Gunnar Jeschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887066/publications.pdf

Version: 2024-02-01

242 papers

14,572 citations

23500 58 h-index 24915 109 g-index

263 all docs 263 docs citations

263 times ranked 7756 citing authors

#	Article	IF	CITATIONS
1	Rotational Coupling in Methyl-Tunneling Electron Spin Echo Envelope Modulation. Applied Magnetic Resonance, 2022, 53, 635-651.	0.6	6
2	Ultrahigh nitrogen-vacancy center concentration in diamond. Carbon, 2022, 188, 393-400.	5.4	9
3	Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity. Journal of Materials Chemistry A, 2022, 10, 5953-5961.	5. 2	16
4	Dipolar pathways in dipolar EPR spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 2504-2520.	1.3	7
5	Cu ²⁺ -Induced self-assembly and amyloid formation of a cyclic <scp>d</scp> , <scp>l</scp> -α-peptide: structure and function. Physical Chemistry Chemical Physics, 2022, 24, 6699-6715.	1.3	3
6	Integrative ensemble modeling of proteins and their complexes with distance distribution restraints. Methods in Enzymology, 2022, 666, 145-169.	0.4	12
7	DEER experiments reveal fundamental differences between calmodulin complexes with IQ and MARCKS peptides in solution. Structure, 2022, 30, 813-827.e5.	1.6	3
8	Compactness regularization in the analysis of dipolar EPR spectroscopy data. Journal of Magnetic Resonance, 2022, 339, 107218.	1.2	9
9	Neural networks in pulsed dipolar spectroscopy: A practical guide. Journal of Magnetic Resonance, 2022, 338, 107186.	1.2	18
10	Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5, 605-614.	16.1	32
11	Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2022, 126, 11310-11317.	1.5	10
12	Designing broadband pulsed dynamic nuclear polarization sequences in static solids. Science Advances, 2022, 8, .	4.7	8
13	A Robust and Efficient Propane Dehydrogenation Catalyst from Unexpectedly Segregated Pt ₂ Mn Nanoparticles. Journal of the American Chemical Society, 2022, 144, 13384-13393.	6.6	24
14	Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 3596-3602.	7.2	14
15	<scp>MMM</scp> : Integrative ensemble modeling and ensemble analysis. Protein Science, 2021, 30, 125-135.	3.1	24
16	Molecular and supported Ti(<scp>iii</scp>)-alkyls: efficient ethylene polymerization driven by the ï€-character of metal–carbon bonds and back donation from a singly occupied molecular orbital. Chemical Science, 2021, 12, 780-792.	3.7	15
17	A sensitivity leap for X-band EPR using a probehead with a cryogenic preamplifier. Journal of Magnetic Resonance, 2021, 322, 106876.	1.2	19
18	Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. Angewandte Chemie, 2021, 133, 3640-3646.	1.6	6

#	Article	IF	Citations
19	Innentitelbild: Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy (Angew. Chem. 7/2021). Angewandte Chemie, 2021, 133, 3354-3354.	1.6	0
20	Regularized dynamical decoupling noise spectroscopy $\hat{a}\in$ a decoherence descriptor for radicals in glassy matrices. Physical Chemistry Chemical Physics, 2021, 23, 21664-21676.	1.3	8
21	Structural insights into α-synuclein monomer–fibril interactions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	60
22	NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nature Chemical Biology, 2021, 17, 608-614.	3.9	63
23	Stringent Primer Termination by an Archaeo-Eukaryotic DNA Primase. Frontiers in Microbiology, 2021, 12, 652928.	1.5	2
24	Characterization of Weak Protein Domain Structure by Spin-Label Distance Distributions. Frontiers in Molecular Biosciences, 2021, 8, 636599.	1.6	12
25	Gradual opening of Smc arms in prokaryotic condensin. Cell Reports, 2021, 35, 109051.	2.9	11
26	Spectroscopic Signature and Structure of the Active Sites in Ziegler–Natta Polymerization Catalysts Revealed by Electron Paramagnetic Resonance. Journal of the American Chemical Society, 2021, 143, 9791-9797.	6.6	19
27	Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angewandte Chemie - International Edition, 2021, 60, 15944-15953.	7.2	33
28	Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angewandte Chemie, 2021, 133, 16080-16089.	1.6	0
29	One to Find Them All: A General Route to Ni(I)–Phenolate Species. Journal of the American Chemical Society, 2021, 143, 10642-10648.	6.6	22
30	Reconstruction of Coupled Intra- and Interdomain Protein Motion from Nuclear and Electron Magnetic Resonance. Journal of the American Chemical Society, 2021, 143, 16055-16067.	6.6	13
31	Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase. Nature Communications, 2021, 12, 5293.	5.8	13
32	Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries. Biophysical Journal, 2021, 120, 4842-4858.	0.2	21
33	Radical Trifluoroacetylation of Alkenes Triggered by a Visibleâ€Lightâ€Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angewandte Chemie, 2021, 133, 22661-22669.	1.6	4
34	Radical Trifluoroacetylation of Alkenes Triggered by a Visibleâ€Lightâ€Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angewandte Chemie - International Edition, 2021, 60, 22487-22495.	7.2	29
35	Structural biology of RNA-binding proteins in the context of phase separation: What NMR and EPR can bring?. Current Opinion in Structural Biology, 2021, 70, 132-138.	2.6	23
36	Dynamical decoupling in water–glycerol glasses: a comparison of nitroxides, trityl radicals and gadolinium complexes. Physical Chemistry Chemical Physics, 2021, 23, 5352-5369.	1.3	10

