Nicolien T Van Ravesteyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871429/publications.pdf

Version: 2024-02-01

54 papers

3,172 citations

236833 25 h-index 52 g-index

55 all docs 55 does citations

55 times ranked 3572 citing authors

#	Article	IF	Citations
1	Effects of Mammography Screening Under Different Screening Schedules: Model Estimates of Potential Benefits and Harms. Annals of Internal Medicine, 2009, 151, 738.	2.0	509
2	Risk Factors for Breast Cancer for Women Aged 40 to 49 Years. Annals of Internal Medicine, 2012, 156, 635.	2.0	316
3	Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast Cancer Screening Strategies. Annals of Internal Medicine, 2016, 164, 215.	2.0	209
4	Association of Screening and Treatment With Breast Cancer Mortality by Molecular Subtype in US Women, 2000-2012. JAMA - Journal of the American Medical Association, 2018, 319, 154.	3.8	209
5	Benefits, Harms, and Cost-Effectiveness of Supplemental Ultrasonography Screening for Women With Dense Breasts. Annals of Internal Medicine, 2015, 162, 157-166.	2.0	175
6	Interpreting Overdiagnosis Estimates in Population-based Mammography Screening. Epidemiologic Reviews, 2011, 33, 111-121.	1.3	174
7	Personalizing Age of Cancer Screening Cessation Based on Comorbid Conditions: Model Estimates of Harms and Benefits. Annals of Internal Medicine, 2014, 161, 104.	2.0	123
8	Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening. Annals of Internal Medicine, 2016, 164, 205.	2.0	121
9	Effects of Screening and Systemic Adjuvant Therapy on ER-Specific US Breast Cancer Mortality. Journal of the National Cancer Institute, 2014, 106, .	3.0	120
10	Benefits, Harms, and Costs for Breast Cancer Screening After US Implementation of Digital Mammography. Journal of the National Cancer Institute, 2014, 106, dju092.	3.0	120
11	Tipping the Balance of Benefits and Harms to Favor Screening Mammography Starting at Age 40 Years. Annals of Internal Medicine, 2012, 156, 609.	2.0	110
12	Tailoring Breast Cancer Screening Intervals by Breast Density and Risk for Women Aged 50 Years or Older: Collaborative Modeling of Screening Outcomes. Annals of Internal Medicine, 2016, 165, 700.	2.0	90
13	Evidence for reducing cancer-specific mortality due to screening for breast cancer in Europe: A systematic review. European Journal of Cancer, 2020, 127, 191-206.	1.3	76
14	Race-Specific Impact of Natural History, Mammography Screening, and Adjuvant Treatment on Breast Cancer Mortality Rates in the United States. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 112-122.	1.1	65
15	Benefits and Harms of Mammography Screening After Age 74 Years: Model Estimates of Overdiagnosis. Journal of the National Cancer Institute, 2015, 107, djv103-djv103.	3.0	56
16	The potential of breast cancer screening in Europe. International Journal of Cancer, 2021, 148, 406-418.	2.3	55
17	Effects of cancer screening restart strategies after COVID-19 disruption. British Journal of Cancer, 2021, 124, 1516-1523.	2.9	55
18	The effect of populationâ€based mammography screening in Dutch municipalities on breast cancer mortality: 20 years of followâ€up. International Journal of Cancer, 2017, 141, 671-677.	2.3	52

