
Rachel L Zemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	2.9	82
2	Fatal COVID-19 and Non–COVID-19 Acute Respiratory Distress Syndrome Is Associated with Incomplete Alveolar Type 1 Epithelial Cell Differentiation from the Transitional State without Fibrosis. American Journal of Pathology, 2022, 192, 454-467.	3.8	18
3	Polypoloidy in Lung Regeneration: Double Trouble or Dynamic Duo?. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	2.9	0
4	New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 284-308.	2.9	9
5	Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology. JCI Insight, 2021, 6, .	5.0	9
6	Targeted phage display-based pulmonary vaccination in mice and non-human primates. Med, 2021, 2, 321-342.e8.	4.4	18
7	Persistent, Progressive Pulmonary Fibrosis and Epithelial Remodeling in Mice. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 669-676.	2.9	39
8	Long-term survivors of murine sepsis are predisposed to enhanced LPS-induced lung injury and proinflammatory immune reprogramming. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L451-L465.	2.9	7
9	Cellular senescence: friend or foe to respiratory viral infections?. European Respiratory Journal, 2020, 56, 2002708.	6.7	32
10	Mechanisms of ATII-to-ATI Cell Differentiation during Lung Regeneration. International Journal of Molecular Sciences, 2020, 21, 3188.	4.1	80
11	Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L294-L311.	2.9	11
12	The ex vivo perfused human lung is resistant to injury by high-dose <i>S. pneumoniae</i> bacteremia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L218-L227.	2.9	8
13	Ineffectual Type 2–to–Type 1 Alveolar Epithelial Cell Differentiation in Idiopathic Pulmonary Fibrosis: Persistence of the KRT8 ^{hi} Transitional State. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1443-1447.	5.6	107
14	Diversity at the border. Nature Immunology, 2020, 21, 112-114.	14.5	1
15	Diverse Injury Pathways Induce Alveolar Epithelial Cell CCL2/12, Which Promotes Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 622-632.	2.9	43
16	Efficient CD4Cre-Mediated Conditional KRas Expression in Alveolar Macrophages and Alveolar Epithelial Cells Causes Fatal Hyperproliferative Pneumonitis. Journal of Immunology, 2019, 203, 1208-1217.	0.8	2
17	Transitional human alveolar type II epithelial cells suppress extracellular matrix and growth factor gene expression in lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L283-L294.	2.9	14
18	Acute respiratory distress syndrome. Nature Reviews Disease Primers, 2019, 5, 18.	30.5	1,364

RACHEL L ZEMANS

#	Article	IF	CITATIONS
19	Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunology, 2019, 12, 545-554.	6.0	80
20	CCR2 mediates increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17. Mucosal Immunology, 2019, 12, 518-530.	6.0	23
21	Single-cell RNA sequencing identifies TGF-β as a key regenerative cue following LPS-induced lung injury. JCI Insight, 2019, 4, .	5.0	111
22	Macrophage migration inhibitory factor enhances influenza-associated mortality in mice. JCI Insight, 2019, 4, .	5.0	15
23	Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight, 2019, 4, .	5.0	21
24	Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. Journal of Clinical Investigation, 2019, 130, 157-170.	8.2	24
25	Neutrophil-mediated T-Cell Suppression in Influenza: Novel Finding Raising Additional Questions. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 423-425.	2.9	11
26	TGF beta inhibits expression of SP-A, SP-B, SP-C, but not SP-D in human alveolar type II cells. Biochemical and Biophysical Research Communications, 2018, 499, 843-848.	2.1	13
27	Flow Cytometry Underestimates and Planimetry Overestimates Alveolar Epithelial Type 2 Cell Expansion after Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 390-392.	5.6	18
28	Epithelial Heparan Sulfate Contributes to Alveolar Barrier Function and Is Shed during Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 363-374.	2.9	40
29	Emerging Roles of Inflammasomes in Acute Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 160-171.	5.6	42
30	TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts. Physiological Reports, 2018, 6, e13794.	1.7	16
31	Isolation of Rat and Mouse Alveolar Type II Epithelial Cells. Methods in Molecular Biology, 2018, 1809, 69-82.	0.9	10
32	Effects of bone marrow-derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF- <i>î±</i> , IL-1 <i>î²</i> , and IFN- <i>î³</i> . Physiological Reports, 2018, 6, e13831.	1.7	7
33	Hypoxia-Inducible Factor 1α Signaling Promotes Repair of the Alveolar Epithelium after Acute Lung Injury. American Journal of Pathology, 2017, 187, 1772-1786.	3.8	86
34	Unbiased Quantitation of Alveolar Type II to Alveolar Type I Cell Transdifferentiation during Repair after Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 519-526.	2.9	76
35	What drives neutrophils to the alveoli in ARDS?. Thorax, 2017, 72, 1-3.	5.6	418
36	Neutrophil transfer of <i>miR-223</i> to lung epithelial cells dampens acute lung injury in mice. Science Translational Medicine, 2017, 9, .	12.4	162

