Simon Scheuring

List of Publications by Year in descending order

[^0]

1 Chemically induced protein cage assembly with programmable opening and cargo release. Science Advances, 2022, 8, eabj9424.
$2 \quad$ Snf7 spirals sense and alter membrane curvature. Nature Communications, 2022, 13, 2174.
12.8

8

TMEM16 scramblases thin the membrane to enable lipid scrambling. Nature Communications, 2022, 13,
2604.
$12.8 \quad 22$

Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS Nanoscience Au, 2022, 2, 404-413.

High-speed atomic force microscopy to study pore-forming proteins. Methods in Enzymology, 2021,
649, 189-217.

Structural dynamics of channels and transporters by high-speed atomic force microscopy. Methods in
Enzymology, 2021, 652, 127-159.

High-speed atomic force microscopy tracks the dynamic parts of the ribosome. Proceedings of the
National Academy of Sciences of the United States of America, 2021, 118, .

8 Scanning probe microscopy. Nature Reviews Methods Primers, 2021, 1, .
21.2

103
$9 \quad$ Localization atomic force microscopy. Nature, 2021, 594, 385-390. 27.8

10 Quantitative description of a contractile macromolecular machine. Science Advances, 2021, 7, .
10.3

9
11 Correlation of membrane protein conformational and functional dynamics. Nature Communications, 2021, 12, 4363.
$12.8 \quad 17$

Nanodissected elastically loaded clathrin lattices relax to increased curvature. Science Advances, 2021, 7, .
10.3

14

The hierarchical assembly of septins revealed by high-speed AFM. Nature Communications, 2020, 11, 5062.

Journal, 2020, 118, 617a.

Structure and mechanism of bactericidal mammalian perforin-2, an ancient agent of innate immunity.

Investigating Membrane Curvature Dependence of Snf7 Polymerization using High-Speed Atomic Force Microscopy. Biophysical Journal, 2019, 116, 372a.
23 Millisecond Time Resolution by HS-AFM Line Scanning of Fast GltPh Dynamics. Biophysical Journal, 0.5 0
2019, 116, 557a.High-Speed Atomic Force Microscopy (HS-AFM) of Clathrin-Coated Pits. Biophysical Journal, 2019, 116,92a.
27 Septin Hierarchical Assembly Revealed by High-Speed Atomic Force Microscopy(HS-AFM). BiophysicalJournal, 2019, 116, 252a.
30 Real time dynamics of Gating-Related conformational changes in CorA. ELife, 2019, 8, .6.0
37 The Annexin V Transmembrane Channel. Biophysical Journal, 2018, 114, 491a.

$38 \quad$| High-speed AFM height spectroscopy reveals Âps-dynamics of unlabeled biomolecules. Nature |
| :--- |
| Communications, 2018, 9, 4983. |

39 | An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. Nature Communications, |
| :--- |
| $2018,9,3978$. |

40 Structural titration of receptor ion channel GLIC gating by HS-AFM. Proceedings of the National
7.1

Academy of Sciences of the United States of America, 2018, 115, 10333-10338.
$41 \begin{aligned} & \text { High-Speed Force Spectroscopy for Single Protein Unfolding. Methods in Molecular Biology, 2018, } \\ & 1814,243-264\end{aligned}$
$0.9 \quad 10$
1814, 243-264.

High-Speed AFM Correlation Spectroscopy (HS-AMF-CS): Â μ S Protein Dynamics without Labels.
Biophysical Journal, 2018, 114, 70a-71a.

43 A novel phase-shift-based amplitude detector for a high-speed atomic force microscope. Review of
Scientific Instruments, 2018, 89, 083704.
1.3

24

44 Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1584-1588.
7.1

107
45 Recovery of ESCRT-III Filaments Subjected to Force: An â€ Invasive Modeâ€ ${ }^{\text {TM }}$ HS-AFM Study. Biophysical
Journal, 2017, 112, 92a.
0.50

46 Engineering a pH responsive pore forming protein. Scientific Reports, 2017, 7, 42231.
3.3

27

$$
\begin{aligned}
& \text { Dynamic remodeling of the dynamin helix during membrane constriction. Proceedings of the National } \\
& \text { Academy of Sciences of the United States of America, 2017, 114, 5449-5454. }
\end{aligned}
$$

High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nature Physics, 2017, 13, 771-775.

Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane
10.3

222
49 Dynamic subunit turnover in ESCRT-II assemblies is regulated by vps4 to
$0.5 \quad 0$

High-Speed Atomic Force Microscopy. Biophysical Journal, 2017, 112, 422a.

Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using
High-Speed Atomic Force Microscopy. Journal of Molecular Biology, 2017, 429, 977-986.

Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Scientific Reports, 2017, 7, 5117.

Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins. Biophysical Journal, 2017, 113, 2029-2036.

Automated force controller for amplitude modulation atomic force microscopy. Review of Scientific Instruments, 2016, 87, 053705.

Direct Visualization of Clutamate Transporter Transport Cycle. Biophysical Journal, 2016, 110,
178a-179a.

High Frequency Microrheology of Living Cells. Biophysical Journal, 2016, 110, 132a.

Temperature-Switchable Control of Ligand Display on Adlayers of Mixed Poly(lysine)-<i>g</i>-(PEO)
61 and Poly(lysine)-<i>g</i>-(ligand-modified poly-<i> $\mathrm{N}</ \mathrm{i}\rangle$-isopropylacrylamide). Biomacromolecules, 2016, 17, 1727-1736.

Identification of a Membrane-bound Prepore Species Clarifies the Lytic Mechanism of Actinoporins. Journal of Biological Chemistry, 2016, 291, 19210-19219.

Effect of Statins on the Nanomechanical Properties of Supported Lipid Bilayers. Biophysical Journal, 2016, 111, 363-372.

Temperatureâ€Controlled Highâ€§peed AFM: Realâ€đime Observation of Ripple Phase Transitions. Small, 2016, 12, 6106-6113.

Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nature Communications, 2016, 7, 12789.

High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nature Nanotechnology, 2016, 11, 783-790.
31.5

96

67 Glasslike Membrane Protein Diffusion in a Crowded Membrane. ACS Nano, 2016, 10, 2584-2590.
14.6

43

Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole. PLoS Pathogens, 2016, 12, el005597.

0

Bringing Force Probe Molecular Dynamics Simulations Closer to Experiments. Biophysical Journal, 2015, 108, 166a.

High-Speed Force Spectroscopy Unbinds Streptavidin-Biotin at the Velocity of Molecular Dynamics
Simulations. Biophysical Journal, 2015, 108, 356a.
0.5

Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion
Geometry-Dependent Mechanical Response on Local and Global Scales. ACS Nano, 2015, 9, 5846-5856.
73
74

Structural, Mechanical, and Dynamical Variability of the Actin Cortex in Living Cells. Biophysical

High-Speed Atomic Force Microscopy: Integration with Optical Microscopy and High-Speed Force .

A hybrid high-speed atomic forceâ€"optical microscope for visualizing single membrane proteins on
eukaryotic cells. Nature Communications, 2013, 4, 2155 . 0.5 1

