Philippe Miele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871118/publications.pdf

Version: 2024-02-01

17440 36028 14,107 317 63 97 citations h-index g-index papers 337 337 337 13237 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Determination of the formulation and curing conditions of thermosetting epoxy resins for optimizing their properties and future use in gelcasting process. Journal of Applied Polymer Science, 2022, 139, .	2.6	1
2	Design and Manufacturing of Si-Based Non-Oxide Cellular Ceramic Structures through Indirect 3D Printing. Materials, 2022, 15, 471.	2.9	12
3	Superior efficiency of BN/Ce2O3/TiO2 nanofibers for photocatalytic hydrogen generation reactions. Applied Surface Science, 2022, 594, 153438.	6.1	18
4	Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111525.	7.3	90
5	Sacrificial mold-assisted 3D printing of stable biocompatible gelatin scaffolds. Bioprinting, 2021, 22, e00140.	5.8	17
6	Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping. Nature Communications, 2021, 12, 7210.	12.8	60
7	Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity. Applied Surface Science, 2020, 505, 144419.	6.1	38
8	Enhancing photocatalytic performance and solar absorption by schottky nanodiodes heterojunctions in mechanically resilient palladium coated TiO2/Si nanopillars by atomic layer deposition. Chemical Engineering Journal, 2020, 392, 123702.	12.7	32
9	Nanostructured boron nitride–based materials: synthesis and applications. Materials Today Advances, 2020, 8, 100107.	5.2	46
10	Porous Gelatin Membranes Obtained from Pickering Emulsions Stabilized with h-BNNS: Application for Polyelectrolyte-Enhanced Ultrafiltration. Membranes, 2020, 10, 144.	3.0	7
11	Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chemical Engineering Journal, 2020, 389, 124326.	12.7	48
12	Biomimetic electro-oxidation of alkyl sulfides from exfoliated molybdenum disulfide nanosheets. Journal of Materials Chemistry A, 2020, 8, 25053-25060.	10.3	6
13	Investigation of polymer-derived Si–(B)–C–N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction. Scientific Reports, 2020, 10, 22003.	3.3	24
14	Enhancement of Podocyte Attachment on Polyacrylamide Hydrogels with Gelatin-Based Polymers. ACS Applied Bio Materials, 2020, 3, 7531-7539.	4.6	8
15	Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 1865-1874.	4.6	42
16	Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering, 2020, 6, 468-482.	6.7	266
17	Photoluminescence Study of Defects in ZnO-Coated Polyacrylonitrile Nanofibers. Journal of Physical Chemistry C, 2020, 124, 9434-9441.	3.1	37
18	Nanofibrous Scaffolds for Tissue Engineering Application. , 2019, , 665-691.		0

#	Article	IF	Citations
19	Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes. Applied Catalysis B: Environmental, 2019, 257, 117917.	20.2	41
20	On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity. Nanomaterials, 2019, 9, 1552.	4.1	11
21	Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 2019, 18, 1112-1117.	27.5	196
22	Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes. Journal of the European Ceramic Society, 2019, 39, 5114-5122.	5.7	31
23	Overview of Proteinâ€Based Biopolymers for Biomedical Application. Macromolecular Chemistry and Physics, 2019, 220, 1900126.	2.2	50
24	Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS ₂ Nanosheets toward the Evolution of Hydrogen. ACS Nano, 2019, 13, 6824-6834.	14.6	402
25	Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Materials Science and Engineering C, 2019, 102, 718-729.	7.3	151
26	BN/GdxTi(1 -x)O(4 -x)/ 2 nanofibers for enhanced photocatalytic hydrogen production under visible light. Applied Catalysis B: Environmental, 2019, 251, 76-86.	20.2	73
27	Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. Journal of Materials Chemistry A, 2019, 7, 8107-8116.	10.3	114
28	Fracture Mechanics and Oxygen Gas Barrier Properties of Al2O3/ZnO Nanolaminates on PET Deposited by Atomic Layer Deposition. Nanomaterials, 2019, 9, 88.	4.1	42
29	Fabrication of porous boron nitride by using polyborazylene as precursor, polymethylmeth-acrylate as reaction agent. IOP Conference Series: Materials Science and Engineering, 2019, 612, 022062.	0.6	0
30	Enhanced visible light photocatalysis by TiO2–BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment. Photochemical and Photobiological Sciences, 2019, 18, 2921-2930.	2.9	20
31	Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C, 2019, 7, 15066-15073.	5.5	50
32	Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal. Nanomaterials, 2019, 9, 1740.	4.1	80
33	Pickering emulsions stabilized with two-dimensional (2D) materials: A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 183-192.	4.7	12
34	Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere, 2019, 220, 921-929.	8.2	97
35	Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Applied Surface Science, 2019, 475, 666-675.	6.1	42
36	Electrospun Nanofibers for Drug Delivery in Regenerative Medicine., 2019,, 595-625.		11

#	Article	IF	CITATIONS
37	Chemistry of a series of aluminum-modified polysilazanes: Synthesis, pyrolysis behaviour and microstructural evolution. Journal of the European Ceramic Society, 2019, 39, 183-194.	5.7	11
38	Analysis of ultraviolet photo-response of ZnO nanostructures prepared by electrodeposition and atomic layer deposition. Applied Surface Science, 2018, 444, 253-259.	6.1	20
39	Porous Gelatin Membrane Obtained from Pickering Emulsions Stabilized by Graphene Oxide. Langmuir, 2018, 34, 1542-1549.	3.5	28
40	High photodegradation and antibacterial activity of BN–Ag/TiO ₂ composite nanofibers under visible light. New Journal of Chemistry, 2018, 42, 1250-1259.	2.8	80
41	Novel and Facile Route for the Synthesis of Tunable Boron Nitride Nanotubes Combining Atomic Layer Deposition and Annealing Processes for Water Purification. Advanced Materials Interfaces, 2018, 5, 1800056.	3.7	45
42	Nano Fibrous Scaffolds for Tissue Engineering Application. , 2018, , 1-28.		1
43	Robust 3D Boron Nitride Nanoscaffolds for Remarkable Hydrogen Storage Capacity from Ammonia Borane. Energy Technology, 2018, 6, 570-577.	3 . 8	22
44	Optical and structural properties of Al 2 O 3 doped ZnO nanotubes prepared by ALD and their photocatalytic application. Surface and Coatings Technology, 2018, 343, 24-29.	4.8	21
45	Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 139-146.	3 . 5	19
46	Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities. Chemistry of Materials, 2018, 30, 7368-7390.	6.7	133
47	Boron Nitride as a Novel Support for Highly Stable Palladium Nanocatalysts by Atomic Layer Deposition. Nanomaterials, 2018, 8, 849.	4.1	21
48	Atomic layer deposition for biosensing applications. Biosensors and Bioelectronics, 2018, 122, 147-159.	10.1	86
49	Exfoliation of Hexagonal Boron Nitride (h-BN) in Liquide Phase by Ion Intercalation. Nanomaterials, 2018, 8, 716.	4.1	72
50	Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. ChemSusChem, 2018, 11, 3023-3047.	6.8	243
51	Development of novel h-BNNS/PVA porous membranes <i>via</i> Pickering emulsion templating. Green Chemistry, 2018, 20, 4319-4329.	9.0	46
52	Design of Multilayers of Urchin-like ZnO Nanowires Coated with TiO ₂ Nanostructures for Dye-Sensitized Solar Cells. ACS Applied Nano Materials, 2018, 1, 3705-3714.	5.0	16
53	Urchin-inspired ZnO-TiO2 core-shell as building blocks for dye sensitized solar cells. Materials and Design, 2017, 126, 314-321.	7.0	20
54	Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition. ACS Applied Materials & Deposition. ACS Applied Materials & Deposition. ACS Applied Materials & Deposition of the Materials & De	8.0	83

