Camilla Evangelisti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871674/publications.pdf

Version: 2024-02-01

81 papers 8,092 citations

39 h-index 78 g-index

82 all docs 82 docs citations

times ranked

82

12899 citing authors

#	Article	IF	CITATIONS
1	The wide and growing range of lamin B-related diseases: from laminopathies to cancer. Cellular and Molecular Life Sciences, 2022, 79, 126.	5.4	29
2	Cell Communication: Intracellular Pathways – The PI3K/Akt/mTOR Pathway. , 2022, , .		0
3	GSK-3: a multifaceted player in acute leukemias. Leukemia, 2021, 35, 1829-1842.	7.2	20
4	Targeting Wnt/βâ€catenin and PI3K/Akt/mTOR pathways in Tâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2020, 235, 5413-5428.	4.1	40
5	B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients?. Cancers, 2020, 12, 3498.	3.7	11
6	Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells, 2020, 9, 774.	4.1	14
7	The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers, 2020, 12, 333.	3.7	29
8	The Role Played by Wnt/ \hat{l}^2 -Catenin Signaling Pathway in Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 2020, 21, 1098.	4.1	38
9	New advances in targeting aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Advances in Biological Regulation, 2019, 74, 100649.	2.3	17
10	Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1322-1337.	4.1	20
11	The Cutting Edge: The Role of mTOR Signaling in Laminopathies. International Journal of Molecular Sciences, 2019, 20, 847.	4.1	27
12	Elevated TGF \hat{I}^22 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus, 2018, 9, 337-349.	2.2	25
13	Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia, 2018, 32, 1-10.	7.2	74
14	Phosphatidylinositol 3â€kinase inhibition potentiates glucocorticoid response in Bâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2018, 233, 1796-1811.	4.1	28
15	Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. International Journal of Molecular Sciences, 2018, 19, 1878.	4.1	34
16	PI3K isoform inhibition associated with anti Bcr-Abl drugs shows in vitro increased anti-leukemic activity in Philadelphia chromosome-positive B-acute lymphoblastic leukemia cell lines. Oncotarget, 2017, 8, 23213-23227.	1.8	15
17	The PI3K/Akt/mTOR Pathway. , 2016, , 128-135.		2
18	Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia, 2016, 30, 2142-2151.	7.2	34

#	Article	IF	CITATIONS
19	Potential therapeutic effects of the MTOR inhibitors for preventing ageing and progeriaâ€related disorders. British Journal of Clinical Pharmacology, 2016, 82, 1229-1244.	2.4	47
20	Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. Journal of Hematology and Oncology, 2016, 9, 114.	17.0	47
21	Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 449-463.	4.1	104
22	Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB. Oncotarget, 2016, 7, 1323-1340.	1.8	39
23	3232 Synergistic cytotoxic effects of bortezomib and ck2 inhibitor cx-4945 in acute lymphoblastic leukemia: turning off the prosurvival er chaperone BIP/GRP78 and turning on the proapoptotic NF-βb. European Journal of Cancer, 2015, 51, S659-S660.	2.8	1
24	Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget, 2015, 6, 7424-7437.	1.8	25
25	Current treatment strategies for inhibiting mTOR in cancer. Trends in Pharmacological Sciences, 2015, 36, 124-135.	8.7	234
26	Autophagy in acute leukemias: A double-edged sword with important therapeutic implications. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 14-26.	4.1	74
27	PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget, 2015, 6, 10399-10414.	1.8	32
28	Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle, 2014, 13, 2237-2247.	2.6	30
29	GSK-3Î ² : A key regulator of breast cancer drug resistance. Cell Cycle, 2014, 13, 697-698.	2.6	8
30	Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia, 2014, 28, 543-553.	7.2	74
31	Targeting Signaling Pathways in T-cell acute lymphoblastic leukemia initiating cells. Advances in Biological Regulation, 2014, 56, 6-21.	2.3	34
32	Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (Review). International Journal of Oncology, 2014, 45, 909-918.	3.3	20
33	Assessment of the effect of sphingosine kinase inhibitors on apoptosis, unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget, 2014, 5, 7886-7901.	1.8	36
34	New Agents and Approaches for Targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR Cell Survival Pathways. , 2013, , 331-372.		1
35	Increased NGAL (Lnc2) expression after chemotherapeutic drug treatment. Advances in Biological Regulation, 2013, 53, 146-155.	2.3	14
36	Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opinion on Therapeutic Targets, 2013, 17, 921-936.	3.4	15

