graphene aqueous suspensions for polyurethane composite coatings. MRS Advances, 2017, 2, 57-62.	0.9	4
32	Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid. Journal of Cleaner Production, 2017, 164, 575-586.	9.3	61
33	Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious composites. Powder Technology, 2017, 307, 1-9.	4.2	30
34	Cellulose Acetate/Carbon Nanotube Composites by Melt Mixing. Journal of Renewable Materials, 2017, 5, 145-153.	2.2	4
35	Melt mixing functionalized graphite nanoplates into PC/SAN blends. AIP Conference Proceedings, 2017,	0.4	3
36	Development of Dispersion during Compounding and Extrusion of Polypropylene/Graphite Nanoplates Composites. International Polymer Processing, 2017, 32, 614-622.	0.5	9

#	Article	IF	CITATIONS
37	High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers. Journal of Materials Chemistry B, 2016, 4, 7718-7730.	5.8	13
38	The influence of melt mixing on the stability of cellulose acetate and its carbon nanotube composites. Journal of Polymer Engineering, 2016, 36, 943-948.	1.4	3
39	Role of Carbonaceous Fragments on the Functionalization and Electrochemistry of Carbon Materials. ChemElectroChem, 2016, 3, 2138-2145.	3.4	7
40	Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Science and Technology of Advanced Materials, 2016, 17, 626-643.	6.1	66
41	Grafting of adipic anhydride to carbon nanotubes through a Diels-Alder cycloaddition/oxidation cascade reaction. Carbon, 2016, 98, 421-431.	10.3	14
42	Carbon Nanofibres and Nanotubes for Composite Applications. Textile Science and Clothing Technology, 2016, , 231-260.	0.5	6
43	Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter, 2016, 12, 77-86.	2.7	34
44	Morphology evolution during manufacture and extrusion of polypropylene/graphite nanoplates composites. AIP Conference Proceedings, 2015, , .	0.4	0
45	Probing the surface of oxidized carbon nanotubes by selective interaction with target molecules. Electrochemistry Communications, 2015, 57, 22-26.	4.7	8
46	Selfâ€Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes. ChemistryOpen, 2015, 4, 115-119.	1.9	6
47	Microinjection molding of polyamide 6/carbon nanotube composites. Nanocomposites, 2015, 1, 145-151.	4.2	1
48	Diels–Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability. Nanoscale, 2015, 7, 9238-9251.	5.6	26
49	Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cement and Concrete Research, 2015, 73, 215-227.	11.0	231
50	Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions. Composites Part A: Applied Science and Manufacturing, 2015, 78, 143-151.	7.6	35
51	Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. RSC Advances, 2015, 5, 5024-5031.	3.6	28
52	Enhancement in the performance of multi-walled carbon nanotube: Poly(methylmethacrylate) composite thin film ethanol sensors through appropriate nanotube functionalization. Materials Science in Semiconductor Processing, 2015, 31, 166-174.	4.0	23
53	Microinjection molding of polyamide 6. Polymers for Advanced Technologies, 2014, 25, 891-895.	3.2	12
54	The solvent effect on the sidewall functionalization of multi-walled carbon nanotubes with maleic anhydride. Carbon, 2014, 78, 401-414.	10.3	4