#	Article	IF	CITATIONS
55	Enhanced Visible-Light Photocatalytic Performance of Electrospun rGO/TiO ₂ Composite Nanofibers. Journal of Physical Chemistry C, 2017, 121, 261-269.	3.1	119
56	Mechanical properties of boron nitride thin films prepared by atomic layer deposition. CrystEngComm, 2017, 19, 6089-6094.	2.6	36
57	Inverse Pickering Emulsion Stabilized by Exfoliated Hexagonal-Boron Nitride (h-BN). Langmuir, 2017, 33, 13394-13400.	3.5	27
58	Molecularâ€Level Processing of Siâ€(B)â€C Materials with Tailored Nano/Microstructures. Chemistry - A European Journal, 2017, 23, 17103-17117.	3.3	18
59	Mesoporous ZnFe ₂ O ₄ @TiO ₂ Nanofibers Prepared by Electrospinning Coupled to PECVD as Highly Performing Photocatalytic Materials. Journal of Physical Chemistry C, 2017, 121, 24669-24677.	3.1	88
60	¹¹ B MAS NMR Study of the Thermolytic Dehydrocoupling of Two Ammonia Boranes upon the Release of One Equivalent of H ₂ at Isothermal Conditions. ChemistrySelect, 2017, 2, 9396-9401.	1.5	13
61	Electrospun fibers in regenerative tissue engineering and drug delivery. Pure and Applied Chemistry, 2017, 89, 1799-1808.	1.9	15
62	Design of Boron Nitride/Gelatin Electrospun Nanofibers for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33695-33706.	8.0	135
63	Enhanced photocatalytic performance of novel electrospun BN/TiO ₂ composite nanofibers. New Journal of Chemistry, 2017, 41, 81-89.	2.8	79
64	Nanocomposites through the Chemistry of Singleâ€Source Precursors: Understanding the Role of Chemistry behind the Design of Monolithâ€Type Nanostructured Titanium Nitride/Silicon Nitride. Chemistry - A European Journal, 2017, 23, 832-845.	3.3	39
65	Theoretical calculation of the electronic structure of ZnO molecule. Journal of Physics: Conference Series, 2017, 869, 012012.	0.4	0
66	Boron-Based (Nano-)Materials: Fundamentals and Applications. Crystals, 2016, 6, 118.	2.2	5
67	In situ Synchrotron X-ray Thermodiffraction of Boranes. Crystals, 2016, 6, 16.	2.2	8
68	Ammonia borane H 3 N BH 3 for solid-state chemical hydrogen storage: Different samples with different thermal behaviors. International Journal of Hydrogen Energy, 2016, 41, 15462-15470.	7.1	37
69	Byâ€Product Carrying Humidified Hydrogen: An Underestimated Issue in the Hydrolysis of Sodium Borohydride. ChemSusChem, 2016, 9, 1777-1780.	6.8	17
70	Polymerâ€Derived Silicoboron Carbonitride Foams for CO ₂ Capture: From Design to Application as Scaffolds for the in Situ Growth of Metalâ€"Organic Frameworks. Chemistry - A European Journal, 2016, 22, 8346-8357.	3.3	16
71	Polymer-derived Si-C-Ti systems: From titanium nanoparticle-filled polycarbosilanes to dense monolithic multi-phase components with high hardness. Journal of the European Ceramic Society, 2016, 36, 3671-3679.	5.7	29
72	Screening and scale-up of cerium oxide-based binary/ternary systems as oxidation catalysts. RSC Advances, 2016, 6, 27426-27433.	3.6	2

#	Article	IF	Citations
73	Organosilicon polymer-derived mesoporous 3D silicon carbide, carbonitride and nitride structures as platinum supports for hydrogen generation by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2016, 41, 15477-15488.	7.1	57
74	Polymer-derived ceramics route toward SiCN and SiBCN fibers: from chemistry of polycarbosilazanes to the design and characterization of ceramic fibers. Journal of the Ceramic Society of Japan, 2016, 124, 967-980.	1.1	47
75	Reaction intermediate/product-induced segregation in cobalt–copper as the catalyst for hydrogen generation from the hydrolysis of sodium borohydride. RSC Advances, 2016, 6, 102498-102503.	3.6	13
76	Synthesis of novel ZnO/ZnAl ₂ O ₄ multi co-centric nanotubes and their long-term stability in photocatalytic application. RSC Advances, 2016, 6, 103692-103699.	3.6	47
77	Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Advances, 2016, 6, 109150-109156.	3.6	26
78	Fluorescence Quenching of SulfoÂrhodamine Dye over Graphene Oxide and Boron Nitride Nanosheets. European Journal of Inorganic Chemistry, 2016, 2016, 2125-2130.	2.0	25
79	In situ thermodiffraction to monitor synthesis and thermolysis of hydrazine borane-based materials. Journal of Alloys and Compounds, 2016, 659, 210-216.	5.5	9
80	Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion. Journal of Membrane Science, 2016, 501, 79-92.	8.2	54
81	Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. Journal of Materials Chemistry B, 2016, 4, 1134-1141.	5.8	49
82	Boron nitride ceramics from molecular precursors: synthesis, properties and applications. Dalton Transactions, 2016, 45, 861-873.	3.3	41
83	Mechanistic insights of metal acetylacetonate-aided dehydrocoupling of liquid-state ammonia borane NH ₃ BH ₃ . Advances in Energy Research, 2016, 4, 177-187.	0.4	6
84	lonic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation. Scientific Reports, 2015, 5, 10135.	3.3	72
85	The influence of localized plasmons on the optical properties of Au/ZnO nanostructures. Journal of Materials Chemistry C, 2015, 3, 6815-6821.	5.5	63
86	Tunable properties of GO-doped CoFe ₂ O ₄ nanofibers elaborated by electrospinning. RSC Advances, 2015, 5, 97849-97854.	3.6	19
87	Optical properties of ultrathin Al2O3/ZnO nanolaminates. Thin Solid Films, 2015, 594, 96-100.	1.8	25
88	Metal hydride–hydrazine borane: Towards hydrazinidoboranes or composites as hydrogen carriers. International Journal of Hydrogen Energy, 2015, 40, 14875-14884.	7.1	12
89	Preparation of polymer-derived Si–B–C–N monoliths by spark plasma sintering technique. Journal of the European Ceramic Society, 2015, 35, 1361-1374.	5.7	49
90	Cyclic Dehydrogenation–(Re)Hydrogenation with Hydrogenâ€Storage Materials: An Overview. Energy Technology, 2015, 3, 100-117.	3.8	39

