
Arthur Van Aerschot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and structure-activity studies of novel anhydrohexitol-based Leucyl-tRNA synthetase inhibitors. European Journal of Medicinal Chemistry, 2021, 211, 113021.	5.5	14
2	Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1750.	4.1	36
3	Towards Novel 3-Aminopyrazinamide-Based Prolyl-tRNA Synthetase Inhibitors: In Silico Modelling, Thermal Shift Assay and Structural Studies. International Journal of Molecular Sciences, 2021, 22, 7793.	4.1	5
4	Structural Insights into the Binding of Natural Pyrimidine-Based Inhibitors of Class II Aminoacyl-tRNA Synthetases. ACS Chemical Biology, 2020, 15, 407-415.	3.4	12
5	Synthesis and structural insights into the binding mode of the albomycin δ1 core and its analogues in complex with their target aminoacyl-tRNA synthetase. Bioorganic and Medicinal Chemistry, 2020, 28, 115645.	3.0	3
6	Synthesis and Biological Evaluation of 1,3-Dideazapurine-Like 7-Amino-5-Hydroxymethyl-Benzimidazole Ribonucleoside Analogues as Aminoacyl-tRNA Synthetase Inhibitors. Molecules, 2020, 25, 4751.	3.8	2
7	Phenyltriazole-functionalized sulfamate inhibitors targeting tyrosyl- or isoleucyl-tRNA synthetase. Bioorganic and Medicinal Chemistry, 2020, 28, 115580.	3.0	6
8	Synthesis and Biological Evaluation of Lipophilic Nucleoside Analogues as Inhibitors of Aminoacyl-tRNA Synthetases. Antibiotics, 2019, 8, 180.	3.7	2
9	Design of reverse transcriptase–specific nucleosides to visualize early steps of HIV-1 replication by click labeling. Journal of Biological Chemistry, 2019, 294, 11863-11875.	3.4	5
10	Acylated sulfonamide adenosines as potent inhibitors of the adenylate-forming enzyme superfamily. European Journal of Medicinal Chemistry, 2019, 174, 252-264.	5.5	10
11	Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases. European Journal of Medicinal Chemistry, 2019, 173, 154-166.	5.5	9
12	Propargylated Purine Deoxynucleosides: New Tools for Fluorescence Imaging Strategies. Molecules, 2019, 24, 468.	3.8	6
13	Family-wide analysis of aminoacyl-sulfamoyl-3-deazaadenosine analogues as inhibitors of aminoacyl-tRNA synthetases. European Journal of Medicinal Chemistry, 2018, 148, 384-396.	5.5	19
14	Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support. Japanese Journal of Applied Physics, 2018, 57, 04FM01.	1.5	3
15	Different positions of amide side chains on the benzimidazo[1,2- <i>a</i>]quinoline skeleton strongly influence biological activity. New Journal of Chemistry, 2018, 42, 7096-7104.	2.8	20
16	Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions. Molecular Pharmaceutics, 2017, 14, 1726-1741.	4.6	19
17	Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors. European Journal of Medicinal Chemistry, 2017, 126, 101-109.	5.5	27
18	Evaluation of the Acute and Sub chronic Toxicities of the Methanolic Stem Bark Extract of Spathodea campanulata (P. Beauv.) Bignoniaceae. British Journal of Pharmacology and Toxicology, 2016, 7, 9-19.	0.3	3

#	Article	IF	CITATIONS
19	Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. European Journal of Medicinal Chemistry, 2016, 121, 158-168.	5.5	34
20	A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from <i>Bacillus amyloliquefaciens</i> . Journal of the American Chemical Society, 2016, 138, 15690-15698.	13.7	27
21	Phytochemical and Antidiabetic Evaluation of the Methanolic Stem Bark Extract of Spathodea campanulata (P. Beauv.) Bignoniaceae. Pharmacognosy Journal, 2016, 8, 243-249.	0.8	3
22	Hybridisation Potential of 1',3'-Di-O-methylaltropyranoside Nucleic Acids. Molecules, 2015, 20, 4020-4041.	3.8	2
23	N-Acylated sulfonamide congeners of fosmidomycin lack any inhibitory activity against DXR. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1577-1579.	2.2	2
24	5′-(N-aminoacyl)-sulfonamido-5′-deoxyadenosine: Attempts for a stable alternative for aminoacyl-sulfamoyl adenosines as aaRS inhibitors. European Journal of Medicinal Chemistry, 2015, 93, 227-236.	5.5	14
25	1′,5′-Anhydro- <scp>l</scp> - <i>ribo</i> -hexitol Adenine Nucleic Acids (α- <scp>l</scp> -HNA-A): Synthesis and Chiral Selection Properties in the Mirror Image World. Journal of Organic Chemistry, 2015, 80, 5014-5022.	3.2	13
26	Oligonucleotides containing a ribo-configured cyclohexanyl nucleoside: probing the role of sugar conformation in base pairing selectivity. Organic and Biomolecular Chemistry, 2015, 13, 10041-10049.	2.8	4
27	Renaissance in Antibiotic Discovery: Some Novel Approaches for Finding Drugs to Treat Bad Bugs. Current Medicinal Chemistry, 2015, 22, 2140-2158.	2.4	10
28	Base substituted 5′-O-(N-isoleucyl)sulfamoyl nucleoside analogues as potential antibacterial agents. Bioorganic and Medicinal Chemistry, 2014, 22, 2875-2886.	3.0	18
29	Exploring the substrate promiscuity of an antibiotic inactivating enzyme. MedChemComm, 2014, 5, 1567-1570.	3.4	3
30	The RimL Transacetylase Provides Resistance to Translation Inhibitor Microcin C. Journal of Bacteriology, 2014, 196, 3377-3385.	2.2	22
31	Synthesis and evaluation of imidazole-4,5- and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus. European Journal of Medicinal Chemistry, 2014, 87, 529-539.	5.5	57
32	In search of Flavivirus inhibitors part 2: Tritylated, diphenylmethylated and other alkylated nucleoside analogues. European Journal of Medicinal Chemistry, 2014, 76, 98-109.	5.5	25
33	In search of flavivirus inhibitors: Evaluation of different tritylated nucleoside analogues. European Journal of Medicinal Chemistry, 2013, 65, 249-255.	5.5	28
34	3′,5′Di-O-trityluridine inhibits in vitro flavivirus replication. Antiviral Research, 2013, 98, 242-247.	4.1	28
35	Enantiomeric Selection Properties of βâ€homoDNA: Enhanced Pairing for Heterochiral Complexes. Angewandte Chemie - International Edition, 2013, 52, 6662-6665.	13.8	14
36	A Straightforward Diphenylmethyl Protection Method and Deprotection of Some Pyrimidine Nucleosides. Molecules, 2013, 18, 8524-8534.	3.8	10

