Jorge Caamano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unwrapping the mechanisms of ceramide and fatty acid-initiated signals leading to immune-inflammatory responses in obesity. International Journal of Biochemistry and Cell Biology, 2021, 135, 105972.	2.8	11
2	A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. Journal of Experimental Medicine, 2019, 216, 1999-2009.	8.5	101
3	NF-κB2 signalling in enteroids modulates enterocyte responses to secreted factors from bone marrow-derived dendritic cells. Cell Death and Disease, 2019, 10, 896.	6.3	21
4	SP0035â€Inflammation-induced formation of fat associated lymphoid clusters. , 2018, , .		0
5	Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nature Immunology, 2017, 18, 753-761.	14.5	76
6	Fat-Associated Lymphoid Clusters in Inflammation and Immunity. Frontiers in Immunology, 2016, 7, 612.	4.8	50
7	Bimodal Expansion of the Lymphatic Vessels Is Regulated by the Sequential Expression of IL-7 and Lymphotoxin α1β2 in Newly Formed Tertiary Lymphoid Structures. Journal of Immunology, 2016, 197, 1957-1967.	0.8	30
8	<scp>NFâ€₽B1</scp> , <scp>NFâ€₽B2</scp> and câ€Rel differentially regulate susceptibility to colitisâ€associate adenoma development in <scp>C57BL</scp> /6 mice. Journal of Pathology, 2015, 236, 326-336.	d _{4.5}	49
9	A1.17â€A novel role for CD248 in controlling the differentiation of follicular dendritic cells (FDCs) following immune challenge. Annals of the Rheumatic Diseases, 2015, 74, A7.2-A8.	0.9	1
10	NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis. Cell Death and Differentiation, 2015, 22, 2020-2033.	11.2	37
11	Falk Herbert Weih (1959–2014). European Journal of Immunology, 2015, 45, 650-651.	2.9	0
12	Su1973 Tamoxifen Induced Gastric Atrophy Is Regulated by the NF-κB Subunit NFKB1. Gastroenterology, 2015, 148, S-565.	1.3	0
13	Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 2015, 16, 819-828.	14.5	175
14	606 NFKB1 Deficiency Alters Susceptibility to Helicobacter spp. Induced IL-1β Secretion in Bone Marrow Derived Dendritic Cells. Gastroenterology, 2015, 148, S-118.	1.3	0
15	25 Intestinal Epithelial Cell Specific Deletion of Nfkb2 Protects Against Immune Cell Derived Damage-Inducing Factors in an Enteroid and Bone Marrow Derived Dendritic Cell Co-Culture System. Gastroenterology, 2015, 148, S-8-S-9.	1.3	0
16	Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annual Review of Immunology, 2015, 33, 715-745.	21.8	205
17	TNFα-dependent development of lymphoid tissue in the absence of RORγt+ lymphoid tissue inducer cells. Mucosal Immunology, 2014, 7, 602-614.	6.0	57
18	CLEC-2 is required for development and maintenance of lymph nodes. Blood, 2014, 123, 3200-3207.	1.4	75