#	Article	IF	Citations
91	Facile Synthesis and High Rate Capability of Silicon Carbonitride/Boron Nitride Composite with a Sheet-Like Morphology. Journal of Physical Chemistry C, 2015, 119, 2783-2791.	3.1	44
92	Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale, 2015, 7, 5794-5802.	5.6	95
93	Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications. Nanotechnology, 2015, 26, 105501.	2.6	67
94	Atomic layer deposition of biobased nanostructured interfaces for energy, environmental and health applications. Pure and Applied Chemistry, 2015, 87, 751-758.	1.9	11
95	Monodisperse platinum nanoparticles supported on highly ordered mesoporous silicon nitride nanoblocks: superior catalytic activity for hydrogen generation from sodium borohydride. RSC Advances, 2015, 5, 58943-58951.	3.6	41
96	A preliminary study of sodium octahydrotriborate NaB3H8 as potential anodic fuel of direct liquid fuel cell. Journal of Power Sources, 2015, 286, 10-17.	7.8	19
97	Key Study on the Potential of Hydrazine Bisborane for Solid- and Liquid-State Chemical Hydrogen Storage. Inorganic Chemistry, 2015, 54, 4574-4583.	4.0	18
98	Pure hydrogen-generating "doped―sodium hydrazinidoborane. International Journal of Hydrogen Energy, 2015, 40, 7475-7482.	7.1	11
99	Graphene-like BN/gelatin nanobiocomposites for gas barrier applications. Nanoscale, 2015, 7, 613-618.	5.6	61
100	ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer. Sensors and Actuators A: Physical, 2015, 221, 88-94.	4.1	40
101	Formation mechanism of polyaniline selfâ€assembled needles and urchinâ€like structures assisted by magnesium oxide. Polymer International, 2015, 64, 505-512.	3.1	3
102	Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO 2 nanofibers. Superlattices and Microstructures, 2015, 77, 18-24.	3.1	48
103	Design of CoFe2O4/Co3O4 nanofibers with tunable morphology by Electrospinning. Materials Letters, 2015, 140, 27-30.	2.6	16
104	An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. Journal of Membrane Science, 2015, 475, 39-46.	8.2	92
105	Theoretical calculation of the low-lying electronic states of the molecule BN. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 151, 58-66.	2.3	6
106	BN Nanoceramics. , 2015, , 1-12.		0
107	Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives. Materials, 2014, 7, 7436-7459.	2.9	78
108	ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications. Journal of Materials Chemistry A, 2014, 2, 20650-20658.	10.3	93

#	Article	IF	Citations
109	Processing, Mechanical Characterization, and Alkali Resistance of SiliconBoronOxycarbide (<scp><scp>SiBOC</scp></scp>) Glass Fibers. Journal of the American Ceramic Society, 2014, 97, 3143-3149.	3.8	19
110	Nanostructured and architectured boron nitride from boron, nitrogen and hydrogen-containing molecular and polymeric precursors. Materials Today, 2014, 17, 443-450.	14.2	59
111	Hollow core@mesoporous shell boron nitride nanopolyhedron-confined ammonia borane: a pure B–N–H composite for chemical hydrogen storage. Journal of Materials Chemistry A, 2014, 2, 7717.	10.3	49
112	Borohydride-induced destabilization of hydrazine borane. International Journal of Hydrogen Energy, 2014, 39, 9321-9329.	7.1	8
113	A highly efficient gold/electrospun PAN fiber material for improved laccase biocathodes for biofuel cell applications. Journal of Materials Chemistry A, 2014, 2, 2794.	10.3	38
114	Lithium Hydrazinidoborane: A Polymorphic Material with Potential for Chemical Hydrogen Storage. Chemistry of Materials, 2014, 26, 3249-3255.	6.7	28
115	Nickel- and platinum-containing core@shell catalysts for hydrogen generation of aqueous hydrazine borane. Journal of Power Sources, 2014, 260, 77-81.	7.8	48
116	Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3. Physical Chemistry Chemical Physics, 2014, 16, 6872.	2.8	132
117	Experimental and simulation studies of unusual current blockade induced by translocation of small oxidized PEG through a single nanopore. Physical Chemistry Chemical Physics, 2014, 16, 17883.	2.8	11
118	Bimetallic nickel-based nanocatalysts for hydrogen generation from aqueous hydrazine borane: Investigation of iron, cobalt and palladium as the second metal. International Journal of Hydrogen Energy, 2014, 39, 16919-16926.	7.1	30
119	Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio. Soft Matter, 2014, 10, 8413-8419.	2.7	33
120	Atomic Layer Deposition of zinc oxide for solar cell applications. Superlattices and Microstructures, 2014, 75, 477-484.	3.1	29
121	Ordered mesoporous polymer-derived ceramics and their processing into hierarchically porous boron nitride and silicoboron carbonitride monoliths. New Journal of Chemistry, 2014, 38, 1923-1931.	2.8	39
122	In Situ Controlled Growth of Titanium Nitride in Amorphous Silicon Nitride: A General Route Toward Bulk Nitride Nanocomposites with Very High Hardness. Advanced Materials, 2014, 26, 6548-6553.	21.0	61
123	Optical and structural properties of Al ₂ O ₃ /ZnO nanolaminates deposited by ALD method. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1505-1508.	0.8	7
124	Tuning Optical Properties of Al ₂ O ₃ /ZnO Nanolaminates Synthesized by Atomic Layer Deposition. Journal of Physical Chemistry C, 2014, 118, 3811-3819.	3.1	111
125	Reaction mechanisms of the hydrolysis of sodium borohydride: A discussion focusing on cobalt-based catalysts. Comptes Rendus Chimie, 2014, 17, 707-716.	0.5	89
126	Hydrazine borane-induced destabilization of ammonia borane, and vice versa. Journal of Hazardous Materials, 2014, 278, 158-162.	12.4	11

