Kaisa Hakkila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reporter Genes lucFF, luxCDABE, gfp, and dsred Have Different Characteristics in Whole-Cell Bacterial Sensors. Analytical Biochemistry, 2002, 301, 235-242.	2.4	179
2	Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. Journal of Applied Toxicology, 2004, 24, 333-342.	2.8	131
3	Detection of Organomercurials with Sensor Bacteria. Analytical Chemistry, 2001, 73, 5168-5171.	6.5	88
4	The SigB σ Factor Regulates Multiple Salt Acclimation Responses of the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 Â. Plant Physiology, 2012, 158, 514-523.	4.8	66
5	Roles of Group 2 Sigma Factors in Acclimation of the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 to Nitrogen Deficiency. Plant and Cell Physiology, 2016, 57, 1309-1318.	3.1	49
6	Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 217-225.	1.0	47
7	Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Analytical and Bioanalytical Chemistry, 2011, 401, 201-211.	3.7	46
8	Cd-Specific Mutants of Mercury-Sensing Regulatory Protein MerR, Generated by Directed Evolution. Applied and Environmental Microbiology, 2011, 77, 6215-6224.	3.1	37
9	The omega subunit of the RNA polymerase core directs transcription efficiency in cyanobacteria. Nucleic Acids Research, 2014, 42, 4606-4614.	14.5	37
10	6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803. BMC Microbiology, 2017, 17, 229.	3.3	34
11	Measurement of Effects of Antibiotics in Bioluminescent Staphylococcus aureus RN4220. Antimicrobial Agents and Chemotherapy, 2001, 45, 3456-3461.	3.2	29
12	Group 2 Sigma Factor Mutant ΔsigCDE of the Cyanobacterium Synechocystis sp. PCC 6803 Reveals Functionality of Both Carotenoids and Flavodiiron Proteins in Photoprotection of Photosystem II. Plant and Cell Physiology, 2013, 54, 1780-1790.	3.1	29
13	Simultaneous detection of bacteria expressinggfp anddsred genes with a flow cytometer. Cytometry, 2002, 47, 243-247.	1.8	25
14	<i>In vivo</i> recruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria. Molecular Microbiology, 2016, 99, 43-54.	2.5	25
15	Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins. Journal of Microbiological Methods, 2003, 54, 75-79.	1.6	19
16	The interaction between concrete pavement and corrosion-induced copper runoff from buildings. Environmental Monitoring and Assessment, 2008, 140, 175-189.	2.7	14
17	Acclimation to High CO ₂ Requires the <i>i>i‰</i> Subunit of the RNA Polymerase in <i>Synechocystis</i> . Plant Physiology, 2017, 174, 172-184.	4.8	14
18	Inactivation of group 2 $\ddot{l}f$ factors upregulates production of transcription and translation machineries in the cyanobacterium Synechocystis sp. PCC 6803. Scientific Reports, 2018, 8, 10305.	3.3	13

Kaisa Hakkila

#	Article	IF	CITATIONS
19	Group 2 Sigma Factors are Central Regulators of Oxidative Stress Acclimation in Cyanobacteria. Plant and Cell Physiology, 2019, 60, 436-447.	3.1	13
20	The ω Subunit of RNA Polymerase Is Essential for Thermal Acclimation of the Cyanobacterium Synechocystis Sp. PCC 6803. PLoS ONE, 2014, 9, e112599.	2.5	9
21	Toxicity detection from EILATox-Oregon Workshop samples by using kinetic photobacteria measurement: the flash method. Journal of Applied Toxicology, 2004, 24, 349-353.	2.8	8
22	Developing a compoundâ€specific receptor for bisphenol a by directed evolution of human estrogen receptor α. Biotechnology and Bioengineering, 2011, 108, 2526-2534.	3.3	7
23	Roles of Close Homologues SigB and SigD in Heat and High Light Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803. Life, 2022, 12, 162.	2.4	5
24	Isolation of sensitive nisin-sensing GFPuv bioassay LactococcusÂlactis strains using FACS. Biotechnology Letters, 2009, 31, 119-122.	2.2	1
25	Mutations Suppressing the Lack of Prepilin Peptidase Provide Insights Into the Maturation of the Major Pilin Protein in Cyanobacteria. Frontiers in Microbiology, 2021, 12, 756912.	3.5	1