#	Article	IF	Citations
37	Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia, 2012, 26, 2336-2342.	7.2	76
38	PI3K/AKT/mTORC1 and MEK/ERK signaling in T-cell acute lymphoblastic leukemia: New options for targeted therapy. Advances in Biological Regulation, 2012, 52, 214-227.	2.3	23
39	Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opinion on Therapeutic Targets, 2012, 16, 729-742.	3.4	37
40	The emerging multiple roles of nuclear Akt. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2168-2178.	4.1	165
41	Targeting the Cancer Initiating Cell: The Ultimate Target for Cancer Therapy. Current Pharmaceutical Design, 2012, 18, 1784-1795.	1.9	39
42	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	1.8	279
43	Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response Oncotarget, 2012, 3, 954-987.	1.8	244
44	DGKζ is degraded through the cytoplasmic ubiquitin–proteasome system under excitotoxic conditions, which causes neuronal apoptosis because of aberrant cell cycle reentry. Cellular Signalling, 2012, 24, 1573-1582.	3.6	19
45	Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget, 2012, 3, 371-394.	1.8	109
46	Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: Eliminating activity by targeting at different levels. Oncotarget, 2012, 3, 811-823.	1.8	58
47	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	1.8	41
48	Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia, 2011, 25, 781-791.	7.2	91
49	Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia, 2011, 25, 1064-1079.	7.2	190
50	Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia, 2011, 25, 1080-1094.	7.2	232
51	Preclinical testing of the Akt inhibitor triciribine in Tâ€cell acute lymphoblastic leukemia. Journal of Cellular Physiology, 2011, 226, 822-831.	4.1	59
52	Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cells. Current Medicinal Chemistry, 2011, 18, 2715-2726.	2.4	109
53	Nuclear phosphoinositides and their roles in cell biology and disease. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 436-457.	5.2	30
54	Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, 3, 192-222.	3.1	520

#	Article	IF	CITATIONS
55	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	1.8	509
56	The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 991-1002.	4.1	106
57	Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK- and PP2A-dependent mechanisms. Leukemia, 2010, 24, 687-698.	7.2	34
58	Activity of the Novel Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 against T-Cell Acute Lymphoblastic Leukemia. Cancer Research, 2010, 70, 8097-8107.	0.9	152
59	The Emerging Role of the Phosphatidylinositol 3-Kinase/ Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cell Biology. Cancers, 2010, 2, 1576-1596.	3.7	40
60	Identification of a functional nuclear export sequence in diacyl glycerol kinase-ζ. Cell Cycle, 2010, 9, 384-388.	2.6	26
61	The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histology and Histopathology, 2010, 25, 669-80.	0.7	30
62	The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1, 89-103.	1.8	227
63	TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-ζ-dependent cell cycle arrest. Cellular Signalling, 2009, 21, 801-809.	3.6	26
64	Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opinion on Investigational Drugs, 2009, 18, 1333-1349.	4.1	104
65	Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. Advances in Enzyme Regulation, 2008, 48, 113-135.	2.6	20
66	Involvement of p53 and Raf/MEK/ERK pathways in hematopoietic drug resistance. Leukemia, 2008, 22, 2080-2090.	7.2	70
67	Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia, 2008, 22, 147-160.	7.2	105
68	Synergistic Proapoptotic Activity of Recombinant TRAIL Plus the Akt Inhibitor Perifosine in Acute Myelogenous Leukemia Cells. Cancer Research, 2008, 68, 9394-9403.	0.9	84
69	Nuclear diacylglycerol kinaseâ€Î¶ is a negative regulator of cell cycle progression in C2C12 mouse myoblasts. FASEB Journal, 2007, 21, 3297-3307.	0.5	41
70	Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Module for Acute Myelogenous Leukemia Therapy: From Bench to Bedside. Current Medicinal Chemistry, 2007, 14, 2009-2023.	2.4	116
71	The Phosphoinositide 3-Kinase (PI3K)/AKT Signaling Pathway as a Therapeutic Target for the Treatment of Human Acute Myeloid Leukemia (AML). Current Signal Transduction Therapy, 2007, 2, 246-256.	0.5	3
72	Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia, 2007, 21, 427-438.	7.2	170

#	Article	IF	CITATION
73	The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia, 2007, 21, 886-896.	7.2	81
74	Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1263-1284.	4.1	1,858
75	Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in hematopoietic drug resistance. Advances in Enzyme Regulation, 2007, 47, 64-103.	2.6	77
76	Nuclear protein kinase C. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 542-551.	2.4	72
77	Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia, 2006, 20, 911-928.	7.2	295
78	Intranuclear 3′-phosphoinositide metabolism and Akt signaling: New mechanisms for tumorigenesis and protection against apoptosis?. Cellular Signalling, 2006, 18, 1101-1107.	3.6	121
79	Subnuclear localization and differentiation-dependent increased expression of DGK-ζ in C2C12 mouse myoblasts. Journal of Cellular Physiology, 2006, 209, 370-378.	4.1	33
80	Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. British Journal of Haematology, 2005, 130, 716-725.	2.5	43
81	Nuclear inositol lipid metabolism: More than just second messenger generation?. Journal of Cellular Biochemistry, 2005, 96, 285-292.	2.6	36