#	Article	IF	Citations
127	Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application. Inorganics, 2014, 2, 396-409.	2.7	19
128	Polyol-Based Synthesis of Praseodymium Oxide Nanoparticles. Nanomaterials and Nanotechnology, 2014, 4, 7.	3.0	19
129	Evaluation of the processability of boronâ€containing organosilazane polymers based on shear rheology. Journal of Applied Polymer Science, 2013, 128, 248-257.	2.6	19
130	Enhanced Ionic Transport Mechanism by Gramicidin A Confined Inside Nanopores Tuned by Atomic Layer Deposition. Journal of Physical Chemistry C, 2013, 117, 15306-15315.	3.1	39
131	Silicon–boron–carbon–nitrogen monoliths with high, interconnected and hierarchical porosity. Journal of Materials Chemistry A, 2013, 1, 10991.	10.3	37
132	Borates in hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2013, 38, 7888-7895.	7.1	41
133	Design of carbon fiber reinforced boron nitride matrix composites by vacuum-assisted polyborazylene transfer molding and pyrolysis. Journal of the European Ceramic Society, 2013, 33, 2979-2992.	5.7	19
134	Direct Synthesis of Periodic Mesoporous SilicoBoron CarboNitride Frameworks via the Nanocasting from Ordered Mesoporous Silica with Boronâ€Modified Polycarbosilazane. Advanced Engineering Materials, 2013, 15, 134-140.	3.5	19
135	Slow translocation of polynucleotides and their discrimination by $\hat{l}\pm$ -hemolysin inside a single track-etched nanopore designed by atomic layer deposition. Nanoscale, 2013, 5, 9582.	5.6	64
136	Overview of the relative greenness of the main hydrogen production processes. Journal of Cleaner Production, 2013, 52, 1-10.	9.3	53
137	Preparation, Characterization, and Surface Modification of Periodic Mesoporous Silicon–Aluminum–Carbon–Nitrogen Frameworks. Chemistry of Materials, 2013, 25, 3957-3970.	6.7	40
138	Instability of the CuCl2–NH3BH3 mixture followed by TGA and DSC. Thermochimica Acta, 2013, 567, 100-106.	2.7	7
139	Boron-based hydrides for chemical hydrogen storage. International Journal of Energy Research, 2013, 37, 825-842.	4.5	129
140	Nanowires with controlled porosity for hydrogen production. Journal of Materials Chemistry A, 2013, 1, 2133-2138.	10.3	29
141	Sodium Hydrazinidoborane: A Chemical Hydrogenâ€Storage Material. ChemSusChem, 2013, 6, 667-673.	6.8	37
142	A bottom-up approach to prepare cobalt-based bimetallic supported catalysts for hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2013, 38, 5627-5637.	7.1	25
143	Hybrid silica coatings on polycarbonate: enhanced properties. Journal of Sol-Gel Science and Technology, 2013, 65, 52-60.	2.4	22
144	Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition. Beilstein Journal of Nanotechnology, 2013, 4, 690-698.	2.8	92

#	Article	IF	CITATIONS
145	Supported nickel catalysts for the decomposition of hydrazine borane N ₂ H ₄ BH ₃ . Advances in Energy Research, 2013, 1, 1-12.	0.4	2
146	Chemistry, structure and processability of boron-modified polysilazanes as tailored precursors of ceramic fibers. Journal of Materials Chemistry, 2012, 22, 7739.	6.7	45
147	Nickel-based bimetallic nanocatalysts in high-extent dehydrogenation of hydrazine borane. International Journal of Hydrogen Energy, 2012, 37, 9722-9729.	7.1	51
148	Rayleigh instability induced SiC/SiO2 necklace like nanostructures. CrystEngComm, 2012, 14, 7744.	2.6	25
149	Study of the intermediate pyrolysis steps and mechanism identification of polymer-derived SiBCN ceramics. Journal of Materials Chemistry, 2012, 22, 17923.	6.7	49
150	Micro-, Mesoporous Boron Nitride-Based Materials Templated from Zeolites. Chemistry of Materials, 2012, 24, 88-96.	6.7	90
151	Transition metal-catalyzed dehydrogenation of hydrazine borane N2H4BH3 via the hydrolysis of BH3 and the decomposition of N2H4. International Journal of Hydrogen Energy, 2012, 37, 10758-10767.	7.1	44
152	Room-temperature hydrogen release from activated carbon-confined ammonia borane. International Journal of Hydrogen Energy, 2012, 37, 13437-13445.	7.1	57
153	Gaining insight into the catalytic dehydrogenation of hydrazine borane in water. International Journal of Hydrogen Energy, 2012, 37, 15983-15991.	7.1	14
154	Hydrazine borane: synthesis, characterization, and application prospects in chemical hydrogen storage. Physical Chemistry Chemical Physics, 2012, 14, 1768-1777.	2.8	127
155	Reversible multi polyelectrolyte layers on gold nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9
156	ZnO nanotubes by template-assisted sol–gel route. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	40
157	Ammonia borane thermolytic decomposition in the presence of metal (II) chlorides. International Journal of Hydrogen Energy, 2012, 37, 6749-6755.	7.1	36
158	Polyaniline–titania solid electrolyte for new generation photovoltaic single-layer devices. Materials Chemistry and Physics, 2012, 133, 1040-1049.	4.0	20
159	Structural and thermal properties of boron nitride nanoparticles. Journal of the European Ceramic Society, 2012, 32, 1867-1871.	5.7	46
160	High-yield synthesis of hollow boron nitride nano-polyhedrons. Journal of Materials Chemistry, 2011, 21, 8694.	6.7	44
161	Boron nitride multiwall nanotubes decorated with BN nanosheets. CrystEngComm, 2011, 13, 6526.	2.6	19
162	Enhanced hydrogen release by catalyzed hydrolysis of sodium borohydride–ammonia borane mixtures: a solution-state 11B NMR study. Physical Chemistry Chemical Physics, 2011, 13, 3809.	2.8	45