JORGE CAAMANO

#	Article	lF	CITATIONS
19	Nuclear Factor κB2 p52 Protein Has a Role in Antiviral Immunity through IκB Kinase ϵ-dependent Induction of Sp1 Protein and Interleukin 15. Journal of Biological Chemistry, 2013, 288, 25066-25075.	3.4	12
20	752 Deletion of Specific NFκB Proteins Regulates Susceptibility to Developing Colitis Associated Cancer in C57BL/6 Mice As a Result of Altered Inflammatory and DNA Damage Responses. Gastroenterology, 2013, 144, S-136.	1.3	0
21	A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide. DMM Disease Models and Mechanisms, 2013, 6, 1388-99.	2.4	137
22	Generation of Lymph Node-fat Pad Chimeras for the Study of Lymph Node Stromal Cell Origin. Journal of Visualized Experiments, 2013, , e50952.	0.3	0
23	l kappa B kinase alpha (IKKα) activity is required for functional maturation of dendritic cells and acquired immunity to infection. EMBO Journal, 2013, 32, 816-828.	7.8	19
24	The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. Journal of Experimental Medicine, 2013, 210, 675-681.	8.5	166
25	Signaling mediated by the NF-κB sub-units NF-κB1, NF-κB2 and c-Rel differentially regulate Helicobacter felis-induced gastric carcinogenesis in C57BL/6 mice. Oncogene, 2013, 32, 5563-5573.	5.9	32
26	OC-020â€The Murine Gastric Microbiome is Influenced Both by Helicobacter Felis Infection and Somatic Deletion of NF-Kappab Family Members. Gut, 2013, 62, A9.1-A9.	12.1	0
27	Mesenchymal cell differentiation during lymph node organogenesis. Frontiers in Immunology, 2012, 3, 381.	4.8	35
28	Lymphotoxin-β Receptor Signaling through NF-κB2-RelB Pathway Reprograms Adipocyte Precursors as Lymph Node Stromal Cells. Immunity, 2012, 37, 721-734.	14.3	127
29	The NF-κB Subunit c-Rel Stimulates Cardiac Hypertrophy and Fibrosis. American Journal of Pathology, 2012, 180, 929-939.	3.8	65
30	Rank Signaling Links the Development of Invariant Î ³ δT Cell Progenitors and Aire+ Medullary Epithelium. Immunity, 2012, 36, 427-437.	14.3	152
31	Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells. Arthritis and Rheumatism, 2012, 64, 2404-2413.	6.7	43
32	Classical and Alternative Pathway Nuclear Factor-κB Signalling Differentially Regulate Gastric Epithelial Responses to Helicobacter felis Infection. Gastroenterology, 2011, 140, S-673.	1.3	0
33	Classical and Alternative Pathway Nuclear Factor-κB Signalling Regulate Gastric Epithelial Responses to γ-Irradiation. Gastroenterology, 2011, 140, S-823.	1.3	0
34	Selective effects of NFâ€₽B1 deficiency in CD4 ⁺ T cells on Th2 and TFh induction by alumâ€precipitated protein vaccines. European Journal of Immunology, 2011, 41, 1573-1582.	2.9	24
35	Induction of the Alternative NF-κB Pathway by Lymphotoxin αβ (LTαβ) Relies on Internalization of LTβ Receptor. Molecular and Cellular Biology, 2011, 31, 4319-4334.	2.3	43
36	A Novel <i>Gli3</i> Enhancer Controls the <i>Gli3</i> Spatiotemporal Expression Pattern through a TALE Homeodomain Protein Binding Site. Molecular and Cellular Biology, 2011, 31, 1432-1443.	2.3	11

