
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurology, The, 2016, 15, 304-316.	10.2	474
2	Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA. American Journal of Human Genetics, 2012, 91, 1144-1149.	6.2	309
3	Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nature Reviews Neurology, 2015, 11, 567-584.	10.1	221
4	Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain, 2013, 136, 1708-1717.	7.6	203
5	Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annual Review of Genomics and Human Genetics, 2015, 16, 257-279.	6.2	195
6	Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. Journal of Medical Genetics, 2016, 53, 310-317.	3.2	191
7	Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nature Genetics, 2017, 49, 223-237.	21.4	186
8	Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation. American Journal of Human Genetics, 2014, 94, 11-22.	6.2	176
9	Neurodegeneration with brain iron accumulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 293-305.	1.8	153
10	Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. Brain, 2013, 136, 1578-1591.	7.6	144
11	The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain, 2015, 138, 3567-3580.	7.6	129
12	A type I interferon signature identifies bilateral striatal necrosis due to mutations in <i>ADAR1</i> . Journal of Medical Genetics, 2014, 51, 76-82.	3.2	118
13	Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. American Journal of Human Genetics, 2016, 99, 735-743.	6.2	99
14	Not all <i>SCN1A</i> epileptic encephalopathies are Dravet syndrome. Neurology, 2017, 89, 1035-1042.	1.1	97
15	De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. American Journal of Human Genetics, 2016, 98, 763-771.	6.2	96
16	Clinical and molecular characterization of <i>KCNT1</i> -related severe early-onset epilepsy. Neurology, 2018, 90, e55-e66.	1.1	89
17	<i>GNAO1</i> encephalopathy. Neurology: Genetics, 2017, 3, e143.	1.9	84
18	Lossâ€ofâ€Function Variants in <scp>HOPS</scp> Complex Genes <scp><i>VPS16</i></scp> and <scp><i>VPS41</i></scp> Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Annals of Neurology, 2020, 88, 867-877.	5.3	70

#	Article	IF	CITATIONS
19	Pantothenate Kinase-Associated Neurodegeneration (PKAN) and PLA2G6-Associated Neurodegeneration (PLAN). International Review of Neurobiology, 2013, 110, 49-71.	2.0	68
20	Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy. American Journal of Human Genetics, 2016, 98, 735-743.	6.2	65
21	Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Molecular Genetics and Metabolism, 2017, 120, 278-287.	1.1	64
22	<scp>AADC</scp> deficiency from infancy to adulthood: Symptoms and developmental outcome in an international cohort of 63 patients. Journal of Inherited Metabolic Disease, 2020, 43, 1121-1130.	3.6	59
23	<i>KMT2B</i> -related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain, 2020, 143, 3242-3261.	7.6	57
24	<i>GABRB3</i> mutations: a new and emerging cause of early infantile epileptic encephalopathy. Developmental Medicine and Child Neurology, 2016, 58, 416-420.	2.1	56
25	Delineation of the movement disorders associated with <i>FOXG1</i> mutations. Neurology, 2016, 86, 1794-1800.	1.1	55
26	Frequency and phenotypic spectrum of <i>KMT2B</i> dystonia in childhood: A single enter cohort study. Movement Disorders, 2019, 34, 1516-1527.	3.9	55
27	<i>LYRM7</i> mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain, 2016, 139, 782-794.	7.6	51
28	The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurology, The, 2021, 20, 956-968.	10.2	51
29	Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of Human Genetics, 2019, 104, 948-956.	6.2	45
30	Psychiatric disorders, myoclonus dystonia and <i> <scp>SGCE</scp> </i> : an international study. Annals of Clinical and Translational Neurology, 2016, 3, 4-11.	3.7	43
31	Enhanced cGAS-STING–dependent interferon signaling associated with mutations in ATAD3A. Journal of Experimental Medicine, 2021, 218, .	8.5	43
32	What is new for monoamine neurotransmitter disorders?. Journal of Inherited Metabolic Disease, 2014, 37, 619-626.	3.6	40
33	Autosomal dominant mitochondrial membrane proteinâ€associated neurodegeneration (MPAN). Molecular Genetics & Genomic Medicine, 2019, 7, e00736.	1.2	40
34	<i>KIF1A</i> â€related disorders in children: A wide spectrum of central and peripheral nervous system involvement. Journal of the Peripheral Nervous System, 2020, 25, 117-124.	3.1	40
35	Phenotypes, genotypes, and the management of paroxysmal movement disorders. Developmental Medicine and Child Neurology, 2018, 60, 559-565.	2.1	31
36	The expanding spectrum of movement disorders in genetic epilepsies. Developmental Medicine and Child Neurology, 2020, 62, 178-191.	2.1	31