#	Article	IF	Citations
163	High-extent dehydrogenation of hydrazine borane N2H4BH3 by hydrolysis of BH3 and decomposition of N2H4. Energy and Environmental Science, 2011, 4, 3355.	30.8	123
164	Chemical hydrogen storage: †material†gravimetric capacity versus†system†gravimetric capacity. Enerand Environmental Science, 2011, 4, 3334.	rgy 30.8	105
165	CNT-Encapsulated \hat{I}^2 -SiC Nanocrystals: Enhanced Migration by Confinement in Carbon Channels. Crystal Growth and Design, 2011, 11, 1891-1895.	3.0	16
166	Novel monolith-type boron nitride hierarchical foams obtained through integrative chemistry. Journal of Materials Chemistry, 2011, 21, 14025.	6.7	75
167	Ammonia borane decomposition in the presence of cobalt halides. International Journal of Hydrogen Energy, 2011, 36, 12955-12964.	7.1	33
168	Anchored cobalt film as stable supported catalyst for hydrolysis of sodium borohydride for chemical hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 14527-14533.	7.1	35
169	Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2011, 36, 13669-13675.	7.1	85
170	A simple preparation method of sodium amidoborane, highly efficient derivative of ammonia borane dehydrogenating at low temperature. International Journal of Hydrogen Energy, 2011, 36, 7423-7430.	7.1	20
171	Hydrolysis of Ammonia Borane as a Hydrogen Source: Fundamental Issues and Potential Solutions Towards Implementation. ChemSusChem, 2011, 4, 1731-1739.	6.8	158
172	Langmuir–Hinshelwood kinetic model to capture the cobalt nanoparticles-catalyzed hydrolysis of sodium borohydride over a wide temperature range. Catalysis Today, 2011, 170, 13-19.	4.4	86
173	Facile synthesis by polyol method of a ruthenium catalyst supported on \hat{I}^3 -Al2O3 for hydrolytic dehydrogenation of ammonia borane. Catalysis Today, 2011, 170, 85-92.	4.4	86
174	Ex situ characterization of N2H4-, NaBH4- and NH3BH3-reduced cobalt catalysts used in NaBH4 hydrolysis. Catalysis Today, 2011, 170, 3-12.	4.4	43
175	From soil to lab: Utilization of clays as catalyst supports in hydrogen generation from sodium borohydride fuel. Fuel, 2011, 90, 1919-1926.	6.4	21
176	Spontaneous hydrolysis of sodium borohydride in harsh conditions. International Journal of Hydrogen Energy, 2011, 36, 224-233.	7.1	88
177	Bimetallic RuCo and RuCu catalysts supported on \hat{I}^3 -Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2011, 36, 7051-7065.	7.1	139
178	Hydrogen release by thermolysis of ammonia borane NH3BH3 and then hydrolysis of its by-product [BNHx]. Journal of Power Sources, 2011, 196, 279-286.	7.8	76
179	Ordered mesoporous silicoboron carbonitride ceramics from boron-modified polysilazanes: Polymer synthesis, processing and properties. Microporous and Mesoporous Materials, 2011, 140, 40-50.	4.4	39
180	Dye-Sensitized Solar Cells Based on a Natural Low Cost Halochromic Sensitizer. Materials Research Society Symposia Proceedings, 2011, 1286, 33.	0.1	0

#	Article	IF	Citations
181	Self-Assembled Nano-Needles of Polyaniline, Efficient Structures in Controlling Electrical Conductivity. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0
182	Fabrication of Free-Standing, Electrochemically Active, and Biocompatible Graphene Oxideâ^Polyaniline and Grapheneâ^Polyaniline Hybrid Papers. ACS Applied Materials & Interfaces, 2010, 2, 2521-2529.	8.0	472
183	Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective. Science China Chemistry, 2010, 53, 1870-1879.	8.2	49
184	Elaboration and characterization of magnetic nanocomposite fibers by electrospinning. Journal of Nanoparticle Research, 2010, 12, 2735-2740.	1.9	21
185	Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells, 2010, 10, 335-350.	2.4	252
186	Hydrolysis of solid ammonia borane. Journal of Power Sources, 2010, 195, 4030-4035.	7.8	60
187	Co-αAl2O3-Cu as shaped catalyst in NaBH4 hydrolysis. International Journal of Hydrogen Energy, 2010, 35, 6583-6591.	7.1	35
188	Synthesis and magnetic properties of CoFe2O4 nanoparticles confined within mesoporous silica. Microporous and Mesoporous Materials, 2010, 135, 137-142.	4.4	41
189	Engineering of silicon-based ceramic fibers: Novel SiTaC(O) ceramic fibers prepared from polytantalosilane. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7086-7091.	5. 6	30
190	Evolution of 3C-SiC islands nucleated from a liquid phase on Si face α-SiC substrates. Thin Solid Films, 2010, 518, 4234-4241.	1.8	5
191	Metal chloride-doped ammonia borane thermolysis: Positive effect on induction period as well as hydrogen and borazine release. Thermochimica Acta, 2010, 509, 81-86.	2.7	35
192	Cobalt-supported alumina as catalytic film prepared by electrophoretic deposition for hydrogen release applications. Applied Surface Science, 2010, 256, 7684-7691.	6.1	23
193	Iron-based 1D nanostructures by electrospinning process. Nanotechnology, 2010, 21, 125701.	2.6	32
194	Synthesis of polystyrene coated SiC nanowires as fillers in a polyurethane matrix for electromechanical conversion. Nanotechnology, 2010, 21, 145610.	2.6	21
195	A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route. Nanoscale, 2010, 2, 215-217.	5.6	69
196	Preparation of Polyborazylene-Derived Bulk Boron Nitride with Tunable Properties by Warm-Pressing and Pressureless Pyrolysis. Chemistry of Materials, 2010, 22, 2010-2019.	6.7	73
197	Core-shell gold J-aggregate nanoparticles for highly efficient strong coupling applications. Applied Physics Letters, 2010, 96, 253107.	3.3	50
198	Synthesis, Characterization, and Crystal Structure of a New Trisodium Triborate, Na ₃ [B ₃ O ₄ (OH) ₄]. Inorganic Chemistry, 2010, 49, 4830-4835.	4.0	16

#	Article	IF	CITATIONS
199	Core–shell Au@(TiO2, SiO2) nanoparticles with tunable morphology. Chemical Communications, 2010, 46, 4544.	4.1	54
200	Cobalt in NaBH4 hydrolysis. Physical Chemistry Chemical Physics, 2010, 12, 14651.	2.8	195
201	Hydrogen release through catalyzed methanolysis of solid sodium borohydride. Energy and Environmental Science, 2010, 3, 1796.	30.8	96
202	Study of the dispersion of VOCs emitted by a municipal solid waste landfill. Atmospheric Environment, 2009, 43, 1926-1931.	4.1	25
203	A multifactor study of catalyzed hydrolysis of solid NaBH4 on cobalt nanoparticles: Thermodynamics and kinetics. International Journal of Hydrogen Energy, 2009, 34, 938-951.	7.1	81
204	Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage. International Journal of Hydrogen Energy, 2009, 34, 2638-2645.	7.1	211
205	Cobalt (II) salts, performing materials for generating hydrogen from sodium borohydride. International Journal of Hydrogen Energy, 2009, 34, 2631-2637.	7.1	70
206	Highly efficient acid-treated cobalt catalyst for hydrogen generation from NaBH4 hydrolysis. International Journal of Hydrogen Energy, 2009, 34, 4780-4787.	7.1	48
207	Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride. International Journal of Hydrogen Energy, 2009, 34, 5417-5421.	7.1	12
208	Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride. International Journal of Hydrogen Energy, 2009, 34, 7231-7238.	7.1	77
209	More reactive cobalt chloride in the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2009, 34, 9444-9449.	7.1	36
210	Shaping potentialities of aluminum nitride polymeric precursors. Journal of the European Ceramic Society, 2009, 29, 857-861.	5.7	16
211	Preparation of ZnO nanoparticles localized on SiC@SiO2 nanocables by a physical templating method. Journal of the European Ceramic Society, 2009, 29, 863-867.	5.7	8
212	Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers. Journal of the European Ceramic Society, 2009, 29, 851-855.	5.7	12
213	Study of the 3C-SiC nucleation from a liquid phase on a C face 6H-SiC substrate. Journal of Crystal Growth, 2009, 311, 2385-2390.	1.5	19
214	Aluminum chloride for accelerating hydrogen generation from sodium borohydride. Journal of Power Sources, 2009, 192, 310-315.	7.8	43
215	Sodium tetrahydroborate as energy/hydrogen carrier, its history. Comptes Rendus Chimie, 2009, 12, 943-950.	0.5	49
216	Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Applied Surface Science, 2009, 255, 7147-7152.	6.1	48

