
Aaron P Turkewitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote. PLoS Biology, 2006, 4, e286.	5.6	657
2	Evolutionary cell biology: Two origins, one objective. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16990-16994.	7.1	108
3	Functional genomics: the coming of age for Tetrahymena thermophila. Trends in Genetics, 2002, 18, 35-40.	6.7	107
4	Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 2020, 17, 481-494.	19.0	97
5	Elucidation of Clathrin-Mediated Endocytosis in Tetrahymena Reveals an Evolutionarily Convergent Recruitment of Dynamin. PLoS Genetics, 2005, 1, e52.	3.5	96
6	Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in Tetrahymena thermophila. PLoS Genetics, 2010, 6, e1001155.	3.5	79
7	Wholeâ€cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from <i>Tetrahymena thermophila</i> . Microbial Biotechnology, 2011, 4, 513-522.	4.2	78
8	Out with a Bang! Tetrahymena as a Model System to Study Secretory Granule Biogenesis. Traffic, 2004, 5, 63-68.	2.7	62
9	An Alveolata secretory machinery adapted to parasite host cell invasion. Nature Microbiology, 2021, 6, 425-434.	13.3	53
10	Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. BioMetals, 2014, 27, 195-205.	4.1	51
11	Lysosomal sorting receptors are essential for secretory granule biogenesis in <i>Tetrahymena</i> . Journal of Cell Biology, 2013, 203, 537-550.	5.2	49
12	N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biology, 2018, 19, 200.	8.8	45
13	Proteolytic Processing and Ca ²⁺ -binding Activity of Dense-Core Vesicle Polypeptides in <i>Tetrahymena</i> . Molecular Biology of the Cell, 1998, 9, 497-511.	2.1	40
14	Genetic, Genomic, and Functional Analysis of the Granule Lattice Proteins in Tetrahymena Secretory Granules. Molecular Biology of the Cell, 2005, 16, 4046-4060.	2.1	33
15	In Vivo Analysis of the Major Exocytosis-sensitive Phosphoprotein in Tetrahymena. Journal of Cell Biology, 1997, 139, 1197-1207.	5.2	31
16	Large-scale purification of murine I-Ak and I-Ek antigens and characterization of the purified proteins. Molecular Immunology, 1983, 20, 1139-1147.	2.2	29
17	[8] Purification of murine MHC antigens by monoclonal antibody affinity chromatography. Methods in Enzymology, 1983, 92, 86-109.	1.0	29
18	Analysis of Expressed Sequence Tags (ESTs) in the Ciliated Protozoan Tetrahymena thermophila. Journal of Eukaryotic Microbiology, 2002, 49, 99-107.	1.7	29

AARON P TURKEWITZ

#	Article	IF	CITATIONS
19	Genomic and Proteomic Evidence for a Second Family of Dense Core Granule Cargo Proteins in Tetrahymena thermophila. Journal of Eukaryotic Microbiology, 2005, 52, 291-297.	1.7	29
20	Analysis of a Mutant Exhibiting Conditional Sorting to Dense Core Secretory Granules in <i>Tetrahymena thermophila</i> . Genetics, 2001, 159, 1605-1616.	2.9	28
21	An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic, 2017, 18, 18-28.	2.7	27
22	Core Formation and the Acquisition of Fusion Competence are Linked During Secretory Granule Maturation in Tetrahymena. Traffic, 2005, 6, 303-323.	2.7	25
23	Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Current Biology, 2018, 28, 697-710.e13.	3.9	25
24	Genome plasticity in response to stress in <i>Tetrahymena thermophila</i> : selective and reversible chromosome amplification and paralogous expansion of metallothionein genes. Environmental Microbiology, 2018, 20, 2410-2421.	3.8	25
25	Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS ONE, 2017, 12, e0189076.	2.5	25
26	Resolving the homology—function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Molecular and Biochemical Parasitology, 2016, 209, 88-103.	1.1	24
27	A Dynamin-Related Protein Required for Nuclear Remodeling in Tetrahymena. Current Biology, 2008, 18, 1227-1233.	3.9	23
28	New Class of Cargo Protein in Tetrahymena thermophila Dense Core Secretory Granules. Eukaryotic Cell, 2002, 1, 583-593.	3.4	22
29	A role for convergent evolution in the secretory life of cells. Trends in Cell Biology, 2007, 17, 157-164.	7.9	22
30	Conservation and Innovation in Tetrahymena Membrane Traffic: Proteins, Lipids, and Compartments. Methods in Cell Biology, 2012, 109, 141-175.	1.1	22
31	Immunocytochemical analysis of secretion mutants ofTetrahymena using a mucocyst-specific monoclonal antibody. Genesis, 1992, 13, 151-159.	2.1	21
32	Independent Transport and Sorting of Functionally Distinct Protein Families in <i>Tetrahymena thermophila</i> Dense Core Secretory Granules. Eukaryotic Cell, 2009, 8, 1575-1583.	3.4	18
33	An aspartyl cathepsin, <i>CTH3</i> , is essential for proprotein processing during secretory granule maturation in <i>Tetrahymena thermophila</i> . Molecular Biology of the Cell, 2014, 25, 2444-2460.	2.1	18
34	An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in <i>Tetrahymena thermophila</i> . Molecular Biology of the Cell, 2017, 28, 1551-1564.	2.1	18
35	The cytochrome b5 dependent C-5(6) sterol desaturase DES5A from the endoplasmic reticulum of Tetrahymena thermophila complements ergosterol biosynthesis mutants in Saccharomyces cerevisiae. Steroids, 2012, 77, 1313-1320.	1.8	17
36	Diversification of CORVET tethers facilitates transport complexity in <i>Tetrahymena thermophila</i> . Journal of Cell Science, 2020, 133, .	2.0	16

AARON P TURKEWITZ

#	Article	lF	CITATIONS
37	Chapter 16 Regulated Protein Secretion in Tetrahymena thermophila. Methods in Cell Biology, 1999, 62, 347-362.	1.1	15
38	<i>Tetrahymena thermophila</i> : A divergent perspective on membrane traffic. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 500-516.	1.3	15
39	ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms. Molecular Biology of the Cell, 2020, 31, 2892-2903.	2.1	15
40	Proprotein Processing within Secretory Dense Core Granules ofTetrahymena thermophila. Journal of Biological Chemistry, 2003, 278, 4087-4095.	3.4	14
41	Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p. Eukaryotic Cell, 2015, 14, 817-833.	3.4	13
42	A Rab-based view of membrane traffic in the ciliate <i>Tetrahymena thermophila</i> . Small GTPases, 2011, 2, 222-226.	1.6	12
43	Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in <i>Tetrahymena thermophila</i> . G3: Genes, Genomes, Genetics, 2016, 6, 2505-2516.	1.8	10
44	The evolution of germ–soma nuclear differentiation in eukaryotic unicells. Current Biology, 2020, 30, R502-R510.	3.9	8
45	A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila. PLoS Genetics, 2022, 18, e1010194.	3.5	6
46	Biogenesis of Dense-Core Secretory Granules. , 2009, , 183-209.		5
47	The Co-regulation Data Harvester: Automating gene annotation starting from a transcriptome database. SoftwareX, 2017, 6, 165-171.	2.6	3
48	Stalking the wild T etrahymena. Molecular Ecology, 2013, 22, 912-914.	3.9	1
49	Elucidation of Clathrin-Mediated Endocytosis in Tetrahymena Reveals an Evolutionarily Convergent Recruitment of Dynamin. PLoS Genetics, 2005, preprint, e52.	3.5	1