#	Article	IF	Citations
19	Cost-Effectiveness of Magnetic Resonance Imaging Screening for Women With Extremely Dense Breast Tissue. Journal of the National Cancer Institute, 2021, 113, 1476-1483.	3.0	39
20	Breast Cancer Screening Strategies for Women With <i>ATM, CHEK2</i> , and <i>PALB2</i> Pathogenic Variants. JAMA Oncology, 2022, 8, 587.	3.4	36
21	Which strategies reduce breast cancer mortality most?. Cancer, 2013, 119, 2541-2548.	2.0	35
22	Costâ€effectiveness of digital mammography screening before the age of 50 in <scp>T</scp> he <scp>N</scp> etherlands. International Journal of Cancer, 2015, 137, 1990-1999.	2.3	35
23	Quantifying Overdiagnosis in Cancer Screening: A Systematic Review to Evaluate the Methodology. Journal of the National Cancer Institute, 2017, 109, .	3.0	34
24	Personalizing Breast Cancer Screening Based on Polygenic Risk and Family History. Journal of the National Cancer Institute, 2021, 113, 434-442.	3.0	34
25	Collaborative modeling of the impact of obesity on race-specific breast cancer incidence and mortality. Breast Cancer Research and Treatment, 2012, 136, 823-835.	1.1	25
26	Simulating the Impact of Risk-Based Screening and Treatment on Breast Cancer Outcomes with MISCAN-Fadia. Medical Decision Making, 2018, 38, 54S-65S.	1.2	25
27	Modeling the natural history of ductal carcinoma in situ based on population data. Breast Cancer Research, 2020, 22, 53.	2.2	22
28	Modeling the impact of population screening on breast cancer mortality in the United States. Breast, 2011, 20, S75-S81.	0.9	20
29	Detection and interval cancer rates during the transition from screen-film to digital mammography in population-based screening. BMC Cancer, 2018, 18, 256.	1.1	20
30	Modeling Ductal Carcinoma In Situ (DCIS): An Overview of CISNET Model Approaches. Medical Decision Making, 2018, 38, 126S-139S.	1.2	19
31	Transition From Film to Digital Mammography. American Journal of Preventive Medicine, 2015, 48, 535-542.	1.6	17
32	Evaluation of health benefits and harms of the breast cancer screening programme in the Basque Country using discrete event simulation. BMC Cancer, 2015, 15, 671.	1.1	15
33	Cost-effectiveness of Digital Breast Tomosynthesis in Population-based Breast Cancer Screening: A Probabilistic Sensitivity Analysis. Radiology, 2020, 297, 40-48.	3.6	15
34	Risk stratification in breast cancer screening: Costâ€effectiveness and harmâ€benefit ratios for lowâ€risk and highâ€risk women. International Journal of Cancer, 2020, 147, 3059-3067.	2.3	15
35	Comparing CISNET Breast Cancer Incidence and Mortality Predictions to Observed Clinical Trial Results of Mammography Screening from Ages 40 to 49. Medical Decision Making, 2018, 38, 140S-150S.	1.2	13
36	Comparing CISNET Breast Cancer Models Using the Maximum Clinical Incidence Reduction Methodology. Medical Decision Making, 2018, 38, 112S-125S.	1.2	11

#	Article	IF	Citations
37	Finding the optimal mammography screening strategy: A costâ€effectiveness analysis of 920 modelled strategies. International Journal of Cancer, 2022, 151, 287-296.	2.3	11
38	A health systems approach to identifying barriers to breast cancer screening programmes. Methodology and application in six European countries. Health Policy, 2018, 122, 1198-1205.	1.4	9
39	Cost-effectiveness Analysis of Breast Cancer Screening Using Mammography in Singapore: A Modeling Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 653-660.	1.1	9
40	Reflecting on 20 years of breast cancer modeling in CISNET: Recommendations for future cancer systems modeling efforts. PLoS Computational Biology, 2021, 17, e1009020.	1.5	9
41	Trade-Offs Between Harms and Benefits of Different Breast Cancer Screening Intervals Among Low-Risk Women. Journal of the National Cancer Institute, 2021, 113, 1017-1026.	3.0	9
42	Using Collaborative Simulation Modeling to Develop a Web-Based Tool to Support Policy-Level Decision Making About Breast Cancer Screening Initiation Age. MDM Policy and Practice, 2017, 2, 238146831771798.	0.5	8
43	The Early Detection of Breast Cancer Using Liquid Biopsies: Model Estimates of the Benefits, Harms, and Costs. Cancers, 2022, 14, 2951.	1.7	8
44	Effects of a leaflet on breast cancer screening knowledge, explicit attitudes, and implicit associations. Patient Education and Counseling, 2020, 103, 2499-2507.	1.0	7
45	The EU-TOPIA evaluation tool: An online modelling-based tool for informing breast, cervical, and colorectal cancer screening decisions in Europe. Preventive Medicine Reports, 2021, 22, 101392.	0.8	7
46	Benefits and Harms of Mammography Screening for Women With Down Syndrome: a Collaborative Modeling Study. Journal of General Internal Medicine, 2019, 34, 2374-2381.	1.3	6
47	Extending Age Ranges in Breast Cancer Screening in Four European Countries: Model Estimations of Harm-to-Benefit Ratios. Cancers, 2021, 13, 3360.	1.7	6
48	Breast cancer incidence trends in Norway and estimates of overdiagnosis. Journal of Medical Screening, 2017, 24, 83-91.	1.1	5
49	Modeling Strategies to Optimize Cancer Screening in USPSTF Guideline–Noncompliant Women. JAMA Oncology, 2021, 7, 885.	3.4	5
50	Implementation Barriers to Value of Information Analysis in Health Technology Decision Making: Results From a Process Evaluation. Value in Health, 2021, 24, 1126-1136.	0.1	4
51	Costs, Evidence, and Value in the Medicare Program. JAMA Internal Medicine, 2013, 173, 227.	2.6	3
52	Breast cancer screening for carriers of ATM, CHEK2, and PALB2 pathogenic variants: A comparative modeling analysis Journal of Clinical Oncology, 2021, 39, 10500-10500.	0.8	0
53	The Role of Microsimulation Modeling in Evaluating the Outcomes and Effect of Screening. , 2016, , $103-132$.		0
54	Reply to: Comments on "Finding the optimal mammography screening strategy: A costâ€effectiveness analysis of 920 modeled strategies― International Journal of Cancer, 2022, 151, 651-652.	2.3	0