#	Article	IF	CITATIONS
217	Ultrathin Polycrystalline Hematite and Goethiteâ 'Hematite Coreâ 'Shell Nanorods. Langmuir, 2009, 25, 2551-2553.	3.5	15
218	Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires. Journal Physics D: Applied Physics, 2009, 42, 055503.	2.8	68
219	Design of Highly Dense Boron Nitride by the Combination of Spray-Pyrolysis of Borazine and Additive-Free Sintering of Derived Ultrafine Powders. Chemistry of Materials, 2009, 21, 2920-2929.	6.7	48
220	Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy and Environmental Science, 2009, 2, 627.	30.8	343
221	Preparation of boron nitride-based coatings on metallic substrates via infrared irradiation of dip-coated polyborazylene. Journal of Materials Chemistry, 2009, 19, 2671.	6.7	30
222	Influence of the thermal process of carbon template removal in the mesoporous boron nitride synthesis. Journal of Porous Materials, 2008, 15, 13-20.	2.6	15
223	Silica, carbon and boron nitride monoliths with hierarchical porosity prepared by spark plasma sintering process. Microporous and Mesoporous Materials, 2008, 111, 643-648.	4.4	31
224	Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 2008, 46, 753-758.	10.3	97
225	Ordered Mesoporous Silicoboron Carbonitride Materials via Preceramic Polymer Nanocasting. Chemistry of Materials, 2008, 20, 6325-6334.	6.7	56
226	Preparation of BN Microtubes/Nanotubes with a Unique Chemical Process. Journal of Physical Chemistry C, 2008, 112, 18325-18330.	3.1	38
227	Synthesis, and two photon absorption properties of 7,7â \in 2-(iminundecahydro-closo-dodecaborate)-9,9â \in 2-(dihexyl)-2,2â \in 2-bifluorene. Chemical Communications, 2008, , 3765.	4.1	7
228	Borazine Based Preceramic Polymers for Advanced BN Materials. , 2008, , 351-371.		1
229	Dots Formation by CVD in the SiC-Si Hetero-System. Materials Science Forum, 2008, 600-603, 571-574.	0.3	1
230	Effects of p-doping on the thermal sensitivity of individual Si nanowires. Applied Physics Letters, 2008, 93, 193105.	3.3	6
231	Large-scale preparation of faceted Si $<$ sub $>$ 3 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ nanorods from \hat{I}^2 -SiC nanowires. Nanotechnology, 2007, 18, 335305.	2.6	17
232	Condensation of borazinic precursors for mesoporous boron nitride synthesis by carbon nanocasting. Journal of Materials Research, 2007, 22, 26-34.	2.6	8
233	High Surface and High Nanoporosity Boron Nitride Adapted to Hydrogen Sequestration. Materials Science Forum, 2007, 555, 355-362.	0.3	4
234	Rheological Behavior of Poly[(Bâ€alkylamino)borazine] in a Fiber Spinning Process. Soft Materials, 2007, 4, 123-142.	1.7	8

#	Article	IF	Citations
235	Design of a Series of PreceramicB-Tri(methylamino)borazine-Based Polymers as Fiber Precursors: Architecture, Thermal Behavior, and Melt-Spinnabilityâ€. Macromolecules, 2007, 40, 1018-1027.	4.8	39
236	Synthesis of Boron Nitride Nanotubes by a Template-Assisted Polymer Thermolysis Process. Journal of Physical Chemistry C, 2007, 111, 13378-13384.	3.1	74
237	Design of a Series of PreceramicB-Tri(methylamino)borazine-Based Polymers as Fiber Precursors:Â Shear Rheology Investigations. Macromolecules, 2007, 40, 1028-1034.	4.8	35
238	A Raman Spectroscopy Study of Individual SiC Nanowires. Advanced Functional Materials, 2007, 17, 939-943.	14.9	168
239	Very Long SiCâ€Based Coaxial Nanocables with Tunable Chemical Composition. Advanced Functional Materials, 2007, 17, 3251-3257.	14.9	80
240	High purity boron nitride thin films prepared by the PDCs route. Surface and Coatings Technology, 2007, 201, 7822-7828.	4.8	32
241	Thermal stability of mesoporous boron nitride templated with a cationic surfactant. Journal of the European Ceramic Society, 2007, 27, 313-317.	5. 7	47
242	Ultra high sensitive detection of mechanical resonances of nanowires by field emission microscopy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1645-1652.	1.8	9
243	Recent Developments in Polymerâ€Derived Ceramic Fibers (PDCFs): Preparation, Properties and Applications – A Review. Soft Materials, 2007, 4, 249-286.	1.7	71
244	Aminoboranes as versatile precursors of boron nitride: Preparation of BN matrices, coatings and fibres. Special Publication - Royal Society of Chemistry, 2007, , 84-87.	0.0	0
245	Monolithes de silice et de carbone ÃÂporosité hiérarchisée obtenus par frittage SPS. Materiaux Et Techniques, 2007, 95, 251-258.	0.9	0
246	Kinetic Modeling of the Polymer-Derived Ceramics Route:Â Investigation of the Thermal Decomposition Kinetics of Poly[B-(methylamino)borazine] Precursors into Boron Nitride. Journal of Physical Chemistry B, 2006, 110, 9048-9060.	2.6	51
247	Synthesis, Characterization, and UVâ^'vis Linear Absorption of Centrosymmetric Ï€-Systems Incorporatingcloso-Dodecaborate Clusters. Inorganic Chemistry, 2006, 45, 8743-8748.	4.0	24
248	Boron- and Nitrogen-Containing Polymers for Advanced Materials. , 2006, , 103-120.		0
249	Boron- and Nitrogen-Containing Polymers. , 2006, , 149-173.		1
250	Structural and Mechanical Behavior of Boron Nitride Fibers Derived from Poly[(Methylamino)Borazine] Precursors: Optimization of the Curing and Pyrolysis Procedures. Journal of the American Ceramic Society, 2006, 89, 42-49.	3.8	39
251	Synthesis of boron nitride with a cubic mesostructure. Microporous and Mesoporous Materials, 2006, 92, 286-291.	4.4	27
252	Controlling the chemistry, morphology and structure of boron nitride-based ceramic fibers through a comprehensive mechanistic study of the reactivity of spinnable polymers with ammonia. Journal of Materials Chemistry, 2006, 16, 3126.	6.7	45

