
Tamotsu Kanai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874179/publications.pdf Version: 2024-02-01

TAMOTSU KANAL

#	Article	IF	CITATIONS
1	Effects of high-level expression of A1-ATPase on H2 production in Thermococcus kodakarensis. Journal of Bioscience and Bioengineering, 2020, 130, 149-158.	2.2	0
2	Thermophilic Degradation of Hemicellulose, a Critical Feedstock in the Production of Bioenergy and Other Value-Added Products. Applied and Environmental Microbiology, 2020, 86, .	3.1	13
3	Distinct Modified Nucleosides in tRNA ^{Trp} from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m ² G10/m ² ₂ G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. Journal of Bacteriology. 2019. 201.	2.2	15
4	The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis. MBio, 2019, 10, .	4.1	0
5	Crystal structures of an archaeal chitinase ChiD and its ligand complexes. Glycobiology, 2018, 28, 418-426.	2.5	3
6	ldentification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis. Journal of Bioscience and Bioengineering, 2018, 125, 320-326.	2.2	11
7	Structure of a [NiFe] hydrogenase maturation protease Hycl provides insights into its substrate selectivity. Biochemical and Biophysical Research Communications, 2018, 498, 782-788.	2.1	4
8	Crystal structures of a [NiFe] hydrogenase large subunit HyhL in an immature state in complex with a Ni chaperone HypA. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7045-7050.	7.1	27
9	Engineering of the Hyperthermophilic Archaeon Thermococcus kodakarensis for Chitin-Dependent Hydrogen Production. Applied and Environmental Microbiology, 2017, 83, .	3.1	17
10	An archaeal RNA binding protein, FAU-1, is a novel ribonuclease related to rRNA stability in Pyrococcus and Thermococcus. Scientific Reports, 2017, 7, 12674.	3.3	4
11	Pcal_1311, an alcohol dehydrogenase homologue from Pyrobaculum calidifontis, displays NADH-dependent high aldehyde reductase activity. Extremophiles, 2017, 21, 1101-1110.	2.3	2
12	Possible function of the second RecJ-like protein in stalled replication fork repair by interacting with Hef. Scientific Reports, 2017, 7, 16949.	3.3	8
13	Gene regulation of two ferredoxin:NADP+ oxidoreductases by the redox-responsive regulator SurR in Thermococcus kodakarensis. Extremophiles, 2017, 21, 903-917.	2.3	6
14	Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles, 2017, 21, 27-39.	2.3	9
15	The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis. Nucleic Acids Research, 2017, 45, 10693-10705.	14.5	22
16	A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus. Applied and Environmental Microbiology, 2016, 82, 3554-3562.	3.1	15
17	Crystal structure of a [NiFe] hydrogenase maturation protease HybD fromThermococcus kodakarensisKOD1. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1321-1327.	2.6	13
18	Crystal structures of chitin binding domains of chitinase from <i>ThermococcusÂkodakarensis </i> <scp>KOD</scp> 1. FEBS Letters, 2016, 590, 298-304.	2.8	22

#	Article	IF	CITATIONS
19	Sodium-Driven Energy Conversion for Flagellar Rotation of the Earliest Divergent Hyperthermophilic Bacterium. Biophysical Journal, 2016, 110, 468a.	0.5	0
20	Crystal structure of the TK2203 protein fromThermococcus kodakarensis, a putative extradiol dioxygenase. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 427-433.	0.8	3
21	Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium. Scientific Reports, 2015, 5, 12711.	3.3	27
22	Structural studies of a novel type of chitinase from archaea. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s216-s216.	0.1	0
23	Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production. Frontiers in Microbiology, 2015, 6, 847.	3.5	22
24	Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7701-7706.	7.1	54
25	Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from antarctic white rock. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2034-2040.	1.7	30
26	The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nature Communications, 2014, 5, 5132.	12.8	36
27	Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles, 2014, 18, 573-588.	2.3	9
28	Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis. Extremophiles, 2013, 17, 153-160.	2.3	8
29	Identification and Structure of a Novel Archaeal HypB for [NiFe] Hydrogenase Maturation. Journal of Molecular Biology, 2013, 425, 1627-1640.	4.2	20
30	Hydrogen Production by the Hyperthermophilic Archaeon <i>Thermococcus kodakarensis</i> . Journal of the Japan Petroleum Institute, 2013, 56, 267-279.	0.6	2
31	An Archaeal Histone Is Required for Transformation of Thermococcus kodakarensis. Journal of Bacteriology, 2012, 194, 6864-6874.	2.2	43
32	Characterization and in vitro interaction study of a [NiFe] hydrogenase large subunit from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Biochemical and Biophysical Research Communications, 2012, 417, 192-196.	2.1	16
33	Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, <i>Thermococcus kodakarensis</i> . Genes To Cells, 2012, 17, 923-937.	1.2	25
34	Salt Has a Biphasic Effect on the Higher-Order Structure of a DNAâ^'Protamine Complex. Journal of Physical Chemistry B, 2011, 115, 4453-4459.	2.6	17
35	Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes To Cells, 2011, 16, 1176-1189.	1.2	32
36	Application of hyperthermophiles and their enzymes. Current Opinion in Biotechnology, 2011, 22, 618-626.	6.6	76