#	Article	IF	CITATIONS
55	Poly(lactic acid) composites with poly(lactic acid)â€modified carbon nanotubes. Journal of Polymer Science Part A, 2013, 51, 3740-3750.	2.3	33
56	Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. Journal of Polymer Research, 2013, 20, 1.	2.4	22
57	Efficient dispersion of multi-walled carbon nanotubes in aqueous solution by non-covalent interaction with perylene bisimides. RSC Advances, 2013, 3, 24535.	3.6	22
58	Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polymer Testing, 2013, 32, 701-707.	4.8	63
59	An Environment Friendly Highly Sensitive Ethanol Vapor Sensor Based on Polymethylethacrylate: Functionalized-Multiwalled Carbon Nanotubes Composite. Advanced Science, Engineering and Medicine, 2013, 5, 1062-1066.	0.3	6
60	Textile Sensor Applications with Composite Monofilaments of Polymer / Carbon Nanotubes. Advances in Science and Technology, 2012, 80, 65-70.	0.2	12
61	The effect of flow type and chemical functionalization on the dispersion of carbon nanofiber agglomerates in polypropylene. Composites Part A: Applied Science and Manufacturing, 2012, 43, 833-841.	7.6	49
62	The influence of carbon nanotube functionalization route on the efficiency of dispersion in polypropylene by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2189-2198.	7.6	29
63	Optimization of froth flotation procedure for poly(ethylene terephthalate) recycling industry. Polymer Engineering and Science, 2012, 52, 157-164.	3.1	23
64	Comparative analyses of the electrical properties and dispersion level of VGCNF and MWCNT: Epoxy composites. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1253-1261.	2.1	4
65	Flow Activation Volume in Composites of Polystyrene and Multiwall Carbon Nanotubes with and without Functionalization. Macromolecules, 2011, 44, 9804-9813.	4.8	5
66	Liquid sensing properties of melt processed polypropylene/poly(ε-caprolactone) blends containing multiwalled carbon nanotubes. Composites Science and Technology, 2011, 71, 1451-1460.	7.8	50
67	Functionalization of PET and PA6.6 woven fabrics. Applied Surface Science, 2011, 257, 7944-7951.	6.1	15
68	Organic functionalization of carbon nanofibers for composite applications. Polymer Composites, 2010, 31, 369-376.	4.6	6
69	Unzipping of Functionalized Multiwall Carbon Nanotubes Induced by STM. Nano Letters, 2010, 10, 1764-1768.	9.1	50
70	Controlled Functionalization of Carbon Nanotubes by a Solvent-free Multicomponent Approach. ACS Nano, 2010, 4, 7379-7386.	14.6	57
71	The Diels-Alder Cycloaddition Reaction in the Functionalization of Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2009, 9, 6234-6238.	0.9	12
72	Interfaces in Alfa Fibre-Polypropylene Matrix Composites. Materials Science Forum, 2008, 587-588, 227-231.	0.3	0

#	Article	IF	CITATIONS
73	The 1,3-Dipolar Cycloaddition Reaction in the Functionalization of Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2007, 7, 3441-3445.	0.9	18
74	Functionalization of Carbon Nanofibers by a Diels-Alder Addition Reaction. Journal of Nanoscience and Nanotechnology, 2007, 7, 3514-3518.	0.9	13
75	Functionalization of carbon nanofibres by 1,3-dipolar cycloaddition reactions and its effect on composite properties. Composites Science and Technology, 2007, 67, 806-810.	7.8	23
76	Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 2007, 67, 1132-1138.	7.8	169
77	Physical and mechanical characterization of nanocomposites with carbon nanotubes functionalized with the matrix polymer. Composite Interfaces, 2005, 12, 757-768.	2.3	17
78	Interfacial studies of carbon fibre / polycarbonate composites using dynamic mechanical analysis. E-Polymers, 2005, 5, .	3.0	3
79	Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon, 2004, 42, 2849-2854.	10.3	287
80	UV stabilization route for melt-processible PAN-based carbon fibers. Carbon, 2003, 41, 1399-1409.	10.3	80
81	A novel technique for the interfacial characterisation of glass fibre–polypropylene systems. Polymer Testing, 2003, 22, 907-913.	4.8	19
82	Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon, 2001, 39, 1057-1068.	10.3	115
83	A comparative analysis of alternative models to predict the tensile strength of untreated and surface oxidised carbon fibers. Carbon, 2001, 39, 1091-1101.	10.3	19
84	Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres. Carbon, 2000, 38, 1323-1337.	10.3	197
85	Ribbon fibres from naphthalene-based mesophase: Surface studies and fibre/matrix interactions in polycarbonate composites. Carbon, 1998, 36, 71-77.	10.3	4
86	Influence of thermal history on the results of fragmentation tests on high-modulus carbon-fibre/polycarbonate model composites. Composites Science and Technology, 1997, 57, 839-843.	7.8	28
87	The Potential of Beeswax Colloidal Emulsion/Films for Hydrophobization of Natural Fibers Prior to NTRM Manufacturing. Key Engineering Materials, 0, 916, 82-90.	0.4	2
88	Hybrid structures for Achilles' tendon repair. Polymers for Advanced Technologies, 0, , .	3.2	1