#	Article	IF	CITATIONS
37	Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. Journal of the American Chemical Society, 2021, 143, 17875-17890.	6.6	124
38	Efficient Dynamic Nuclear Polarization up to 230 K with Hybrid BDPA-Nitroxide Radicals at a High Magnetic Field. Journal of Physical Chemistry B, 2021, 125, 13329-13338.	1.2	9
39	Optimal background treatment in dipolar spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 1855-1868.	1.3	17
40	Modulating Effect of Ligand Charge on the Electronic Properties of 2Ni–2S Structures and Implications for Biological 2M–2S Sites. Inorganic Chemistry, 2020, 59, 17234-17243.	1.9	0
41	Accessing distributions of exchange and dipolar couplings in stiff molecular rulers with Cu(<scp>ii</scp>) centres. Physical Chemistry Chemical Physics, 2020, 22, 21707-21730.	1.3	9
42	Open and Closed Radicals: Local Geometry around Unpaired Electrons Governs Magic-Angle Spinning Dynamic Nuclear Polarization Performance. Journal of the American Chemical Society, 2020, 142, 16587-16599.	6.6	42
43	Magnetic excitation and readout of methyl group tunnel coherence. Science Advances, 2020, 6, eaba1517.	4.7	16
44	Reactivity of Diarylnitrenium Ions. Chemistry - A European Journal, 2020, 26, 8871-8874.	1.7	3
45	Supramolecular Approach to Electron Paramagnetic Resonance Distance Measurement of Spin-Labeled Proteins. Journal of Physical Chemistry B, 2020, 124, 3291-3299.	1.2	6
46	DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. Magnetic Resonance, 2020, 1, 209-224.	0.8	93
47	Distance measurement between trityl radicals by pulse dressed electron paramagnetic resonance with phase modulation. Magnetic Resonance, 2020, $1,75-87$.	0.8	8
48	Pyridyl Radical Cation for Câ ⁻ 'H Amination of Arenes. Angewandte Chemie, 2019, 131, 536-541.	1.6	24
49	UWB DEER and RIDME distance measurements in Cu(II)–Cu(II) spin pairs. Journal of Magnetic Resonance, 2019, 308, 106560.	1.2	34
50	Quo vadis EPR?. Journal of Magnetic Resonance, 2019, 306, 36-41.	1.2	9
51	Improving the accuracy of Cu(<scp>ii</scp>)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(<scp>ii</scp>)–nitroxide rulers. Physical Chemistry Chemical Physics, 2019, 21, 9810-9830.	1.3	38
52	Synthetic Diversity from a Versatile and Radical Nitrating Reagent. Chemistry - A European Journal, 2019, 25, 12929-12939.	1.7	39
53	Linear and Kinked Oligo(phenyleneethynylene)s as Ideal Molecular Calibrants for Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 6942-6947.	2.1	9
54	Frontispiece: Synthetic Diversity from a Versatile and Radical Nitrating Reagent. Chemistry - A European Journal, 2019, 25, .	1.7	0