Arthur Van Aerschot

#	Article	IF	CITATIONS
37	N-Alkylated Aminoacyl sulfamoyladenosines as Potential Inhibitors of Aminoacylation Reactions and Microcin C Analogues Containing D-Amino Acids. PLoS ONE, 2013, 8, e79234.	2.5	9
38	Hybridization potential of oligonucleotides comprising 3′-O-methylated altritol nucleosides. Molecular Diversity, 2012, 16, 825-837.	3.9	3
39	Structural and Functional Characterization of Microcin C Resistance Peptidase MccF from Bacillus anthracis. Journal of Molecular Biology, 2012, 420, 366-383.	4.2	22
40	Aminoacyl-tRNA synthetase inhibitors as antimicrobial agents: a patent review from 2006 till present. Expert Opinion on Therapeutic Patents, 2012, 22, 1453-1465.	5.0	40
41	Using Chemical Approaches to Understand RNA Structure and Function in Biology. Journal of Nucleic Acids, 2012, 2012, 1-2.	1.2	0
42	Microcin C and Albomycin Analogues with Arylâ€ŧetrazole Substituents as Nucleobase Isosters Are Selective Inhibitors of Bacterial Aminoacyl tRNA Synthetases but Lack Efficient Uptake. ChemBioChem, 2012, 13, 1959-1969.	2.6	19
43	Microcin C: Biosynthesis, Mode of Action, and Potential as a Lead in Antibiotics Development. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 465-474.	1.1	7
44	Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. European Journal of Medicinal Chemistry, 2011, 46, 5227-5236.	5.5	116
45	Substituted 2-aminothiazoles are exceptional inhibitors of neuronal degeneration in tau-driven models of Alzheimer's disease. European Journal of Pharmaceutical Sciences, 2011, 43, 386-392.	4.0	26
46	Extended targeting potential and improved synthesis of Microcin C analogs as antibacterials. Bioorganic and Medicinal Chemistry, 2011, 19, 5462-5467.	3.0	23
47	Single-Molecule FRET Reveals a Cooperative Effect of Two Methyl Group Modifications in the Folding of Human Mitochondrial tRNALys. Chemistry and Biology, 2011, 18, 928-936.	6.0	25
48	Characterization of Peptide Chain Length and Constituency Requirements for YejABEF-Mediated Uptake of Microcin C Analogues. Journal of Bacteriology, 2011, 193, 3618-3623.	2.2	27
49	Crystallization and preliminary X-ray study of theD-altritol oligonucleotide GTGTACAC. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 460-462.	0.7	1
50	The Mechanism of Microcin C Resistance Provided by the MccF Peptidase. Journal of Biological Chemistry, 2010, 285, 37944-37952.	3.4	34
51	MccE Provides Resistance to Protein Synthesis Inhibitor Microcin C by Acetylating the Processed Form of the Antibiotic. Journal of Biological Chemistry, 2010, 285, 12662-12669.	3.4	35
52	Towardl-Homo-DNA: Stereoselective de Novo Synthesis of β-l-erythro-Hexopyranosyl Nucleosides. Journal of Organic Chemistry, 2010, 75, 6402-6410.	3.2	26
53	Maturation of the Translation Inhibitor Microcin C. Journal of Bacteriology, 2009, 191, 2380-2387.	2.2	43
54	Synthetic Microcin C Analogs Targeting Different Aminoacyl-tRNA Synthetases. Journal of Bacteriology, 2009, 191, 6273-6280.	2.2	53