#	Article	IF	Citations
253	A New Generation of Boron-Based Ceramic Fibers: Design, Processing and Properties of SilicoBoron CarboNitride (SiBCN) Fibers from Boron-Modified Polyvinylsilazanes. Advances in Science and Technology, 2006, 50, 9-16.	0.2	4
254	Kinetic Investigation of the Curing and Pyrolysis Procedures Used for the Preparation of Polymer-Derived Boron Nitride Fibres. Advances in Science and Technology, 2006, 45, 726.	0.2	2
255	New method of synthesis of 6-hydroxy-nido-decaborane 6-(OH)B10H13 by cage opening of closo-[B10H10]2â^. Journal of Organometallic Chemistry, 2005, 690, 2787-2789.	1.8	27
256	Alkylaminoborazine-based precursors for the preparation of boron nitride fibers by the polymer-derived ceramics (PDCs) route. Journal of the European Ceramic Society, 2005, 25, 111-121.	5.7	62
257	Complete characterisation of BN fibres obtained from a new polyborylborazine. Journal of the European Ceramic Society, 2005, 25, 137-141.	5.7	15
258	Correlation between structural features and mechanical properties of boron nitride fibres derived from alkylaminoborazines. Journal of the European Ceramic Society, 2005, 25, 157-162.	5.7	5
259	Preparation of high-temperature stable SiBCN fibers from tailored single source polyborosilazanes. Journal of the European Ceramic Society, 2005, 25, 251-256.	5.7	64
260	Crystallinity, Crystalline Quality, and Microstructural Ordering in Boron Nitride Fibers. Journal of the American Ceramic Society, 2005, 88, 1607-1614.	3.8	33
261	Synthesis of Boron Nitride with Ordered Mesostructure. Advanced Materials, 2005, 17, 571-574.	21.0	136
262	Synthesis of Boron Nitride with Ordered Mesostructure ChemInform, 2005, 36, no.	0.0	0
263	New Method of Synthesis of 6-Hydroxy-nido-decaborane 6-(OH)B10H13 by Cage Opening of closo-[B10H10]2 ChemInform, 2005, 36, no.	0.0	0
264	Borylborazines as New Precursors for Boron Nitride Fibres ChemInform, 2005, 36, no.	0.0	0
265	Synthesis and X-ray structural characterization of the triphenylphosphine derivative of the closo-dodecaborate anion, closo-[B12H11P(C6H5)3][N(n-C4H9)4]. Journal of Organometallic Chemistry, 2005, 690, 2745-2749.	1.8	20
266	Borylborazines as new precursors for boron nitride fibres. Journal of Organometallic Chemistry, 2005, 690, 2809-2814.	1.8	37
267	Preparation of \hat{I}^2 -SiC nanowires and SiC@BN nanocables. European Physical Journal Special Topics, 2005, 124, 99-102.	0.2	8
268	Hybrid materials for nonlinear absorption. , 2005, 5934, 24.		0
269	Synthesis conditions of ordered mesostructured boron nitride prepared from borazinic precursors and CMK-3 carbon template. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	0
270	Preparation of nanostructured boron nitride with borazinic precursor. Studies in Surface Science and Catalysis, 2005, , 279-286.	1.5	3

#	Article	IF	CITATIONS
271	Synthesis, characterization and optical properties of π-conjugated systems incorporating closo-dodecaborate clusters: new potential candidates for two-photon absorption processes. Dalton Transactions, 2005, , 3065.	3.3	31
272	Comparison between SBA-15 silica and CMK-3 carbon nanocasting for mesoporous boron nitride synthesis. Journal of Materials Chemistry, 2005, 15, 1917.	6.7	85
273	Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion. Journal of Materials Chemistry, 2005, 15, 289.	6.7	125
274	Hybrid materials for Optical Limiting. Materials Research Society Symposia Proceedings, 2004, 847, 274.	0.1	1
275	Evolution of structural features and mechanical properties during the conversion of poly[(methylamino)borazine] fibers into boron nitride fibers. Journal of Solid State Chemistry, 2004, 177, 1803-1810.	2.9	35
276	High-resolution 15N solid-state NMR investigations on borazine-based precursors. Applied Organometallic Chemistry, 2004, 18, 227-232.	3.5	15
277	Synthesis and X-ray structural characterisation of the tetramethylene oxonium derivative of the hydrodecaborate anion. A versatile route for derivative chemistry of [B10H10]2â°'. Journal of Organometallic Chemistry, 2004, 689, 2581-2585.	1.8	28
278	A new polyborazine-based route to boron nitride fibres. Journal of Materials Chemistry, 2004, 14, 2609.	6.7	25
279	The Structure of the Pyridine Complex of p-tetrakis(phenylazo)-tetra-hydroxythiacalix[4]arene. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 46, 15-17.	1.6	2
280	Synthesis and molecular structure of 2,4,6-tri[bis(diisopropylamino)boryl(methylamino)]borazine, [(NiPr2)2B(Me)N]3B3N3H3. Applied Organometallic Chemistry, 2003, 17, 68-72.	3 . 5	5
281	Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom. Journal of Materials Chemistry, 2003, 13, 3058.	6.7	42
282	High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine. Journal of Materials Chemistry, 2003, 13, 274.	6.7	49
283	Sol-gel Nanohybrid Materials Incorporating Functional Thiacalixarenes for Non-Linear Optical Applications. Materials Research Society Symposia Proceedings, 2003, 771, 7161.	0.1	9
284	Elaboration of h-Bn Sheathed \hat{l}^2 -Sic Nanocables. Materials Research Society Symposia Proceedings, 2003, 772, 331.	0.1	1
285	Boron Nitride Fibers Prepared from Symmetric and Asymmetric Alkylaminoborazines. Advanced Functional Materials, 2002, 12, 228.	14.9	80
286	Texture, structure and chemistry of a boron nitride fibre studied by high resolution and analytical TEM. Journal of the European Ceramic Society, 2002, 22, 2415-2425.	5.7	20
287	Synthesis of [B12H12]2â^ based extractants and their application for the treatment of nuclear wastes. Journal of Organometallic Chemistry, 2002, 657, 83-90.	1.8	26
288	Pyrolysis of poly[2,4,6-tri(methylamino)borazine] and its conversion into BN fibers. Journal of Organometallic Chemistry, 2002, 657, 91-97.	1.8	43