#	Article	IF	Citations
55	Structural basis and mechanism for metallochaperone-assisted assembly of the Cu _A center in cytochrome oxidase. Science Advances, 2019, 5, eaaw8478.	4.7	20
56	Non-uniform HYSCORE: Measurement, processing and analysis with Hyscorean. Journal of Magnetic Resonance, 2019, 307, 106576.	1.2	7
57	Pulsed EPR Methods to Study Biomolecular Interactions. Chimia, 2019, 73, 268.	0.3	5
58	A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design. Journal of the American Chemical Society, 2019, 141, 8746-8751.	6.6	28
59	ELDOR-detected NMR beyond hyperfine couplings: a case study with Cu(<scp>ii</scp>)-porphyrin dimers. Physical Chemistry Chemical Physics, 2019, 21, 11676-11688.	1.3	20
60	<i>gem</i> â€Diethyl Pyrroline Nitroxide Spin Labels: Synthesis, EPR Characterization, Rotamer Libraries and Biocompatibility. ChemistryOpen, 2019, 8, 1057-1065.	0.9	30
61	Intermolecular background decay in RIDME experiments. Physical Chemistry Chemical Physics, 2019, 21, 8228-8245.	1.3	33
62	Magnetic field and orientation dependence of solid-state CIDNP. Journal of Chemical Physics, 2019, 150, 094105.	1.2	11
63	Comparison of the functional properties of trimeric and monomeric CaiT of Escherichia coli. Scientific Reports, 2019, 9, 3787.	1.6	4
64	Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chemical Research in Toxicology, 2019, 32, 1289-1298.	1.7	30
65	General regularization framework for DEER spectroscopy. Journal of Magnetic Resonance, 2019, 300, 28-40.	1.2	16
66	Trityl Radicals with a Combination of the Orthogonal Functional Groups Ethyne and Carboxyl: Synthesis without a Statistical Step and EPR Characterization. Journal of Organic Chemistry, 2019, 84, 3304-3320.	1.7	20
67	Pyridyl Radical Cation for Câ^'H Amination of Arenes. Angewandte Chemie - International Edition, 2019, 58, 526-531.	7.2	86
68	Chirp echo Fourier transform EPR-detected NMR. Journal of Magnetic Resonance, 2018, 289, 26-34.	1.2	13
69	Quantitative analysis of zero-field splitting parameter distributions in Gd(<scp>iii</scp>) complexes. Physical Chemistry Chemical Physics, 2018, 20, 10470-10492.	1.3	42
70	Electron paramagnetic resonance of a copper doped [(CH ₃) ₂ NH ₂][Zn(HCOO) ₃] hybrid perovskite framework. Physical Chemistry Chemical Physics, 2018, 20, 12097-12105.	1.3	14
71	Structural basis of si <scp>RNA</scp> recognition by <scp>TRBP</scp> doubleâ€stranded <scp>RNA</scp> binding domains. EMBO Journal, 2018, 37, .	3.5	43
72	Double resonance calibration of g factor standards: Carbon fibers as a high precision standard. Journal of Magnetic Resonance, 2018, 289, 100-106.	1.2	12

#	Article	IF	Citations
73	Dynamical decoupling of nitroxides in <i>o</i> -terphenyl: a study of temperature, deuteration and concentration effects. Physical Chemistry Chemical Physics, 2018, 20, 1615-1628.	1.3	36
74	MMM: A toolbox for integrative structure modeling. Protein Science, 2018, 27, 76-85.	3.1	130
75	Oxidative Biphasic Depolymerization (BPD) of Kraft Lignin at Low pH. ChemistrySelect, 2018, 3, 11680-11686.	0.7	11
76	Rotamer Modelling of Cu(II) Spin Labels Based on the Double-Histidine Motif. Applied Magnetic Resonance, 2018, 49, 1281-1298.	0.6	21
77	BDPA-Nitroxide Biradicals Tailored for Efficient Dynamic Nuclear Polarization Enhanced Solid-State NMR at Magnetic Fields up to 21.1 T. Journal of the American Chemical Society, 2018, 140, 13340-13349.	6.6	99
78	Two-Dimensional Distance Correlation Maps from Pulsed Triple Electron Resonance (TRIER) on Proteins with Three Paramagnetic Centers. Applied Magnetic Resonance, 2018, 49, 1253-1279.	0.6	5
79	Lowâ€Coordinated Titanium(III) Alkyl—Molecular and Surface—Complexes: Detailed Structure from Advanced EPR Spectroscopy. Angewandte Chemie, 2018, 130, 14741-14745.	1.6	2
80	Radikalische Trifluormethoxylierung aromatischer Verbindungen durch photochemische Nâ€Oâ€Bindungsaktivierung. Angewandte Chemie, 2018, 130, 13980-13985.	1.6	41
81	Lowâ€Coordinated Titanium(III) Alkyl—Molecular and Surface—Complexes: Detailed Structure from Advanced EPR Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 14533-14537.	7.2	15
82	The contribution of modern EPR to structural biology. Emerging Topics in Life Sciences, 2018, 2, 9-18.	1.1	87
83	Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme. Nature Catalysis, 2018, 1, 578-584.	16.1	93
84	Deep neural network processing of DEER data. Science Advances, 2018, 4, eaat5218.	4.7	134
85	Radical Trifluoromethoxylation of Arenes Triggered by a Visibleâ€Lightâ€Mediated Nâ^'O Bond Redox Fragmentation. Angewandte Chemie - International Edition, 2018, 57, 13784-13789.	7.2	124
86	The Making and Breaking of a Substrate Trap. Biophysical Journal, 2017, 112, 1-2.	0.2	14
87	Model-free extraction of spin label position distributions from pseudocontact shift data. Chemical Science, 2017, 8, 2751-2757.	3.7	26
88	Solidâ€state NMR and EPR Spectroscopy of Mn ²⁺ â€Substituted ATPâ€Fueled Protein Engines. Angewandte Chemie - International Edition, 2017, 56, 3369-3373.	7.2	49
89	Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls. Helvetica Chimica Acta, 2017, 100, e1700101.	1.0	24
90	Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(<scp>iii</scp>)-based spin labels. Physical Chemistry Chemical Physics, 2017, 19, 17856-17876.	1.3	36