#	Article	IF	CITATIONS
55	Analysis of Dideoxyadenosine Triphosphate by Capillary Electrophoresis with Fluorescence Detection. Derivatization Through the Adenine Group. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 2642-2653.	1.0	0
56	Evaluation of the type I signal peptidase as antibacterial target for biofilm-associated infections of Staphylococcus epidermidis. Microbiology (United Kingdom), 2009, 155, 3719-3729.	1.8	13
57	Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. European Journal of Pharmacology, 2009, 606, 38-44.	3.5	40
58	Synthesis and Base Pairing Properties of 1′,5′â€Anhydroâ€ <scp>L</scp> â€Hexitol Nucleic Acids (<scp>L</scp> â€HNA). Chemistry - A European Journal, 2009, 15, 10121-10131.	3.3	30
59	Detection of RNA Hybridization by Pyrene‣abeled Probes. ChemBioChem, 2009, 10, 1175-1185.	2.6	32
60	Patient experiences of over-the-counter medicine purchases in Flemish community pharmacies. International Journal of Clinical Pharmacy, 2009, 31, 450-457.	1.4	32
61	Antibacterial 5′-O-(N-dipeptidyl)-sulfamoyladenosines. Bioorganic and Medicinal Chemistry, 2009, 17, 260-269.	3.0	22
62	Antimicrobial resistance in bacteria. Open Medicine (Poland), 2009, 4, 141-155.	1.3	41
63	An easy and fast method for the evaluation of Staphylococcus epidermidis type I signal peptidase inhibitors. Journal of Microbiological Methods, 2009, 78, 231-237.	1.6	12
64	A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Research, 2009, 37, 2867-2881.	14.5	315
65	HNA and ANA high-affinity arrays for detections of DNA and RNA single-base mismatches. Biosensors and Bioelectronics, 2008, 23, 1728-1732.	10.1	23
66	De novo approach to l-anhydrohexitol nucleosides as building blocks for the synthesis of l-hexitol nucleic acids (l-HNA). Tetrahedron Letters, 2008, 49, 6068-6070.	1.4	18
67	Dendritic Nucleotides: Interaction with an Aliphatic Acid Monolayer. Chemistry and Biodiversity, 2008, 5, 1675-1682.	2.1	1
68	Impact of spacers on the hybridization efficiency of mixed self-assembled DNA/alkanethiol films. Biosensors and Bioelectronics, 2008, 24, 72-77.	10.1	71
69	Phosphoramidite building blocks for efficient incorporation of 2′-O-aminoethoxy(and propoxy)methyl nucleosides into oligonucleotides. Tetrahedron, 2008, 64, 6238-6251.	1.9	18
70	Aminoacyl-tRNA Synthetase Inhibitors as Potent and Synergistic Immunosuppressants. Journal of Medicinal Chemistry, 2008, 51, 3020-3029.	6.4	28
71	Some Novel Aminopropyl Nucleoside Phosphonates. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 563-566.	1.1	4
72	Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Research, 2007, 35, 1064-1074.	14.5	73

#	Article	IF	CITATIONS
73	2′-O-Hydroxyalkoxymethylribonucleosides and their Incorporation into Oligoribonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1509-1512.	1.1	4
74	A Simple Nucleic Acid Alternative: Aminopropyl Nucleic Acids (APNAs). Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1665-1668.	1.1	1
75	Structural Characterization and Biological Evaluation of Small Interfering RNAs Containing Cyclohexenyl Nucleosides. Journal of the American Chemical Society, 2007, 129, 9340-9348.	13.7	46
76	A Methyl Group Controls Conformational Equilibrium in Human Mitochondrial tRNA ^{Lys} . Journal of the American Chemical Society, 2007, 129, 13382-13383.	13.7	77
77	Chemical Etiology of Nucleic Acids: Aminopropyl Nucleic Acids (APNAs). Chemistry and Biodiversity, 2007, 4, 740-761.	2.1	5
78	Conformational and Chiral Selection of Oligonucleotides. Chemistry and Biodiversity, 2007, 4, 803-817.	2.1	17
79	Fmoc-Protected Altritol Phosphoramidite Building Blocks and Their Application in the Synthesis of Altritol Nucleic Acids (ANAs). European Journal of Organic Chemistry, 2007, 2007, 1446-1456.	2.4	5
80	Analysis of dideoxyadenosine triphosphate by CE with fluorescence detection. I. Derivatization through the phosphate group. Electrophoresis, 2007, 28, 3948-3956.	2.4	8
81	Syntheses of 2′-C-amidoalkyl and 2′-C-cyanoalkyl containing oligodeoxyribonucleotides and assessment of their hybridisation affinity for complementary DNA and RNA. Tetrahedron, 2007, 63, 577-585.	1.9	2
82	Synthesis and evaluation of hexitol nucleoside congeners as ambiguous nucleosides. Tetrahedron Letters, 2007, 48, 2143-2145.	1.4	2
83	Complexation of Lipofectamine and Cholesterol-Modified DNA Sequences Studied by Single-Molecule Fluorescence Techniques. Biomacromolecules, 2007, 8, 3382-3392.	5.4	9
84	Synthesis of Oligoribonucleotides Containing Pyrimidine 2'-O-[(Hydroxyalkoxy)methyl]ribonucleosides. Collection of Czechoslovak Chemical Communications, 2006, 71, 804-819.	1.0	6
85	Baseâ [~] 'Base Interactions in the Minor Groove of Double-Stranded DNA. Journal of Organic Chemistry, 2006, 71, 5423-5431.	3.2	40
86	Characterization and sequence verification of thiolated deoxyoligonucleotides used for microarray construction. Journal of the American Society for Mass Spectrometry, 2006, 17, 1397-1400.	2.8	6
87	Oligonucleotides as antivirals: Dream or realistic perspective?. Antiviral Research, 2006, 71, 307-316.	4.1	29
88	Synthetic dsDNA-Binding Peptides Using Natural Compounds as Model. Helvetica Chimica Acta, 2006, 89, 1194-1219.	1.6	6
89	Synthesis of Aminopropyl Phosphonate Nucleosides with Purine and Pyrimidine Bases. Collection of Czechoslovak Chemical Communications, 2006, 71, 15-34.	1.0	17
90	Synthesis, in vitro cellular uptake and photo-induced antiproliferative effects of lipophilic hypericin acid derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 6347-6353.	3.0	13