#	Article	IF	CITATIONS
37	Synthesis and in situ insertion of a site-specific fluorescently labeled membrane protein into cell-sized liposomes. Analytical Biochemistry, 2011, 418, 97-101.	2.4	14
38	Structural basis for branchingâ€enzyme activity of glycoside hydrolase family 57: Structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon <i>Thermococcus Kodakaraensis</i> KOD1. Proteins: Structure, Function and Bioinformatics, 2011, 79, 547-557.	2.6	54
39	Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus. Nucleic Acids Research, 2011, 39, 2304-2318.	14.5	80
40	Distinct Physiological Roles of the Three [NiFe]-Hydrogenase Orthologs in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Journal of Bacteriology, 2011, 193, 3109-3116.	2.2	69
41	Dual Biosynthesis Pathway for Longer-Chain Polyamines in the Hyperthermophilic Archaeon <i>Thermococcus kodakarensis</i> . Journal of Bacteriology, 2010, 192, 4991-5001.	2.2	49
42	N 7-Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network. Nucleic Acids Research, 2010, 38, 942-957.	14.5	93
43	Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Journal of Biochemistry, 2010, 147, 361-370.	1.7	23
44	GFP synthesis in giant liposomes using the in vitro translation system of Thermococcus kodakaraensis. , 2009, , .		0
45	The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeonThermococcus kodakaraensis. FEMS Microbiology Letters, 2009, 295, 117-128.	1.8	15
46	Protein Synthesis in Giant Liposomes Using the <i>In Vitro</i> Translation System of <i>Thermococcus kodakaraensis</i> . IEEE Transactions on Nanobioscience, 2009, 8, 325-331.	3.3	19
47	Controlling the higher-order structure of DNA-protamine complex. , 2009, , .		0
48	Stabilization of tRNA (m ¹ G37) methyltransferase [TrmD] from <i>Aquifex aeolicus</i> by an intersubunit disulfide bond formation. Genes To Cells, 2008, 13, 807-816.	1.2	10
49	Archaeal RNA polymerase subunits E and F are not required for transcription <i>in vitro</i> , but a <i>Thermococcus kodakarensis</i> mutant lacking subunit F is temperatureâ€sensitive. Molecular Microbiology, 2008, 70, 623-633.	2.5	43
50	Expression Profiles and Physiological Roles of Two Types of Prefoldins from the Hyperthermophilic Archaeon Thermococcus kodakaraensis. Journal of Molecular Biology, 2008, 382, 298-311.	4.2	25
51	Effective approaches for the production of heterologous proteins using the Thermococcus kodakaraensis-based translation system. Journal of Biotechnology, 2008, 133, 177-182.	3.8	11
52	Synthesis of multiple gene products from a single polycistronic mRNA using the Thermococcus kodakaraensis-based translation system. , 2008, , .		0
53	A Global Transcriptional Regulator in Thermococcus kodakaraensis Controls the Expression Levels of Both Glycolytic and Gluconeogenic Enzyme-encoding Genes. Journal of Biological Chemistry, 2007, 282, 33659-33670.	3.4	79
			_