#	Article	IF	Citations
91	Reliable nanometre-range distance distributions from 5-pulse double electron electron resonance. Physical Chemistry Chemical Physics, 2017, 19, 15754-15765.	1.3	16
92	Artefact suppression in 5-pulse double electron electron resonance for distance distribution measurements. Physical Chemistry Chemical Physics, 2017, 19, 15766-15779.	1.3	31
93	Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Timeâ€Delayed Hydrogen Generation. Angewandte Chemie, 2017, 129, 525-529.	1.6	54
94	Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Timeâ€Delayed Hydrogen Generation. Angewandte Chemie - International Edition, 2017, 56, 510-514.	7.2	204
95	Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nature Structural and Molecular Biology, 2017, 24, 187-193.	3.6	105
96	Double electron–electron resonance with multiple non-selective chirp refocusing. Physical Chemistry Chemical Physics, 2017, 19, 1039-1053.	1.3	20
97	High-Bandwidth Q-Band EPR Resonators. Applied Magnetic Resonance, 2017, 48, 1273-1300.	0.6	17
98	Spin labelling for integrative structure modelling: a case study of the polypyrimidine-tract binding protein 1 domains in complexes with short RNAs. Physical Chemistry Chemical Physics, 2017, 19, 28360-28380.	1.3	27
99	Highly Efficient UV Protection of the Biomaterial Wood by A Transparent TiO ₂ /Ce Xerogel. ACS Applied Materials & Diterfaces, 2017, 9, 39040-39047.	4.0	48
100	Formation and decay of radicals during Vacuum-UV irradiation of poly(dimethylsiloxane). Polymer Degradation and Stability, 2017, 144, 497-507.	2.7	3
101	Orthogonal Tyrosine and Cysteine Site-Directed Spin Labeling for Dipolar Pulse EPR Spectroscopy on Proteins. Journal of Physical Chemistry Letters, 2017, 8, 4852-4857.	2.1	26
102	Single Crystal Electron Paramagnetic Resonance of Dimethylammonium and Ammonium Hybrid Formate Frameworks: Influence of External Electric Field. Journal of Physical Chemistry C, 2017, 121, 16533-16540.	1.5	24
103	Wideband frequency-swept excitation in pulsed EPR spectroscopy. Journal of Magnetic Resonance, 2017, 280, 46-62.	1.2	55
104	Pulsed triple electron resonance (TRIER) for dipolar correlation spectroscopy. Journal of Magnetic Resonance, 2017, 282, 119-128.	1.2	18
105	Festkörperâ€NMR―und EPRâ€Spektroskopie an Mn ²⁺ â€substituierten ATPâ€angetriebenen Proteinmaschinen. Angewandte Chemie, 2017, 129, 3418-3422.	1.6	5
106	Pulse EPR and ENDOR Study of Manganese Doped [(CH ₃) ₂ NH ₂][Zn(HCOO) ₃] Hybrid Perovskite Framework. Journal of Physical Chemistry C, 2017, 121, 27225-27232.	1.5	20
107	Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9821-E9828.	3.3	35
108	Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies. Journal of the American Chemical Society, 2017, 139, 8855-8867.	6.6	58

#	Article	lF	CITATIONS
109	Copper is a Cofactor of the Formylglycineâ€Generating Enzyme. ChemBioChem, 2017, 18, 161-165.	1.3	45
110	Dendritic polarizing agents for DNP SENS. Chemical Science, 2017, 8, 416-422.	3.7	35
111	Exploring the Strength of the Hâ€Bond in Synthetic Models for Heme Proteins: The Importance of the Nâ^'H Acidity of the Distal Base. Chemistry - A European Journal, 2016, 22, 10194-10202.	1.7	9
112	Glu-311 in External Loop 4 of the Sodium/Proline Transporter PutP Is Crucial for External Gate Closure. Journal of Biological Chemistry, 2016, 291, 4998-5008.	1.6	9
113	Chiral recognition in amyloid fiber growth. Journal of Peptide Science, 2016, 22, 290-304.	0.8	25
114	Cover Image, Volume 84, Issue 4. Proteins: Structure, Function and Bioinformatics, 2016, 84, C1-C1.	1.5	0
115	Ensemble models of proteins and protein domains based on distance distribution restraints. Proteins: Structure, Function and Bioinformatics, 2016, 84, 544-560.	1.5	31
116	Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases. Journal of Chemical Physics, 2016, 144, 144202.	1.2	35
117	Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods. Journal of Chemical Physics, 2016, 144, 194201.	1.2	20
118	Nuclear hyperpolarization comes of age. Journal of Magnetic Resonance, 2016, 264, 1-2.	1.2	17
119	Laser-Induced Magnetic Dipole Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 2204-2209.	2.1	45
120	Transverse interference peaks in chirp FT-EPR correlated three-pulse ESEEM spectra. Journal of Magnetic Resonance, 2016, 272, 37-45.	1.2	12
121	Averaging of nuclear modulation artefacts in RIDME experiments. Journal of Magnetic Resonance, 2016, 272, 108-113.	1.2	27
122	Complementary-addressed site-directed spin labeling of long natural RNAs. Nucleic Acids Research, 2016, 44, 7935-7943.	6.5	38
123	Interaction of triarylmethyl radicals with DNA termini revealed by orientation-selective W-band double electron–electron resonance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 29549-29554.	1.3	24
124	The Influence of Zeolites on Radical Formation During Lignin Pyrolysis. ChemSusChem, 2016, 9, 2397-2403.	3.6	21
125	EPR characterization of Mn(<scp>ii</scp>) complexes for distance determination with pulsed dipolar spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 25120-25135.	1.3	40
126	EPR-correlated dipolar spectroscopy by Q-band chirp SIFTER. Physical Chemistry Chemical Physics, 2016, 18, 23111-23120.	1.3	32