#	Article	IF	CITATIONS
91	Synthesis and Properties of Oligonucleotides Containing 2,4-Dihydroxycyclohexyl Nucleosides. Helvetica Chimica Acta, 2005, 88, 3210-3224.	1.6	3
92	Synthesis of RNA ContainingO-β-D-Ribofuranosyl-(1″2′)-adenosine-5″-phosphate and 1-Methyladenosir Minor Components of tRNA. Chemistry and Biodiversity, 2005, 2, 1153-1163.	1e. 2.1	11
93	Synthesis and Properties of Aminopropyl Nucleic Acids. ChemBioChem, 2005, 6, 2298-2304.	2.6	25
94	Delivery of Antisense Oligonucleotides Using Cholesterol-Modified Sense Dendrimers and Cationic Lipids. Bioconjugate Chemistry, 2005, 16, 827-836.	3.6	24
95	ENZYMATIC RESOLUTION AND BASE PAIRING PROPERTIES OF D- AND L-CYCLOHEXENYL NUCLEIC ACIDS (CeNA). Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 993-998.	1.1	3
96	Hexitol Nucleic Acid-Containing Aptamers Are Efficient Ligands of HIV-1 TAR RNAâ€. Biochemistry, 2005, 44, 2926-2933.	2.5	38
97	Synthesis and Conformational Analysis of a Ribo-Type Cyclohexenyl Nucleoside. Journal of Organic Chemistry, 2005, 70, 4591-4597.	3.2	17
98	Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Research, 2004, 32, 4411-4419.	14.5	50
99	Interaction of HIV-1 Reverse Transcriptase with Modified Oligonucleotide Primers Containing 2Â-O-Â-D-Ribofuranosyladenosine. Biochemistry (Moscow), 2004, 69, 130-136.	1.5	1
100	Synthesis of enantiomeric-pure cyclohexenyl nucleoside building blocks for oligonucleotide synthesis. Tetrahedron, 2004, 60, 2111-2123.	1.9	12
101	Synthesis and Stability of Oligonucleotides Containing Acyclic Achiral Nucleoside Analogues with Two Base Moieties. Organic Letters, 2004, 6, 51-54.	4.6	28
102	N-Aminoimidazole Derivatives Inhibiting Retroviral Replication via a Yet Unidentified Mode of Action. Journal of Medicinal Chemistry, 2003, 46, 1546-1553.	6.4	40
103	New dsDNA-Binding Hybrid Molecules Combining an Unnatural Peptide and an Intercalating Moiety. Helvetica Chimica Acta, 2003, 86, 533-547.	1.6	5
104	Comparison of library screening techniques used in the development of dsDNA ligands. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 47-50.	2.2	8
105	Replication of hexitol oligonucleotides as a prelude to the propagation of a third type of nucleic acid in vivo. Comptes Rendus - Biologies, 2003, 326, 1175-1184.	0.2	39
106	Synthesis and Antiviral Evaluation of Ribavirin Congeners Containing a Hexitol Moiety. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 849-851.	1.1	2
107	Oligonucleotides Containing Disaccharide Nucleosides: Synthesis, Physicochemical, and Substrate Properties. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1117-1118.	1.1	1
108	Ribavirin Derivatives with a Hexitol Moiety: Synthesis and Antiviral Evaluation. Antiviral Chemistry and Chemotherapy, 2003, 14, 23-30.	0.6	3

#	Article	IF	CITATIONS
109	Synthesis and Antiviral Activity of a Series of New Cyclohexenyl Nucleosides. Antiviral Chemistry and Chemotherapy, 2003, 14, 31-37.	0.6	8
110	Base Pairing Properties of D- and L-Cyclohexene Nucleic Acids (CeNA). Oligonucleotides, 2003, 13, 479-489.	2.7	12
111	Evaluation of Capillary HPLC/Mass Spectrometry as an Alternative Analysis Method for Gel Electrophoresis of Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1513-1516.	1.1	3
112	Chemical Incorporation of 1-Methyladenosine, Minor tRNA Component, into Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1113-1115.	1.1	1
113	Methylated Hexitol Nucleic Acids, Towards Congeners with Improved Antisense Potential. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1227-1229.	1.1	2
114	Synthesis, Solution Conformation and Anti-HIV Activity of Novel 3-Substituted-2′,3′-Dideoxy-5-Hydroxymethyl-Uridines and Their 4,5-Substituted Analogues. Antiviral Chemistry and Chemotherapy, 2003, 14, 127-138.	0.6	4
115	Synthesis and Biological Evaluation of a Series of New Cyclohexenyl Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 845-847.	1.1	3
116	Cleavage of DNA without loss of genetic information by incorporation of a disaccharide nucleoside. Nucleic Acids Research, 2003, 31, 6758-6769.	14.5	4
117	Synthesis of 1,5â€Anhydrohexitol Building Blocks for Oligonucleotide Synthesis. Current Protocols in Nucleic Acid Chemistry, 2003, 14, Unit 1.9.	0.5	8
118	Chemical incorporation of 1-methyladenosine into oligonucleotides. Nucleic Acids Research, 2002, 30, 1124-1131.	14.5	32
119	AFFINITY MODIFICATION OFEcoRII DNA METHYLTRANSFERASE BY THE DIALDEHYDE-SUBSTITUTED DNA DUPLEXES: MAPPING THE ENZYME REGION THAT INTERACTS WITH DNA. Nucleosides, Nucleotides and Nucleic Acids, 2002, 21, 753-764.	1.1	8
120	Crystal Structure of Double Helical Hexitol Nucleic Acids. Journal of the American Chemical Society, 2002, 124, 928-933.	13.7	75
121	Recognition of HNA and 1,5-anhydrohexitol nucleotides by DNA metabolizing enzymes. BBA - Proteins and Proteomics, 2002, 1597, 115-122.	2.1	10
122	1,2,4-Triazole Derivatives Inhibiting the Human Immunodeficiency Virus Type 1 (HIV-1) in vitro. Helvetica Chimica Acta, 2002, 85, 1883.	1.6	20
123	An additional 2′-ribofuranose residue at a specific position of the DNA primer prevents Its elongation by HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 681-684.	2.2	11
124	Characterization and sequence confirmation of unnatural amino acid containing peptide libraries using electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 982-987.	1.5	3
125	New dsDNA binding unnatural oligopeptides with pyrimidine selectivity. Bioorganic and Medicinal Chemistry, 2002, 10, 3401-3413.	3.0	14
126	Protection of 1-methyladenosine and its chemical incorporation into oligonucleotides. , 2002, , .		0