86 High-Speed Atomic Force Microscopy Tracks Toxin Action. Biophysical Journal, 2013, 105, 1292.

```
High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations.
Science, 2013, 342, 741-743.

Mechanics of proteins with a focus on atomic force microscopy. Journal of Nanobiotechnology, 2013,

89 The mechanics of membrane proteins is a signature of biological function. Soft Matter, 2013, 9, 7866.

91 Investigation of photosynthetic membrane structure using atomic force microscopy. Trends in Plant Science, 2013, 18, 277-286.

Structural and Mechanical Heterogeneity of the Erythrocyte Membrane Reveals Hallmarks of Membrane Stability. ACS Nano, 2013, 7, 1054-1063.

Cellular capsules as a tool for multicellular spheroid production and for investigating the
93 mechanics of tumor progression in vitro. Proceedings of the National Academy of Sciences of the
7.1

United States of America, 2013, 110, 14843-14848.

High-Resolution AFM Imaging of Native Biological Membranes. , 2013, , .
0

95 Nanomechanical Characterization of the Stiffness of Eye Lens Cells: A Pilot Study. , 2012, 53, 2151.

Direct Measurement of the Mechanical Properties of Lipid Phases in Supported Bilayers. Biophysical
Journal, 2012, 102, L01-L03.
0.5

174

High-Speed Atomic Force Microscopy: Cooperative Adhesion and Dynamic Equilibrium of Junctional Microdomain Membrane Proteins. Journal of Molecular Biology, 2012, 423, 249-256.

Complete Lateral and Angular Diffusion and Protein-Protein Interaction Description of a Membrane
Protein. Biophysical Journal, 2012, 102, 413a-414a.

Software for drift compensation, particle tracking and particle analysis of highâ€speed atomic force microscopy image series. Journal of Molecular Recognition, 2012, 25, 292-298.

101 AFMBioMed Conference: Paris, France, August 2011. Journal of Molecular Recognition, 2012, 25, \(239-240\).
\(2.1 \quad 7\)

102 Characterization of the motion of membrane proteins using high-speed atomic force microscopy.
Nature Nanotechnology, 2012, 7, 525-529.
31.5

184

103 Binding Kinetics of Inter-Connexon Interaction. Biophysical Journal, 2011, 100, 564a.
0.5

0

Mechanical Mapping of Single Membrane Proteins at Submolecular Resolution. Nano Letters, 2011, 11,
104 3983-3986.
9.1

122

Native architecture of the photosynthetic membrane from Rhodobacter veldkampii. Journal of
Structural Biology, \(2011,173,138-145\).
2.8

38

Two-Dimensional Kinetics of Inter-Connexin Interactions from Single-Molecule Force Spectroscopy.
Journal of Molecular Biology, 2011, 412, 72-79.
4.2

11

107 High-speed atomic force microscopy: Structure and dynamics of single proteins. Current Opinion in
Chemical Biology, 2011, 15, 704-709.
6.1

29

Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Molecular Microbiology, 2010, 75, 1327-1336.
2.5

82

> 115 Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5357-5362.

116 Experimental Evidence for Membrane-Mediated Protein-Protein Interaction. Biophysical Journal, 2010, 99, L47-L49.
0.5

71
117 Automated setpoint adjustment for biological contact mode atomic force microscopy imaging.
Nanotechnology, 2010, 21, 035104.
Malformation of junctional microdomains in cataract lens membranes from a type II diabetes patient.
Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaboratemachinery. Photosynthesis Research, 2009, 102, 197-211.\(2.6 \quad 18\)2.8
120 Highâ€resolution architecture of the outer membrane of the Gramâ€negative bacteria <i>Roseobacterdenitrificans</i>. Molecular Microbiology, 2009, 74, 1211-1222.2.568
Nanoholes by soft UV nanoimprint lithography applied to study of membrane proteins. 2.4 ..... 29
Microelectronic Engineering, 2009, 86, 583-585.Quinone Pathways in Entire Photosynthetic Chromatophores of Rhodospirillum photometricum.4.230
122 Journal of Molecular Biology, 2009, 393, 27-35.Structural Information, Resolution, and Noise in High-Resolution Atomic Force Microscopy0.551
Topographs. Biophysical Journal, 2009, 96, 3822-3831.Contact-Mode High-Resolution High-Speed Atomic Force Microscopy Movies of the Purple Membrane.

The Supramolecular Assembly of the Photosynthetic Apparatus of Purple Bacteria Investigated by
High-Resolution Atomic Force Microscopy. Advances in Photosynthesis and Respiration, 2009, , 941-952.
1.0

6

128 Probing Single Membrane Proteins by Atomic Force Microscopy., 2009, , 449-485.
0
Mini review on the structure and supramolecular assembly of VDAC. Journal of Bioenergetics and
Biomembranes, 2008, 40, 133-138.