Jorge Caamano

#	Article	IF	CITATIONS
37	NF-κB Signalling and Lymphoid Tissue Organogenesis. , 2011, , 25-38.		0
38	NF-κB1 contributes to T cell-mediated control of Toxoplasma gondii in the CNS. Journal of Neuroimmunology, 2010, 222, 19-28.	2.3	27
39	The c-Rel subunit of nuclear factor-ήB regulates murine liver inflammation, wound-healing, and hepatocyte proliferation. Hepatology, 2010, 51, 922-931.	7.3	52
40	Ontogeny of Stromal Organizer Cells during Lymph Node Development. Journal of Immunology, 2010, 184, 4521-4530.	0.8	116
41	Preserved Immune Functions and Controlled Leukocyte Oxidative Stress in Naturally Long-lived Mice: Possible Role of Nuclear Factor Kappa B. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 941-950.	3.6	50
42	Lymphotoxin Signals from Positively Selected Thymocytes Regulate the Terminal Differentiation of Medullary Thymic Epithelial Cells. Journal of Immunology, 2010, 185, 4769-4776.	0.8	127
43	Function of CD4+CD3â~' cells in relation to B- and T-zone stroma in spleen. Blood, 2007, 109, 1602-1610.	1.4	78
44	Lymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis. Blood, 2007, 110, 1950-1959.	1.4	56
45	The role of lymphoid tissue inducer cells in splenic white pulp development. European Journal of Immunology, 2007, 37, 3240-3245.	2.9	51
46	Regulation of p53 tumour suppressor target gene expression by the p52 NF-κB subunit. EMBO Journal, 2006, 25, 4820-4832.	7.8	121
47	Opposing roles of NF-κB family members in the regulation of NK cell proliferation and production of IFN-γ. International Immunology, 2006, 18, 505-513.	4.0	53
48	Cutting Edge: NF-κB2 Is a Negative Regulator of Dendritic Cell Function. Journal of Immunology, 2004, 172, 752-756.	0.8	50
49	A Stroma-Derived Defect in NF-κB2â^'/â^' Mice Causes Impaired Lymph Node Development and Lymphocyte Recruitment. Journal of Immunology, 2004, 173, 2271-2279.	0.8	48
50	The NF-κB signaling pathway: immune evasion and immunoregulation during toxoplasmosis. International Journal for Parasitology, 2004, 34, 393-400.	3.1	38
51	Fibrinogen-CD11b/CD18 interaction activates the NF-κB pathway and delays apoptosis in human neutrophils. European Journal of Immunology, 2003, 33, 1429-1438.	2.9	71
52	Regulation of secondary lymphoid organ development by the nuclear factorâ€₽̂B signal transduction pathway. Immunological Reviews, 2003, 195, 91-105.	6.0	195
53	Epstein–Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-κB2 to p52 via an IKKγ/NEMO-independent signalling pathway. Oncogene, 2003, 22, 7557-7569.	5.9	104
54	TRAF6 Is a Critical Factor for Dendritic Cell Maturation and Development. Immunity, 2003, 19, 353-363.	14.3	249

JORGE CAAMANO

#	Article	IF	CITATIONS
55	NF-κB1 Is Required for Optimal CD4+Th1 Cell Development and Resistance toLeishmania major. Journal of Immunology, 2003, 170, 1995-2003.	0.8	51
56	Inhibition of Neutrophil Apoptosis by Type 1 IFN Depends on Cross-Talk Between Phosphoinositol 3-Kinase, Protein Kinase C-δ, and NF-κB Signaling Pathways. Journal of Immunology, 2003, 171, 1035-1041.	0.8	84
57	NF-κB1 p50 Is Required for BLyS Attenuation of Apoptosis but Dispensable for Processing of NF-κB2 p100 to p52 in Quiescent Mature B Cells. Journal of Immunology, 2003, 171, 761-768.	0.8	131
58	Inhibition of NF-κB Activity in T and NK Cells Results in Defective Effector Cell Expansion and Production of IFN-γ Required for Resistance to <i>Toxoplasma gondii</i> . Journal of Immunology, 2003, 170, 3139-3146.	0.8	52
59	Cutting Edge: Identification of c-Rel-Dependent and -Independent Pathways of IL-12 Production During Infectious and Inflammatory Stimuli. Journal of Immunology, 2002, 168, 2590-2594.	0.8	102
60	Differential Requirement for NF-κB Family Members in Control of Helminth Infection and Intestinal Inflammation. Journal of Immunology, 2002, 169, 4481-4487.	0.8	77
61	NF-κB Family of Transcription Factors: Central Regulators of Innate and Adaptive Immune Functions. Clinical Microbiology Reviews, 2002, 15, 414-429.	13.6	456
62	NF-κB2 Is Required for Optimal CD40-Induced IL-12 Production but Dispensable for Th1 Cell Differentiation. Journal of Immunology, 2002, 168, 4406-4413.	0.8	47
63	Suppression of NFâ€̂ºB Activation by Infection withToxoplasma gondii. Journal of Infectious Diseases, 2002, 185, S66-S72.	4.0	113
64	IL-12 Suppression During Experimental Endotoxin Tolerance: Dendritic Cell Loss and Macrophage Hyporesponsiveness. Journal of Immunology, 2001, 166, 7504-7513.	0.8	132
65	Involvement of Protein Kinase C δ (PKCδ) in Phorbol Ester-induced Apoptosis in LNCaP Prostate Cancer Cells. Journal of Biological Chemistry, 2000, 275, 7574-7582.	3.4	178
66	Identification of a Role for NF-κB2 in the Regulation of Apoptosis and in Maintenance of T Cell-Mediated Immunity to <i>Toxoplasma gondii</i> . Journal of Immunology, 2000, 165, 5720-5728.	0.8	77
67	The NF-kappa B family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. Journal of Immunology, 1999, 163, 4453-61.	0.8	116
68	Nuclear Factor (NF)-κB2 (p100/p52) Is Required for Normal Splenic Microarchitecture and B Cell–mediated Immune Responses. Journal of Experimental Medicine, 1998, 187, 185-196.	8.5	382
69	Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nature Medicine, 1997, 3, 1285-1289.	30.7	972
70	Genetic approaches to study Rel/NF-κB/IκB function in mice. Seminars in Cancer Biology, 1997, 8, 93-101.	9.6	81
71	Constitutive Expression of Bcl-3 in Thymocytes Increases the DNA Binding of NF-κB1 (p50) Homodimers In Vivo. Molecular and Cellular Biology, 1996, 16, 1342-1348.	2.3	95
72	Immunohistochemistry of Cyclin D1 in Human Breast Cancer. American Journal of Clinical Pathology, 1994, 102, 695-698.	0.7	103