 $Protection \ of \ 1-methyladenosine \ and \ its \ chemical \ incorporation \ into \ oligonucleotides. \ , \ 2002, \ , \ .$ 126

#	Article	IF	CITATIONS
127	INCREASED RNA AFFINITY OF HNA ANALOGUES BY INTRODUCING ALKOXY SUBSTITUENTS AT THE C-1 OR C-3 POSITION. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 781-784.	1.1	3
128	Hybridization between "Six-Membered―Nucleic Acids:  RNA as a Universal Information System. Organic Letters, 2001, 3, 4129-4132.	4.6	19
129	Epimerization During Coupling to the Unnatural Amino Acid in Solid Phase Peptide Synthesis. Collection of Czechoslovak Chemical Communications, 2001, 66, 923-932.	1.0	2
130	Oligonucleotides Containing Disaccharide Nucleosides. Helvetica Chimica Acta, 2001, 84, 2387-2397.	1.6	22
131	α-Homo-DNA and RNA Form a Parallel Oriented Non-A, Non-B-Type Double Helical Structure. Chemistry - A European Journal, 2001, 7, 5183-5194.	3.3	19
132	Improved hybridisation potential of oligonucleotides comprising O-methylated anhydrohexitol nucleoside congeners. Nucleic Acids Research, 2001, 29, 4187-4194.	14.5	15
133	CYCLOHEXENE NUCLEIC ACIDS (CeNA) FORM STABLE DUPLEXES WITH RNA AND INDUCE RNASE H ACTIVITY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 785-788.	1.1	21
134	Nonenzymatic Template-Directed Reactions on Altritol Oligomers, Preorganized Analogues of Oligonucleotides. Chemistry - A European Journal, 2000, 6, 151-155.	3.3	45
135	Synthesis of the Anticodon HairpintRNAfMet ContainingN-{[9-(β-D-Ribofuranosyl)-9H-purin-6-yl]carbamoyl}-L-threonine (=N6-{{[(1S,2R)-1-Carboxy-2-hydroxypropyl]amino}carbonyl}adenosine, t6A). Helvetica Chimica Acta, 2000. 83. 152-161.	1.6	23
136	Synthesis of Alanine and Proline Amino Acids with Amino or Guanidinium Substitution on the Side Chain. Tetrahedron, 2000, 56, 2513-2522.	1.9	15
137	Synthesis and antiviral evaluation of some β-l-2′,3′-dideoxy-5-chloropyrimidine nucleosides and pronucleotides. Antiviral Research, 2000, 45, 169-183.	4.1	14
138	Biological activity of hexitol nucleic acids targeted at Ha-ras and intracellular adhesion molecule-1 mRNA. Biochemical Pharmacology, 2000, 59, 655-663.	4.4	24
139	Investigation of The Kinetics of Degradation of Hexopyranosylated Cytosine Nucleosides Using Liquid Chromatography. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 189-203.	1.1	2
140	Enzymatic Incorporation in DNA of 1,5-Anhydrohexitol Nucleotides. Biochemistry, 2000, 39, 12757-12765.	2.5	66
141	Cyclohexene Nucleic Acids (CeNA):Â Serum Stable Oligonucleotides that Activate RNase H and Increase Duplex Stability with Complementary RNA. Journal of the American Chemical Society, 2000, 122, 8595-8602.	13.7	129
142	Nonenzymatic Template-Directed Reactions on Altritol Oligomers, Preorganized Analogues of Oligonucleotides. Chemistry - A European Journal, 2000, 6, 151-155.	3.3	2
143	Glycosylation of 1-Aminoimidazole-2(3H)-thiones. Collection of Czechoslovak Chemical Communications, 2000, 65, 1145-1155.	1.0	2
144	Base pairing of anhydrohexitol nucleosides with 2,6-diaminopurine, 5- methylcytosine and uracil asbase moiety. Nucleic Acids Research, 1999, 27, 1450-1456.	14.5	29

#	Article	IF	CITATIONS
145	Synthesis of protected D-altritol nucleosides as building blocks for oligonucleotide synthesis. Tetrahedron, 1999, 55, 6527-6546.	1.9	35
146	Oligonucleotides with 1,5-anhydrohexitol nucleoside building blocks: crystallization and preliminary X-ray studies of h(GTGTACAC). Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 279-280.	2.5	0
147	Antimalarial antisense activity of hexitol nucleic acids. Parasitology Research, 1999, 85, 864-866.	1.6	8
148	Synthesis and Pairing Properties of Oligonucleotides Containing 3-Hydroxy-4-hydroxymethyl-1-cyclohexanyl Nucleosides. Chemistry - A European Journal, 1999, 5, 2139-2150.	3.3	53
149	D-Altritol Nucleic Acids (ANA): Hybridisation Properties, Stability, and Initial Structural Analysis. Chemistry - A European Journal, 1999, 5, 2424-2431.	3.3	66
150	Nonenzymatic Synthesis of RNA and DNA Oligomers on Hexitol Nucleic Acid Templates:  The Importance of the A Structure. Journal of the American Chemical Society, 1999, 121, 2653-2656.	13.7	64
151	Polyethylenimine but Not Cationic Lipid Improves Antisense Activity of 3′-Capped Phosphodiester Oligonucleotides. Oligonucleotides, 1999, 9, 515-525.	4.3	64
152	Efficient Transfer of Information from Hexitol Nucleic Acids to RNA during Nonenzymatic Oligomerization. Journal of the American Chemical Society, 1999, 121, 5856-5859.	13.7	52
153	Mapping of T7 RNA polymerase active site with novel reagents - oligonucleotides with reactive dialdehyde groups. FEBS Letters, 1999, 442, 20-24.	2.8	21
154	Antisense PNA tridecamers targeted to the coding region of ha-ras mRNA arrest polypeptide chain elongation. Journal of Molecular Biology, 1999, 294, 403-416.	4.2	90
155	Synthesis and Pairing Properties of Oligonucleotides Containing 3-Hydroxy-4-hydroxymethyl-1-cyclohexanyl Nucleosides. Chemistry - A European Journal, 1999, 5, 2139-2150.	3.3	1
156	Analogues of hexitol nucleic acids: Structure function relationship of a new steric blocking agent. , 1999, , .		0
157	Analysis of antisense oligonucleotides by on-capillary isotachophoresis and capillary polymer sieving electrophoresis. Electrophoresis, 1998, 19, 2163-2168.	2.4	13
158	DNA-Binding Ligands from Peptide Libraries Containing Unnatural Amino Acids. Chemistry - A European Journal, 1998, 4, 425-433.	3.3	26
159	Oligonucleotides Composed of 2'-Deoxy-1',5'-anhydro-d-mannitol Nucleosides with a Purine Base Moiety. Journal of Organic Chemistry, 1998, 63, 1574-1582.	3.2	22
160	Disaccharide Nucleosides And Their Enzymatic And Chemical Incorporation Into Oligonucleotides. Nucleosides & Nucleotides, 1998, 17, 1681-1684.	0.5	6
161	1,5-Anhydro-2-Deoxy-D-Altritol Oligonucleotides as Conformationally Restricted Analogues of Rna. Nucleosides & Nucleotides, 1998, 17, 1523-1526.	0.5	2
162	DNA duplexes with reactive dialdehyde groups as novel reagents for cross-linking to restriction- modification enzymes. Nucleic Acids Research, 1997, 25, 3302-3309.	14.5	23