#	Article	IF	Citations
127	Design and Synthesis of Aviram–Ratnerâ€Type Dyads and Rectification Studies in Langmuir–Blodgett (LB) Films. Chemistry - A European Journal, 2016, 22, 10539-10547.	1.7	26
128	CIDME: Short distances measured with long chirp pulses. Journal of Magnetic Resonance, 2016, 273, 73-82.	1.2	25
129	Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 695-704.	0.5	6
130	Comment on "Quantum trajectory tests of radical-pair quantum dynamics in CIDNP measurements of photosynthetic reaction centers―[Chem. Phys. Lett. 640 (2015) 40–45]. Chemical Physics Letters, 2016, 648, 200-203.	1.2	4
131	Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX. Journal of Structural Biology, 2016, 195, 62-71.	1.3	14
132	Radical exchange reaction of multi-spin isoindoline nitroxides followed by EPR spectroscopy. RSC Advances, 2016, 6, 55715-55719.	1.7	19
133	SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation. Journal of Magnetic Resonance, 2016, 263, 45-54.	1.2	14
134	Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chemical Science, 2016, 7, 550-558.	3.7	141
135	Gd(III)–Gd(III) distance measurements with chirp pump pulses. Journal of Magnetic Resonance, 2015, 259, 153-162.	1.2	89
136	A Lowâ€Valent Iron Imido Heterocubane Cluster: Reversible Electron Transfer and Catalysis of Selective C–C Couplings. Angewandte Chemie - International Edition, 2015, 54, 13012-13017.	7.2	10
137	Shape Persistence of Polyprolineâ€II Helical Oligoprolines. Chemistry - A European Journal, 2015, 21, 10747-10753.	1.7	25
138	Multiâ€frequency (S, X, Q and Wâ€band) EPR and ENDOR Study of Vanadium(IV) Incorporation in the Aluminium Metal–Organic Framework MILâ€53. ChemPhysChem, 2015, 16, 2968-2973.	1.0	18
139	Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 13570-13582.	1.2	37
140	EPR on Biomolecules., 2015,,.		0
141	Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin $\hat{1}\pm6\hat{1}^24$. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 969-985.	2.5	38
142	Distance Measurement on an Endogenous Membrane Transporter in <i>E. coli</i> Cells and Native Membranes Using EPR Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 6196-6199.	7.2	89
143	Sensitivity enhancement by population transfer in Gd(<scp>iii</scp>) spin labels. Physical Chemistry Chemical Physics, 2015, 17, 7334-7344.	1.3	54
144	Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods in Enzymology, 2015, 558, 279-331.	0.4	37

#	Article	IF	CITATIONS
145	Changes in the Microenvironment of Nitroxide Radicals around the Glass Transition Temperature. Journal of Physical Chemistry B, 2015, 119, 13797-13806.	1.2	17
146	Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy. Journal of Chemical Physics, 2015, 143, 044201.	1.2	30
147	Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR. Journal of Biological Chemistry, 2015, 290, 26007-26020.	1.6	18
148	Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques. Materials, 2014, 7, 1384-1408.	1.3	10
149	EPR-aided approach for solution structure determination of large RNAs or protein–RNA complexes. Nature Communications, 2014, 5, 3669.	5.8	96
150	Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature, 2014, 509, 588-592.	13.7	189
151	Structural Model of Active Bax at the Membrane. Molecular Cell, 2014, 56, 496-505.	4.5	190
152	RIDME Spectroscopy with Gd(III) Centers. Journal of Physical Chemistry Letters, 2014, 5, 3970-3975.	2.1	76
153	Gd(III)-PyMTA Label Is Suitable for In-Cell EPR. Journal of the American Chemical Society, 2014, 136, 15366-15378.	6.6	151
154	Conformational Cycle of the Vitamin B12 ABC Importer in Liposomes Detected by Double Electron-Electron Resonance (DEER). Journal of Biological Chemistry, 2014, 289, 3176-3185.	1.6	53
155	Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments. Journal of Magnetic Resonance, 2014, 246, 9-17.	1.2	12
156	Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses. Journal of Magnetic Resonance, 2014, 246, 18-26.	1.2	64
157	Extracellular Loop 4 of the Proline Transporter PutP Controls the Periplasmic Entrance to Ligand Binding Sites. Structure, 2014, 22, 769-780.	1.6	19
158	A comparative study of structures and structural transitions of secondary transporters with the LeuT fold. European Biophysics Journal, 2013, 42, 181-197.	1.2	21
159	Adiabatic and fast passage ultra-wideband inversion in pulsed EPR. Journal of Magnetic Resonance, 2013, 230, 27-39.	1.2	118
160	Distance determination between low-spin ferric haem and nitroxide spin label using DEER: the neuroglobin case. Molecular Physics, 2013, 111, 2855-2864.	0.8	19
161	Room-temperature synthesis of Fe–BTC from layered iron hydroxides: the influence of precursor organisation. CrystEngComm, 2013, 15, 9885.	1.3	49
162	Conformational dynamics and distribution of nitroxide spin labels. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 72, 42-60.	3.9	131