3

RACHEL L ZEMANS

#	Article	IF	CITATIONS
37	Multiple biomarkers predict disease severity, progression and mortality in COPD. Respiratory Research, 2017, 18, 117.	3.6	103
38	Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1178-L1188.	2.9	62
39	HIF1α Dependent CXCR4/SDF1 Signaling Promotes Alveolar Type II Cell Spreading and the Restitution of Epithelial Barrier Integrity After Lung Injury. FASEB Journal, 2015, 29, 863.14.	0.5	1
40	Stanniocalcin-1 is induced by hypoxia inducible factor in rat alveolar epithelial cells. Biochemical and Biophysical Research Communications, 2014, 452, 1091-1097.	2.1	23
41	Investigating the Role of Nucleotide-Binding Oligomerization Domain–Like Receptors in Bacterial Lung Infection. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1461-1468.	5.6	42
42	Divergent Functions of Toll-like Receptors during Bacterial Lung Infections. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 722-732.	5.6	41
43	Protein Tyrosine Phosphatase α Mediates Profibrotic Signaling in Lung Fibroblasts through TCF-β Responsiveness. American Journal of Pathology, 2014, 184, 1489-1502.	3.8	31
44	Matrix Metalloproteinases and Protein Tyrosine Kinases. Chest, 2014, 146, 1081-1091.	0.8	62
45	The Toll-Like Receptor 4 Polymorphism Asp299Gly but Not Thr399Ile Influences TLR4 Signaling and Function. PLoS ONE, 2014, 9, e93550.	2.5	51
46	Role of β-catenin-regulated CCN matricellular proteins in epithelial repair after inflammatory lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L415-L427.	2.9	57
47	A 46-Year-Old Man With Seizures, Brain Lesions, and Pulmonary Infiltrates. Chest, 2012, 141, 265-269.	0.8	0
48	Role of Chemokines in the Pathogenesis of Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 566-572.	2.9	201
49	The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nature Medicine, 2012, 18, 1217-1223.	30.7	631
50	The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 147-163.	22.4	818
51	Matrix Metalloproteinase 3 Is a Mediator of Pulmonary Fibrosis. American Journal of Pathology, 2011, 179, 1733-1745.	3.8	174
52	Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. Proceedings of the United States of America, 2011, 108, 15990-15995.	7.1	162
53	On, Around, and Through: Neutrophil-Endothelial Interactions in Innate Immunity. Physiology, 2011, 26, 334-347.	3.1	83
54	Myeloid Differentiation Protein-2–Dependent and –Independent Neutrophil Accumulation during <i>Escherichia coli</i> Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 701-709.	2.9	35

RACHEL L ZEMANS

#	Article	IF	CITATIONS
55	Leukocyte Elastase Induces Lung Epithelial Apoptosis via a PAR-1–, NF-κB–, and p53-Dependent Pathway. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 742-755.	2.9	63
56	Transepithelial Migration of Neutrophils. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 519-535.	2.9	309
57	A novel method for long term bone marrow culture and genetic modification of murine neutrophils via retroviral transduction. Journal of Immunological Methods, 2009, 340, 102-115.	1.4	12
58	Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation. Cellular Immunology, 2009, 258, 90-97.	3.0	22