130 The Supramolecular Architecture of the Bacterial Photosynthetic Apparatus Studied by Atomic Force Microscopy (AFM). Advances in Photosynthesis and Respiration, 2008, , 1-11.
\(1.0 \quad 1\)
\begin{tabular}{|c|c|c|c|}
\hline 131 & From high-resolution AFM topographs to atomic models of supramolecular assemblies. Journal of Structural Biology, 2007, 159, 268-276. & 2.8 & 70 \\
\hline 132 & Structural models of the supramolecular organization of AQPO and connexons in junctional microdomains. Journal of Structural Biology, 2007, 160, 385-394. & 2.8 & 48 \\
\hline 133 & Supramolecular Assembly of VDAC in Native Mitochondrial Outer Membranes. Journal of Molecular Biology, 2007, 369, 413-418. & 4.2 & 133 \\
\hline 134 & Human Cataract Lens Membrane at Subnanometer Resolution. Journal of Molecular Biology, 2007, 374, 162-169. & 4.2 & 55 \\
\hline 135 & Direct Visualization of KirBac3.1 Potassium Channel Gating by Atomic Force Microscopy. Journal of Molecular Biology, 2007, 374, 500-505. & 4.2 & 28 \\
\hline 136 & Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes. Biophysical Journal, 2007, 93, 2870-2876. & 0.5 & 85 \\
\hline 137 & Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition, 2007, 20, 418-431. & 2.1 & 165 \\
\hline 138 & The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Reports, 2007, 8, 51-55. & 4.5 & 100 \\
\hline 139 & Dynamics and Diffusion in Photosynthetic Membranes from Rhodospirillum Photometricum. Biophysical Journal, 2006, 91, 3707-3717. & 0.5 & 38 \\
\hline
\end{tabular}

140 The Photosynthetic Apparatus of Rhodopseudomonas palustris: Structures and Organization. Journal
4.2

130 of Molecular Biology, 2006, 358, 83-96.
141 High-Resolution Imaging and Force Measurement of Individual Membrane Proteins by AFM. Current
Nanoscience, 2006, 2, 329-335.
1.2

Manipulating and imaging individual membrane proteins by AFM. Surface and Interface Analysis, 2006,
38, 1413-1418.

Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nature
Methods, 2006, 3, 1007-1012.
19.0

97
145 Single-molecule studies of membrane proteins. Current Opinion in Structural Biology, 2006, 16,
\(489-495\).

Structure of the Dimeric PufX-containing Core Complex of Rhodobacter blasticus by in Situ Atomic Force Microscopy. Journal of Biological Chemistry, 2005, 280, 1426-1431.
3.4

115
12.6

269
147 Chromatic Adaptation of Photosynthetic Membranes. Science, 2005, 309, 484-487.
4.2

74
148 The 4.5Ã... Structure of Human AQP2. Journal of Molecular Biology, 2005, 350, 278-289.

Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 investigated by high
resolution AFM. Journal of Structural Biology, 2005, 149, \(79-86\).
resolution AFM. Journal of Structural Biology, 2005, 149, 79-86.
2.8

Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. Journal of Structural Biology, 2005, 152, 221-228.
2.8

Watching the components of photosynthetic bacterial membranes and their in situ organisation by
atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1712, 109-127.
2.6

102

Carbohydrateâ€"carbohydrate interaction provides adhesion force and specificity for cellular
recognition. Journal of Cell Biology, 2004, 165, 529-537.

Watching the photosynthetic apparatus in native membranes. Proceedings of the National Academy of
Sciences of the United States of America, 2004, 101, 11293-11297.

Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum
photometricum. EMBO Journal, 2004, 23, 4127-4133.

Structural Role of PufX in the Dimerization of the Photosynthetic Core Complex of Rhodobacter
sphaeroides. Journal of Biological Chemistry, 2004, 279, 3620-3626.

AFM Characterization of Tilt and Intrinsic Flexibility of Rhodobacter sphaeroides Light Harvesting
Complex 2 (LH2). Journal of Molecular Biology, 2003, 325, 569-580.
4.2

84
5.2

129

Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core
157 complex in native membranes by AFM. Proceedings of the National Academy of Sciences of the United
7.1

237
States of America, 2003, 100, 1690-1693.

Introduction to Atomic Force Microscopy (AFM) in Biology. Current Protocols in Protein Science, 2002, 29, Unit 17.7.

Sampling the conformational space of membrane protein surfaces with the AFM. European Biophysics Journal, 2002, 31, 172-178.
2.2

70

High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2. EMBO Journal, 2001, 20, 3029-3035.
167 Direct Observation of Postadsorption Aggregation of Antifreeze Clycoproteins on Silicates. ..... 3.5

Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope. Journal of Microscopy, 1999, 193, 28-35.```


[^0]:    Source: https://exaly.com/author-pdf/8872712/publications.pdf
    Version: 2024-02-01