#	Article	IF	CITATIONS
163	Solid-Phase Polarization Matrixes for Dynamic Nuclear Polarization from Homogeneously Distributed Radicals in Mesostructured Hybrid Silica Materials. Journal of the American Chemical Society, 2013, 135, 15459-15466.	6.6	56
164	Orthogonal Spin Labeling and Gd(III)–Nitroxide Distance Measurements on Bacteriophage T4-Lysozyme. Journal of Physical Chemistry B, 2013, 117, 3145-3153.	1.2	93
165	Suppression of ghost distances in multiple-spin double electron–electron resonance. Physical Chemistry Chemical Physics, 2013, 15, 5854.	1.3	84
166	Distance Measurements on Orthogonally Spin-Labeled Membrane Spanning WALP23 Polypeptides. Journal of Physical Chemistry B, 2013, 117, 2061-2068.	1.2	58
167	Large Molecular Weight Nitroxide Biradicals Providing Efficient Dynamic Nuclear Polarization at Temperatures up to 200 K. Journal of the American Chemical Society, 2013, 135, 12790-12797.	6.6	355
168	EPR Relaxationâ€Enhancementâ€Based Distance Measurements on Orthogonally Spinâ€Labeled T4â€Lysozyme. ChemBioChem, 2013, 14, 1883-1890.	1.3	18
169	Distance determination from dysprosium induced relaxation enhancement: a case study on membrane-inserted WALP23 polypeptides. Molecular Physics, 2013, 111, 2824-2833.	0.8	5
170	Investigating the structure of the factor B vWF-A domain/CD55 protein–protein complex using DEER spectroscopy: successes and pitfalls. Molecular Physics, 2013, 111, 2865-2872.	0.8	2
171	The Solid-State Photo-CIDNP Effect and Its Analytical Application. Topics in Current Chemistry, 2012, 338, 105-121.	4.0	21
172	Rigid Core and Flexible Terminus. Journal of Biological Chemistry, 2012, 287, 2915-2925.	1.6	35
173	Optimization of Algorithms for Modeling Protein Structural Transitions from Sparse Long-Range Spin-Label Distance Constraints. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1395-1414.	1.4	9
174	Characterization of Protein Conformational Changes with Sparse Spin-Label Distance Constraints. Journal of Chemical Theory and Computation, 2012, 8, 3854-3863.	2.3	30
175	DEER Distance Measurements on Proteins. Annual Review of Physical Chemistry, 2012, 63, 419-446.	4.8	869
176	Electron Spin Density Distribution in the Special Pair Triplet of <i>Rhodobacter sphaeroides</i> Revealed by Magnetic Field Dependence of the Solid-State Photo-CIDNP Effect. Journal of the American Chemical Society, 2012, 134, 5921-5930.	6.6	46
177	Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures. Journal of Magnetic Resonance, 2012, 222, 34-43.	1.2	38
178	High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Physical Chemistry Chemical Physics, 2012, 14, 10762.	1.3	173
179	Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd3+–DTPA chelate complexes. Physical Chemistry Chemical Physics, 2012, 14, 10732.	1.3	85
180	Multiple Pathway Relaxation Enhancement in the System Composed of Three Paramagnetic Species: Nitroxide Radical–Ln ³⁺ –O ₂ . Journal of Physical Chemistry Letters, 2012, 3, 1336-1340.	2.1	14