#	Article	IF	Citations
289	Boron nitride thin fibres obtained from a new copolymer borazine–tri(methylamino)borazine precursor. Journal of Organometallic Chemistry, 2002, 657, 107-114.	1.8	13
290	Porous boron nitride supports obtained from molecular precursors Journal of Organometallic Chemistry, 2002, 657, 98-106.	1.8	38
291	Direct synthesis of \hat{I}^2 -SiC and h-BN coated \hat{I}^2 -SiC nanowires. Solid State Communications, 2002, 124, 157-161.	1.9	42
292	Title is missing!. Journal of Materials Chemistry, 2001, 11, 3014-3017.	6.7	29
293	Crystal structure of 2,4,6-tri(diisopropylamino)borazine, C18H45B3N6. Zeitschrift Fur Kristallographie - New Crystal Structures, 2001, 216, 115-116.	0.3	1
294	Influence of Molecular Precursor Structure on the Crystallinity of Boron Nitride. Journal of Solid State Chemistry, 2000, 154, 137-140.	2.9	12
295	THERMAL OLIGOMERIZATION OF UNSYMMETRICALLY B-TRISUBSTITUTED BORAZINES. Main Group Metal Chemistry, 1999, 22, .	1.6	14
296	Conversion of B(NHCH3)3 into boron nitride and polyborazine fibres and tubular BN structures derived therefrom. Journal of Materials Chemistry, 1999, 9, 757-761.	6.7	26
297	Boron nitride matrices and coatings from boryl borazine molecular precursors. Journal of Materials Chemistry, 1999, 9, 2605-2610.	6.7	29
298	Si3N4î—,BN composites obtained from aminoboranes as BN precursors and sintering aids. Journal of the European Ceramic Society, 1997, 17, 1911-1915.	5.7	11
299	Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si3N4–BN Composite Ceramic Preparation. Journal of Solid State Chemistry, 1997, 133, 164-168.	2.9	19
300	A new bimetallic barium yttrium oxo alkoxide Ba2Y4(\hat{l} ¼6-O)(\hat{l} ¼3-OEt)6(\hat{l} ¼3-OH)2(dpm)6 \hat{A} ·2EtOH: structural characterization and thermal behavior. Inorganica Chimica Acta, 1997, 255, 289-294.	2.4	9
301	The Interaction of the [B10H10]2- Cage with Lewis Acids and the Formation of Decaborane Derivatives by Cage-Opening Reactions. Collection of Czechoslovak Chemical Communications, 1997, 62, 1273-1278.	1.0	6
302	A new barium complex based on "Ba(dpm)2†Ba6(dpm)10(H2O)6(O2). An unexpected barium peroxo-β-diketonate structurally charactererized. Polyhedron, 1995, 14, 297-300.	2.2	15
303	Crystal structure of (μ 2, μ 2-dioxotetramethyldisiloxane)(μ 2, μ) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T barium diyttrium, C69H121BaN3O15Si5Y2. Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 282-284.	o.8	d (2-dioxone
304	Yttrium tetramethylheptanedionates: syntheses, crystal and molecular structures and thermal behaviours of Y(thd)3·H2O and Y(thd)3 (thd=tBuC(O)CHC(O)tBu). Inorganica Chimica Acta, 1993, 209, 47-53.	2.4	46
305	Soluble and volatile barium aryloxide derivatives: Synthesis and molecular structure of Ba5(μ5-OH)(μ3-OAR)4(μ2-OAR)4 (OAr)(THF)5, [Ba(μ1,μ2-dpm)(dpm)(HOAr)2(THF)]2 and [Ba(H2NCH2CH2OH)(μ1μ2-H2NCH2CH2OH) (μ2-OH)(μ2-OAr) (HOAr)]â°ž (Ar î—, C6H3But2-3,5; dpm î—,) Tj ² E1Qq1	1 23 .784314
306	Synthesis and x-ray crystal structure of a mononuclear aryloxide-crown ether of barium: [Ba(OAr)2(18-crown-6)] \hat{A} · (2ArOH)(18-crown-6) (Ar = C6H3But2-3,5). Polyhedron, 1993, 12, 267-271.	2.2	25

#	Article	IF	CITATIONS
307	Synthesis of the first bimetallic barium yttrium oxo alkoxide: crystal structure of [Y4Ba2(µ6-O)(µ3-OEt)8(dpm)6][dpm = ButC(O)CHC(O)But]. Journal of the Chemical Society Chemical Communications, 1993, .	2.0	24
308	Spectres De Masse FAB En Mode Positif De Composes Moleculaires Oxygenes Du Baryum. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 689-695.	0.0	2
309	Microtextural and Microstructural Evolution in Poly[(Alkylamino)Borazine]-Derived Fibers During Their Conversion Into Boron Nitride Fibers., 0,, 43-50.		0
310	Preparation of SiBCN Microtubes from Melt-Spinnable Polymers. Key Engineering Materials, 0, 368-372, 926-928.	0.4	7
311	Metal Oxides (such as Al ₂ O ₃ and) Tj ETQq1 1 0.784314 rgBT /Ov Borohydride NaBH ₄ . Advances in Science and Technology, 0, , .	erlock 10 0.2	Tf 50 587 Td 0
312	Cobalt-Supported Clay as Catalytic Film Prepared by Electrophoretic Deposition for Hydrogen Release Applications. Advances in Science and Technology, 0, , .	0.2	0
313	Boron Nitride Nanoparticles: One-Step Synthesis from Single-Source Preceramic Precursors. Advances in Science and Technology, 0, , .	0.2	3
314	Shaping of Nanostructured Materials or Coatings through Spark Plasma Sintering. Materials Science Forum, 0, 706-709, 24-30.	0.3	6
315	Polyborosilazane-Derived Ceramic Fibers in the Si-B-C-N Quaternary System for High-Temperature Applications., 0,, 35-42.		5
316	Synthesis and Characterization of Cubic Silicon Carbide (\hat{l}^2 -SiC) and Trigonal Silicon Nitride (\hat{l}_\pm -Si3N4) Nanowires. Ceramic Engineering and Science Proceedings, 0, , 341-348.	0.1	2
317	Synthesis and Characterization of Cubic Silicon Carbide (\hat{l}^2 -SiC) and Trigonal Silicon Nitride (\hat{l}_\pm -Si3N4) Nanowires. Ceramic Engineering and Science Proceedings, 0, , 81-88.	0.1	0