#	Article	IF	CITATIONS
163	Synthesis and hybridization properties of inverse oligonucleotides. Nucleic Acids Research, 1997, 25, 3034-3041.	14.5	7
164	Synthesis and Conformational Study of 3-Hydroxy-4-(Hydroxymethyl)-1-Cyclohexanyl Purines and Pyrimidines. Journal of Organic Chemistry, 1997, 62, 2861-2871.	3.2	66
165	N6-Cyclopentyl-3â€~-substituted-xylofuranosyladenosines: A New Class of Non-Xanthine Adenosine A1Receptor Antagonists. Journal of Medicinal Chemistry, 1997, 40, 3765-3772.	6.4	25
166	Screening a Random Pentapeptide Library, Composed of 14 D-Amino Acids, against the COOH-terminal Sequence of Fructose-1,6-bisphosphate Aldolase from Trypanosoma brucei. Journal of Biological Chemistry, 1997, 272, 11378-11383.	3.4	4
167	Oligonucleotides with 3-hydroxy-N-acetylprolinol as sugar substitute. Tetrahedron, 1997, 53, 14957-14974.	1.9	13
168	Improved Synthesis of Anhydrohexitol Building Blocks for Oligonucleotide Synthesis. Liebigs Annalen, 1997, 1997, 1453-1461.	0.8	17
169	1′, 5′ â€Anhydrohexitol Oligonucleotides: Synthesis, Base Pairing and Recognition by Regular Oligodeoxyribonucleotides and Oligoribonucleotides. Chemistry - A European Journal, 1997, 3, 110-120.	3.3	141
170	1′,5′â€Anhydrohexitol Oligonucleotides: Hybridisation and Strand Displacement with Oligoribonucleotides, Interaction with RNase H and HIV Reverse Transcriptase. Chemistry - A European Journal, 1997, 3, 1513-1520.	3.3	66
171	Oligonucleotide Analogues with 4-Hydroxy-N-Acetylprolinol as Sugar Substitute. Chemistry - A European Journal, 1997, 3, 1997-2010.	3.3	20
172	αâ€Amino acids derived from ornithine as building blocks for peptide synthesis. Chemical Biology and Drug Design, 1997, 49, 183-189.	1.1	0
173	Selection of hammerhead ribozymes for optimum cleavage of interleukin 6 mRNA. Biochemical Journal, 1996, 314, 655-661.	3.7	20
174	Incorporation of 5-hydroxytryptophan in oligopeptides. Tetrahedron, 1996, 52, 6965-6972.	1.9	7
175	Homo-N-nucleosides: Incorporation into oligonucleotides and antiviral activity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1465-1468.	2.2	19
176	Synthesis of 1,5-Anhydrohexitol Nucleosides as Mimics of AZT, D4T and DDC. Nucleosides & Nucleotides, 1996, 15, 325-335.	0.5	2
177	Synthesis of disaccharide nucleosides and their incorporation into oligonucleotides. Collection of Czechoslovak Chemical Communications, 1996, 61, 206-209.	1.0	5
178	Regioselective incorporation of reactive dialdehyde groups into synthetic oligonucleotides. Collection of Czechoslovak Chemical Communications, 1996, 61, 210-212.	1.0	1
179	Cyclopentylethyl nucleosides as "constrained" acyclic building blocks for oligonucleotides. Collection of Czechoslovak Chemical Communications, 1996, 61, 203-205.	1.0	0
180	1,5â€Anhydrohexitâ€Nucleinsären, neue potentielle Antisenseâ€Wirkstoffe. Angewandte Chemie, 1995, 107, 1483-1485.	2.0	15