#	Article	IF	Citations
181	Orientation selective DEER measurements on vinculin tail at X-band frequencies reveal spin label orientations. Journal of Magnetic Resonance, 2012, 216, 53-61.	1.2	41
182	Rotamer libraries of spin labelled cysteines for protein studies. Physical Chemistry Chemical Physics, 2011, 13, 2356-2366.	1.3	406
183	Theory of Solid-State Photo-CIDNP in the Earth's Magnetic Field. Journal of Physical Chemistry A, 2011, 115, 9919-9928.	1.1	21
184	Interpretation of Dipolar EPR Data in Terms of Protein Structure. Structure and Bonding, 2011, , 83-120.	1.0	22
185	Dead-time free measurement of dipole–dipole interactions between electron spins. Journal of Magnetic Resonance, 2011, 213, 316-325.	1.2	61
186	Double Electronâ [°] Electron Resonance Measured Between Gd ³⁺ lons and Nitroxide Radicals. Journal of Physical Chemistry Letters, 2011, 2, 604-609.	2.1	99
187	Probing How Counterion Structure and Dynamics Determine Polyelectrolyte Solutions Using EPR Spectroscopy. Applied Magnetic Resonance, 2010, 37, 657-683.	0.6	27
188	Microwave-Hydrothermal Synthesis of Nanostructured Zinc-Copper Gallates. European Journal of Inorganic Chemistry, 2010, 2010, 2036-2043.	1.0	24
189	Prediction of favourable sites for spin labelling of proteins. Spectroscopy, 2010, 24, 651-659.	0.8	39
190	Site-Specific Information on Membrane Protein Folding by Electron Spin Echo Envelope Modulation Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 663-667.	2.1	20
191	Flexibility of Shape-Persistent Molecular Building Blocks Composed of <i>p-</i> Phenylene and Ethynylene Units. Journal of the American Chemical Society, 2010, 132, 10107-10117.	6.6	110
192	Pyridinium salts and ylides as partial structures of photoresponsive Merrifield resins. Journal of Materials Chemistry, 2010, 20, 3025.	6.7	21
193	Reversible peptide particle formation using a mini amino acid sequence. Soft Matter, 2010, 6, 5596.	1.2	22
194	Probing Hydrogen Bonding to Bound Dioxygen in Synthetic Models for Heme Proteins: The Importance of Precise Geometry. Chemistry - A European Journal, 2009, 15, 125-135.	1.7	13
195	Conformationally Unambiguous Spin Labeling for Distance Measurements. Chemistry - A European Journal, 2009, 15, 12960-12962.	1.7	31
196	Cryogenic 35GHz pulse ENDOR probehead accommodating large sample sizes: Performance and applications. Journal of Magnetic Resonance, 2009, 200, 81-87.	1.2	41
197	Backbone Structure of Transmembrane Domain IX of the Na+/Proline Transporter PutP of Escherichia coli. Biophysical Journal, 2009, 96, 217-225.	0.2	38
198	Pulsed EPR Determination of Water Accessibility to Spin-Labeled Amino Acid Residues in LHCIIb. Biophysical Journal, 2009, 96, 1124-1141.	0.2	74

#	Article	IF	Citations
199	Refolding of the integral membrane protein light-harvesting complex II monitored by pulse EPR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18485-18490.	3.3	74
200	Three-spin correlations in double electron–electron resonance. Physical Chemistry Chemical Physics, 2009, 11, 6580.	1.3	127
201	Direct Evidence for a Hydrogen Bond to Bound Dioxygen in a Myoglobin/Hemoglobin Model System and in Cobalt Myoglobin by Pulseâ€EPR Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 2600-2603.	7.2	29
202	Distance measurements in the borderline region of applicability of CW EPR and DEER: A model study on a homologous series of spin-labelled peptides. Journal of Magnetic Resonance, 2008, 191, 202-218.	1.2	142
203	Relaxation-based distance measurements between a nitroxide and a lanthanide spin label. Journal of Magnetic Resonance, 2008, 194, 254-263.	1.2	32
204	Characterization of the Primary Radical Pair in Reaction Centers of <i>Heliobacillus mobilis</i> by ¹³ C Photo-CIDNP MAS NMR. Biochemistry, 2008, 47, 4629-4635.	1.2	33
205	Lateral Diffusion of Thiol Ligands on the Surface of Au Nanoparticles:  An Electron Paramagnetic Resonance Study. Analytical Chemistry, 2008, 80, 95-106.	3.2	88
206	¹⁵ N photochemically induced dynamic nuclear polarization magic-angle spinning NMR analysis of the electron donor of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12767-12771.	3.3	64
207	Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Physical Chemistry Chemical Physics, 2007, 9, 1895.	1.3	557
208	Evidence from EPR that nitroxide spin labels attached to human hemoglobin alter their conformation upon freezing. Molecular Physics, 2007, 105, 2041-2047.	0.8	18
209	Signals in Solid-State Photochemically Induced Dynamic Nuclear Polarization Recover Faster Than Signals Obtained with the Longitudinal Relaxation Time. Journal of Physical Chemistry B, 2007, 111, 10606-10614.	1.2	28
210	High-Resolution Structure of a Na+/H+ Antiporter Dimer Obtained by Pulsed Electron Paramagnetic Resonance Distance Measurements. Biophysical Journal, 2007, 93, 3675-3683.	0.2	101
211	Photochemically induced dynamic nuclear polarization in the reaction center of the green sulphur bacterium Chlorobium tepidum observed by 13C MAS NMR. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 610-615.	0.5	26
212	Spin pair geometry revealed by high-field DEER in the presence of conformational distributions. Journal of Magnetic Resonance, 2007, 185, 118-129.	1.2	133
213	Photo-CIDNP MAS NMR in Intact Cells ofRhodobactersphaeroidesR26:Â Molecular and Atomic Resolution at Nanomolar Concentration. Journal of the American Chemical Society, 2006, 128, 12794-12799.	6.6	56
214	Isotope selection in distance measurements between nitroxides. Journal of Magnetic Resonance, 2006, 180, 137-146.	1.2	35
215	DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance, 2006, 30, 473-498.	0.6	941
216	How Flexible Are Poly(para-phenyleneethynylene)s?. Angewandte Chemie - International Edition, 2006, 45, 7560-7564.	7.2	125