#	Article	IF	CITATIONS
37	Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain, 2015, 138, 2859-2874.	7.6	30
38	Benign Hereditary Chorea: An Update. Tremor and Other Hyperkinetic Movements, 2015, 5, 314.	2.0	30
39	Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 78.	2.9	29
40	The dopamine transporter gene SLC6A3: multidisease risks. Molecular Psychiatry, 2022, 27, 1031-1046.	7.9	28
41	Highlighting the Dystonic Phenotype Related to <scp><i>GNAO1</i></scp> . Movement Disorders, 2022, 37, 1547-1554.	3.9	25
42	Postsynaptic movement disorders: clinical phenotypes, genotypes, and disease mechanisms. Journal of Inherited Metabolic Disease, 2018, 41, 1077-1091.	3.6	24
43	An Update on the Phenotype, Genotype and Neurobiology of <scp>ADCY5â€Related</scp> Disease. Movement Disorders, 2021, 36, 1104-1114.	3.9	24
44	<i><scp>RARS</scp>2</i> mutations in a sibship with infantile spasms. Epilepsia, 2016, 57, e97-e102.	5.1	23
45	TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. American Journal of Human Genetics, 2021, 108, 1669-1691.	6.2	23
46	<scp><i>DNAJC6</i></scp> Mutations Disrupt Dopamine Homeostasis in Juvenile <scp>Parkinsonismâ€Dystonia</scp> . Movement Disorders, 2020, 35, 1357-1368.	3.9	22
47	Severe infantile epileptic encephalopathy due to mutations in <i><scp>PLCB</scp>1</i> : expansion of the genotypic and phenotypic disease spectrum. Developmental Medicine and Child Neurology, 2014, 56, 1124-1128.	2.1	21
48	Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines. Nature Communications, 2021, 12, 5529.	12.8	21
49	Genetic disorders of thyroid metabolism and brain development. Developmental Medicine and Child Neurology, 2014, 56, 627-634.	2.1	19
50	Relationship of Genotype, Phenotype, and Treatment in Dopaâ€Responsive Dystonia: <scp>MDSGene</scp> Review. Movement Disorders, 2022, 37, 237-252.	3.9	19
51	Consensus clinical management guideline for betaâ€propeller proteinâ€associated neurodegeneration. Developmental Medicine and Child Neurology, 2021, 63, 1402-1409.	2.1	17
52	Aromatic <scp>l</scp> -amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain, 2021, 144, 2443-2456.	7.6	16
53	The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 676-682.	2.3	15
54	<i>RHOBTB2</i> Mutations Expand the Phenotypic Spectrum of Alternating Hemiplegia of Childhood. Neurology, 2021, 96, e1539-e1550.	1.1	15

#	Article	IF	CITATIONS
55	Biallelic <scp><i>AOPEP</i></scp> Lossâ€ofâ€Function Variants Cause Progressive Dystonia with Prominent Limb Involvement. Movement Disorders, 2022, 37, 137-147.	3.9	14
56	Atypical <i>PLA2G6</i> â€Associated Neurodegeneration: Social Communication Impairment, Dystonia and Response to Deep Brain Stimulation. Movement Disorders Clinical Practice, 2014, 1, 128-131.	1.5	13
57	Spectrum of movement disorders and neurotransmitter abnormalities in paediatric <i>POLG</i> disease. Journal of Inherited Metabolic Disease, 2018, 41, 1275-1283.	3.6	12
58	The clinical syndrome of dystonia with anarthria/aphonia. Parkinsonism and Related Disorders, 2016, 24, 20-27.	2.2	10
59	Structural mapping of GABRB3 variants reveals genotype–phenotype correlations. Genetics in Medicine, 2022, 24, 681-693.	2.4	10
60	Comparison of methylation episignatures in <i>KMT2B</i> and <i>KMT2D</i> related human disorders. Epigenomics, 2022, 14, 537-547.	2.1	10
61	Biallelic Mutations of <i>TBC1D24</i> in Exerciseâ€Induced Paroxysmal Dystonia. Movement Disorders, 2020, 35, 372-373.	3.9	8
62	A Recurrent <scp><i>VPS16</i></scp> p.Arg187* Nonsense Variant in Earlyâ€Onset Generalized Dystonia. Movement Disorders, 2021, 36, 1984-1985.	3.9	7
63	Assessment of intellectual impairment, healthâ€related quality of life, and behavioral phenotype in patients with neurotransmitter related disorders: Data from the <scp>iNTD</scp> registry. Journal of Inherited Metabolic Disease, 2021, 44, 1489-1502.	3.6	7
64	Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor and Other Hyperkinetic Movements, 2021, 11, 51.	2.0	7
65	Childhoodâ€Onset Chorea Caused by a Recurrent De Novo <i>DRD2</i> Variant. Movement Disorders, 2021, 36, 1472-1473.	3.9	6
66	Niemann–Pick type C disease as proofâ€ofâ€concept for intelligent biomarker panel selection in neurometabolic disorders. Developmental Medicine and Child Neurology, 0, , .	2.1	6
67	Recent genetic advances in early-onset dystonia. Current Opinion in Neurology, 2020, 33, 500-507.	3.6	5
68	Yield of comparative genomic hybridization microarray in pediatric neurology practice. Neurology: Genetics, 2019, 5, e367.	1.9	4
69	Precision medicine for genetic childhood movement disorders. Developmental Medicine and Child Neurology, 2021, 63, 925-933.	2.1	4
70	<scp><i>STXBP1</i></scp> Stopâ€Loss Mutation Associated with Complex Early Onset Movement Disorder without Epilepsy. Movement Disorders Clinical Practice, 2022, 9, 837-840.	1.5	3
71	Freezing of Gait as a Complication of Pallidal Deep Brain Stimulation in <scp>DYTâ€<i>KMT2B</i></scp> Patients with Evidence of Striatonigral Degeneration. Movement Disorders Clinical Practice, 2022, 9, 992-996.	1.5	1
72	Commentary: Galactosemia Diagnosis by Whole Exome Sequencing Later in Life. Movement Disorders Clinical Practice, 2021, 8, S40-S41.	1.5	0

#	Article	IF	CITATIONS
73	Commentary: <scp>GM1</scp> â€Gangliosidosis Type <scp>III</scp> Associated Parkinsonism. Movement Disorders Clinical Practice, 2021, 8, S24-S25.	1.5	Ο