Arthur Van Aerschot

#	Article	IF	CITATIONS
181	1,5-Anhydrohexitol Nucleic Acids, a New Promising Antisense Construct. Angewandte Chemie International Edition in English, 1995, 34, 1338-1339.	4.4	102
182	Synthesis of 3′-Deoxy-3′-C-Hydroxymethyl-aldopentopyranosyl Nucleosides and their Incorporation in Oligonucleotides. Part II 1 Tetrahedron, 1995, 51, 12319-12336.	1.9	13
183	Amino acids derived from ornithine. International Journal of Peptide Research and Therapeutics, 1995, 2, 206-208.	0.1	2
184	Screening of a synthetic peptide library against glycosomal phosphoglycerate kinase of Trypanosoma brucei. International Journal of Peptide Research and Therapeutics, 1995, 2, 217-219.	0.1	2
185	5-Hydroxytryptophan as a building block in oligopeptides using Fmoc/tBu SPPS. International Journal of Peptide Research and Therapeutics, 1995, 2, 225-228.	0.1	0
186	Screening of a synthetic pentapeptide library composed of d-amino acids against fructose-1,6-biphosphate aldolase. International Journal of Peptide Research and Therapeutics, 1995, 2, 259-260.	0.1	3
187	Identification of a peptide inhibitor against glycosomal phosphoglycerate kinase of Trypanosoma brucei by a synthetic peptide library approach. Bioorganic and Medicinal Chemistry, 1995, 3, 257-265.	3.0	23
188	8-substituted adenosine and theophylline-7-riboside analogues as potential partial agonists for the adenosine A1 receptor. European Journal of Pharmacology, 1995, 290, 189-199.	2.6	34
189	2′-Deoxyuridines with a 5-Heteroaromatic Substituent: Synthesis and Biological Evaluation. Antiviral Chemistry and Chemotherapy, 1995, 6, 262-270.	0.6	8
190	An acyclic 5-nitroindazole nucleoside analogue as ambiguous nucleoside. Nucleic Acids Research, 1995, 23, 4363-4370.	14.5	32
191	Incorporation of 2′-amido-nucleosides in oligodeoxynucleotides and oligoribonucleotides as a model for 2′-linked conjugates. Nucleic Acids Research, 1995, 23, 51-57.	14.5	37
192	Synthesis, Biological Evaluation, and Structure Analysis of a Series of New 1,5-Anhydrohexitol Nucleosides. Journal of Medicinal Chemistry, 1995, 38, 826-835.	6.4	118
193	Catalytic Activity and Stability of Hammerhead Ribozymes Containing 2′-Acetamido-2′-Deoxyribonucleosides. Biochemical and Biophysical Research Communications, 1995, 210, 67-73.	2.1	12
194	Solid Phase Synthesis of 2′, 5′-Oligoadenylates Containing 3′-Fluorinated Ribose. Nucleosides & Nucleotides, 1995, 14, 1259-1267.	0.5	2
195	Conjugation of Oligonucleotides to 3′â€Polar Moieties. Bulletin Des Sociétés Chimiques Belges, 1995, 104 717-720.	^{4,} o.o	15
196	Synthesis of a new branched chain hexopyranosyl nucleoside: 1-[2′,3′-dideoxy-3′-C-(hydroxymethyl)-α-D-erythro-pentopyranosyl]-thymine. Tetrahedron, 1994, 50, 118'	9-1198.	15
197	Synthesis, enzymatic stability and physicochemical properties of oligonucleotides containing a N-cyanoguanidine linkage Tetrahedron, 1994, 50, 7231-7246.	1.9	10
198	Mixed oligonucleotide analogues with an acyclic carbohydrate moiety and a N-cyanoguanidine functionality. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1203-1206.	2.2	2

#	Article	IF	CITATIONS
199	Characterization of modification sites during peptide synthesis using liquid secondary ion/collision-induced dissociation mass spectrometry and a computer program. Organic Mass Spectrometry, 1994, 29, 654-658.	1.3	9
200	Synthesis and Conformational Analysis of 2?-Deoxy-2?-(3-methoxybenzamido)adenosine, a rational-designed inhibitor of trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH). Helvetica Chimica Acta, 1994, 77, 631-644.	1.6	20
201	Comparative stability study of thymidine and (dideoxy-d-erythro-hexopyranosyl)thymine analogues monitored by capillary electrophoresis. Journal of Chromatography A, 1994, 687, 167-173.	3.7	4
202	Hexopyranosyl-Like Oligonucleotides. ACS Symposium Series, 1994, , 80-99.	0.5	15
203	Stereoelectronic properties of five anti-HSV-1 2′-deoxynucleosides analogues with heterocyclic substituents in the 5-position: A comparison with BVDU. Antiviral Research, 1994, 24, 289-304.	4.1	11
204	Selective Inhibition of Trypanosomal Glyceraldehyde-3-phosphate Dehydrogenase by Protein Structure-Based Design: Toward New Drugs for the Treatment of Sleeping Sickness. Journal of Medicinal Chemistry, 1994, 37, 3605-3613.	6.4	75
205	Separation of the anomers and isomers of 2′-deoxyuridine and thymidine by capillary zone electrophoresis. Journal of Chromatography A, 1993, 648, 299-305.	3.7	2
206	Crystal structure of a nucleoside analog: 2?,3?-dideoxy-3?-fluoro-5-bromocytidine. Journal of Crystallographic and Spectroscopic Research, 1993, 23, 353-357.	0.2	0
207	Crystal structure of a nucleoside analog, 2?,3?-dideoxy-3?-azido-5-chlorocytidine. Journal of Crystallographic and Spectroscopic Research, 1993, 23, 437-440.	0.2	0
208	Crystal structure of a nucleoside analogue, 2?,3?-dideoxy-3?-fluoro-5-chlorocytidine. Journal of Crystallographic and Spectroscopic Research, 1993, 23, 455-458.	0.2	0
209	Crystal structure of a nucleoside analog: 9-(R)-[6-(R)-hydroxymethyl-1-oxa-4-thiacyclohexan-2-yl] adenine. Journal of Crystallographic and Spectroscopic Research, 1993, 23, 177-180.	0.2	0
210	Synthesis of nucleoside analogues with a 1,5-anhydrohexitol moiety. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1013-1018.	2.2	6
211	Synthesis of Novel -substituted guanidine linked nucleoside dimers and their incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 193-198.	2.2	11
212	Acyclic oligonucleotides: possibilities and limitations. Tetrahedron, 1993, 49, 7223-7238.	1.9	52
213	Antiviral activity of C-alkylated purine nucleosides obtained by cross-coupling with tetraalkyltin reagents. Journal of Medicinal Chemistry, 1993, 36, 2938-2942.	6.4	101
214	Synthesis, enzymatic stability and base-pairing properties of oligothymidylates containing thymidine dimers with different N-substituted guanidine linkages. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1567.	0.9	15
215	Synthesis of 2,4-dideoxybetaD-erythro-hexopyranosyl nucleosides. Journal of Organic Chemistry, 1993, 58, 2977-2982.	3.2	41
216	Synthesis and antiherpes virus activity of 1,5-anhydrohexitol nucleosides. Journal of Medicinal Chemistry, 1993, 36, 2033-2040.	6.4	150