#	Article	IF	CITATIONS
217	Magnetic Field Dependence of Photo-CIDNP MAS NMR on Photosynthetic Reaction Centers of Rhodobacter sphaeroides WT. Journal of the American Chemical Society, 2005, 127, 14290-14298.	6.6	67
218	Assessing Oligomerization of Membrane Proteins by Four-Pulse DEER: pH-Dependent Dimerization of NhaA Na+/H+ Antiporter of E. coli. Biophysical Journal, 2005, 89, 1328-1338.	0.2	133
219	Distance measurements between paramagnetic centers and a planar object by matrix Mims electron nuclear double resonance. Journal of Chemical Physics, 2005, 122, 024515.	1.2	29
220	Data analysis procedures for pulse ELDOR measurements of broad distance distributions. Applied Magnetic Resonance, 2004, 26, 223-244.	0.6	174
221	Sensitivity enhancement in pulse EPR distance measurements. Journal of Magnetic Resonance, 2004, 169, 1-12.	1.2	138
222	Photochemically Induced Dynamic Nuclear Polarization in Photosystem I of Plants Observed by 13C Magic-Angle Spinning NMR. Journal of the American Chemical Society, 2004, 126, 12819-12826.	6.6	58
223	Co-Conformational Distribution of Nanosized [2]Catenanes Determined by Pulse EPR Measurements. ChemPhysChem, 2003, 4, 1328-1334.	1.0	28
224	A reassessment of the origin of photochemically induced dynamic nuclear polarization effects in solids. Chemical Physics, 2003, 294, 239-255.	0.9	83
225	Structure and dynamics of copper complexes with 2,2′:6′,2″-terpyridines in glassy matrices. Physical Chemistry Chemical Physics, 2003, 5, 3959-3967.	1.3	20
226	Selective Measurements of a Nitroxide–Nitroxide Separation of 5 nm and a Nitroxide–Copper Separation of 2.5 nm in a Terpyridine-Based Copper(II) Complex by Pulse EPR Spectroscopy. Angewandte Chemie - International Edition, 2002, 41, 3907-3910.	7.2	103
227	Determination of the Nanostructure of Polymer Materials by Electron Paramagnetic Resonance Spectroscopy. Macromolecular Rapid Communications, 2002, 23, 227-246.	2.0	176
228	Distance Measurements in the Nanometer Range by Pulse EPR. ChemPhysChem, 2002, 3, 927-932.	1.0	277
229	Direct Conversion of EPR Dipolar Time Evolution Data to Distance Distributions. Journal of Magnetic Resonance, 2002, 155, 72-82.	1.2	221
230	Dead-Time Free Measurement of Dipole–Dipole Interactions between Electron Spins. Journal of Magnetic Resonance, 2000, 142, 331-340.	1.2	949
231	Dipolar spectroscopy and spin alignment in electron paramagnetic resonance. Chemical Physics Letters, 2000, 331, 243-252.	1.2	173
232	Determination of Ion Cluster Sizes and Cluster-to-Cluster Distances in Ionomers by Four-Pulse Double Electron Electron Resonance Spectroscopy. Macromolecules, 2000, 33, 7812-7818.	2.2	56
233	EPR Probes with Well-Defined, Long Distances between Two or Three Unpaired Electrons. Journal of Organic Chemistry, 2000, 65, 7575-7582.	1.7	66
234	Coherent superposition of dressed spin states and pulse dressed electron spin resonance. Chemical Physics Letters, 1999, 301, 524-530.	1.2	29

#	Article	IF	CITATIONS
235	NMR-correlated high-field electron paramagnetic resonance spectroscopy. Chemical Physics Letters, 1998, 293, 9-18.	1.2	31
236	Sensitivity Enhancement by Matched Microwave Pulses in One- and Two-Dimensional Electron Spin Echo Envelope Modulation Spectroscopy. Journal of Magnetic Resonance, 1998, 131, 261-271.	1.2	73
237	A New Mechanism for Chemically Induced Dynamic Nuclear Polarization in the Solid State. Journal of the American Chemical Society, 1998, 120, 4425-4429.	6.6	65
238	Electron–electron–nuclear three-spin mixing in spin-correlated radical pairs. Journal of Chemical Physics, 1997, 106, 10072-10086.	1,2	72
239	Hyperfine decoupling in electron spin resonance. Journal of Chemical Physics, 1997, 106, 9979-9991.	1.2	31
240	Matched twoâ€pulse electron spin echo envelope modulation spectroscopy. Journal of Chemical Physics, 1996, 105, 2199-2211.	1.2	32
241	Hyperfine-correlated electron nuclear double resonance spectroscopy. Chemical Physics Letters, 1995, 246, 431-438.	1.2	33
242	Timeâ€domain chirp electron nuclear double resonance spectroscopy in one and two dimensions. Journal of Chemical Physics, 1995, 103, 8329-8337.	1.2	24