54 Cell-free synthesis of GFP under high temperature conditions. , 2007, , .

0

#	Article	IF	CITATIONS
55	A highly productive system for cell-free protein synthesis using a lysate of the hyperthermophilic archaeon, Thermococcus kodakaraensis. Applied Microbiology and Biotechnology, 2007, 74, 1153-1161.	3.6	19
56	A Novel Branching Enzyme of the GH-57 Family in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2006, 188, 5915-5924.	2.2	92
57	Cell-free protein synthesis at high temperature using a lysate of a hyperthermophile. , 2006, , .		Ο
58	Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile. Journal of Biotechnology, 2006, 126, 186-195.	3.8	43
59	Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Research, 2005, 15, 352-363.	5.5	376
60	Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology, 2005, 116, 271-282.	3.8	148
61	Expression of acetylcholine (ACh) and ACh-synthesizing activity in Archaea. Life Sciences, 2005, 77, 1935-1944.	4.3	26
62	Description of <i>Thermococcus kodakaraensis</i> sp. nov., a well studied hyperthermophilic archaeon previously reported as <i>Pyrococcus</i> sp. KOD1. Archaea, 2004, 1, 263-267.	2.3	261
63	Among Multiple Phosphomannomutase Gene Orthologues, Only One Gene Encodes a Protein with Phosphoglucomutase and Phosphomannomutase Activities in Thermococcus kodakaraensis. Journal of Bacteriology, 2004, 186, 6070-6076.	2.2	29
64	Characterization of a Cytosolic NiFe-Hydrogenase from the Hyperthermophilic Archaeon <i>Thermococcus kodakaraensis</i> KOD1. Journal of Bacteriology, 2003, 185, 1705-1711.	2.2	44
65	Variant Forms of α-Fetoprotein Transcripts Expressed in Human Hematopoietic Progenitors. Journal of Biological Chemistry, 2002, 277, 27629-27635.	3.4	37
66	The Unique Pentagonal Structure of an Archaeal Rubisco Is Essential for Its High Thermostability. Journal of Biological Chemistry, 2002, 277, 31656-31662.	3.4	59
67	A Novel Candidate for the True Fructose-1,6-bisphosphatase in Archaea. Journal of Biological Chemistry, 2002, 277, 30649-30655.	3.4	71
68	Novel and convenient methods for Candida tropicalis gene disruption using a mutated hygromycin B resistance gene. Archives of Microbiology, 2001, 176, 364-369.	2.2	13
69	Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determinant of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis. Applied Microbiology and Biotechnology, 2001, 56, 478-485.	3.6	21
70	An n -Alkane-Responsive Promoter Element Found in the Gene Encoding the Peroxisomal Protein of Candida tropicalis Does Not Contain a C 6 Zinc Cluster DNA-Binding Motif. Journal of Bacteriology, 2000, 182, 2492-2497.	2.2	9
71	Expression of the SNF1 gene from Candida tropicalis is required for growth on various carbon sources, including glucose. Archives of Microbiology, 1999, 172, 256-263.	2.2	12
72	A regulatory factor, Fil1p, involved in derepression of the isocitrate lyase gene in Saccharomyces cerevisiae . A possible mitochondrial protein necessary for protein synthesis in mitochondria. FEBS Journal, 1998, 256, 212-220.	0.2	21

#	Article	IF	CITATIONS
73	Derepression of Gene Expression Mediated by the 5' Upstream Region of the Isocitrate Lyase Gene of Candida Tropicalis is Controlled by two Distinct Regulatory Pathways in Saccharomyces Cerevisiae. FEBS Journal, 1997, 243, 748-752.	0.2	13
74	Analysis of carbon source-regulated gene expression by the upstream region of the Candida tropicalis malate synthase gene in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 80-88.	2.4	3
75	A novel heterologous gene expression system in Saccharomyces cerevisiae using the isocitrate lyase gene promoter from Candida tropicalis. Applied Microbiology and Biotechnology, 1996, 44, 759-765.	3.6	39
76	Effects of carbon source on the application of a novel foreign gene expression system in Saccharomyces cerevisiae using the upstream region of the Candida tropicalis isocitrate lyase gene (UPR-ICL). Journal of Bioscience and Bioengineering, 1995, 80, 529-533.	0.9	13
77	The upstream region of the isocitrate lyase gene (UPR-ICL) of Candida tropicalis induces gene expression in both Saccharomyces cerevisiae and Escherichia coli by acetate via two distinct promoters. Archives of Microbiology, 1995, 163, 322-328.	2.2	13
78	The upstream region of the isocitrate lyase gene (UPR-ICL) of Candida tropicalis induces gene expression in both Saccharomyces cerevisiae and Escherichia coli by acetate via two distinct promoters. Archives of Microbiology, 1995, 163, 322-328.	2.2	3