Jorge Caamano

#	Article	IF	CITATIONS
73	Invasive tumors derived from xenotransplanted, immortalized human cells after <i>in vivo</i> exposure to chemical carcinogens. Carcinogenesis, 1993, 14, 1789-1794.	2.8	21
74	p53 alterations in human squamous cell carcinomas and carcinoma cell lines. American Journal of Pathology, 1993, 142, 1131-9.	3.8	64
75	A tobacco-specific N-nitrosamine or cigarette smoke condensate causes neoplastic transformation of xenotransplanted human bronchial epithelial cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6693-6697.	7.1	97
76	Secretion of gelatinases and tissue inhibitors of metalloproteinases by human lung cancer cell lines and revertant cell lines: Not an invariant correlation with metastasis. International Journal of Cancer, 1992, 52, 366-371.	5.1	46
77	Partial suppression of tumorigenicity in a human lung cancer cell line transfected with Krev-1. Molecular Carcinogenesis, 1992, 6, 252-259.	2.7	8
78	Alterations in the expression of uvomorulin and Na+,K(+)-adenosine triphosphatase during mouse skin tumor progression. American Journal of Pathology, 1992, 140, 1179-85.	3.8	26
79	A catalog of p53 alterations in selected human and laboratory animal neoplasms. Progress in Clinical and Biological Research, 1992, 376, 331-55.	0.2	2
80	Tumor suppressor genes in squamous cell carcinoma. Progress in Clinical and Biological Research, 1992, 376, 85-101.	0.2	2
81	Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes. Oncogene, 1992, 7, 1503-11.	5.9	137
82	Transformation of Human Breast Epithelial Cells by c-Ha-ras Oncogene. Molecular Carcinogenesis, 1991, 4, 25-35.	2.7	155
83	Detection of p53 in primary lung tumors and nonsmall cell lung carcinoma cell lines. American Journal of Pathology, 1991, 139, 839-45.	3.8	57
84	In vivo and in vitro invasiveness of human lung carcinoma cell lines. Invasion & Metastasis, 1991, 11, 66-75.	0.5	21
85	Alterations of the p53 tumor suppressor gene during mouse skin tumor progression. Cancer Research, 1991, 51, 6615-21.	0.9	85
86	Assignment of 35 single-copy and 17 repetitive sequence DNA probes to human chromosome 3: High-resolution physical mapping of 7 DNA probes by in situ hybridization. Genomics, 1990, 6, 441-450.	2.9	11