#	Article	IF	CITATIONS
217	Hybridization specificity, enzymatic activity and biological (Ha-ras) activity of oligonucleotides containing 2,4-dideoxy-1²-D-erythro-hexopyranosyl nucleosides. Nucleic Acids Research, 1993, 21, 4670-4676.	14.5	17
218	Conformational Analysis of Substituent Effects on the Sugar Puckering Mode and the anti-HIV Activity of 2′,3′-Dideoxypyrimidine Nucleosides. Antiviral Chemistry and Chemotherapy, 1993, 4, 289-299.	0.6	12
219	Acyclic nucleosides: Useful for antisense constructs or as universal analogues for degenerate positions?. Collection of Czechoslovak Chemical Communications, 1993, 58, 98-101.	1.0	0
220	Synthesis and physicochemical properties of oligonucleotides with an N-cyanoguanidine function instead of the natural phosphate internucleotide linkage. Collection of Czechoslovak Chemical Communications, 1993, 58, 191-194.	1.0	0
221	2'-Substituted adenosine analogues as trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH) inhibitors. Collection of Czechoslovak Chemical Communications, 1993, 58, 52-55.	1.0	0
222	Synthesis and anti-herpesvirus activity of nucleosides with a 1,5-anhydrohexitol moiety. Collection of Czechoslovak Chemical Communications, 1993, 58, 64-67.	1.0	0
223	Synthesis, conformation and anti-HIV activity of 3'-substituted 2',3'-dideoxy-5-hydroxymethyluridines. Collection of Czechoslovak Chemical Communications, 1993, 58, 44-46.	1.0	0
224	Incorporation of hexose nucleoside analogues into oligonucleotides: synthesis, base-pairing properties and enzymatic stability. Nucleic Acids Research, 1992, 20, 4711-4716.	14.5	68
225	Selective inhibition of arthropod-borne and arenaviruses in vitro by 3′-fluoro-3′-deoxyadenosine. Antiviral Research, 1992, 18, 151-162.	4.1	36
226	Synthesis and antiviral activity of acyclic nucleosides with a 3(S),5-dihydroxypentyl or 4(R)-methoxy-3(S),5-dihydroxypentyl sidechain. Journal of Medicinal Chemistry, 1992, 35, 1458-1465.	6.4	46
227	Solution conformations and hydrolytic stability of 2′ - and 3′ -substituted 2′,3′-dideoxyribonucleosides including some potential inhibitors of human immunodeficiency virus. Journal of Physical Organic Chemistry, 1992, 5, 741-747.	, 1.9	3
228	Dimeric building blocks with N-cyanoguanidine linkage for oligonucleotide synthesis. Tetrahedron Letters, 1992, 33, 7609-7612.	1.4	16
229	Straightforward C-8 alkylation of adenosine analogues with tetraalkyltin reagents. Tetrahedron Letters, 1992, 33, 2413-2416.	1.4	28
230	Synthesis of 1-(2,4-dideoxy-β-D-erythro-hexopyranosyl)thymine and its incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 945-948.	2.2	18
231	Synthesis and anti-herpes activity of 5-trifluorovinyl-2′-deoxyuridine. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 1057-1062.	2.2	6
232	Crystal structure of a nucleoside analog: 1-(R)-[6-(R)-hydroxymethyl-1,4-dioxan-2-yl] uracil. Journal of Crystallographic and Spectroscopic Research, 1992, 22, 439-442.	0.2	2
233	Liquid chromatographic separation of the anomers and isomers of 2′-deoxyuridine. Chromatographia, 1992, 33, 571-574.	1.3	4
234	Influence of the Incorporation of 1â€{2,3â€Dideoxyâ€Î²â€Dâ€Erythroâ€Hexopyranosyl)â€Thymine on the Enzyma Stability and Baseâ€Pairing Properties of Oligodeoxynucleotides. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 119-130.	atic 0.0	27

#	Article	IF	CITATIONS
235	Engineering by pcr-based exon amplification of the genomic porcine interferon-gamma DNA for expression in Escherichia coli. Biochemical and Biophysical Research Communications, 1991, 180, 1408-1415.	2.1	22
236	Radical-induced cyclization of the S-methyl dithiocarbonate of 1,2-O-isopropylidene-α-xylose. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1729-1731.	0.9	8
237	Synthesis of thymidine from 5-iodo-2′-deoxyuridine. Tetrahedron Letters, 1991, 32, 4397-4400.	1.4	28
238	Influence of the incorporation of (S)-9-(3,4-dihydroxybutyl) adenine on the enzymatic stability and base-pairing properties of oligodeoxynucleotides. Nucleic Acids Research, 1991, 19, 2587-2593.	14.5	49
239	Synthesis and Structure of 2′,3′-Dideoxy-3′-fluoro-5-cyanouridine. Nucleosides & Nucleotides, 1990, 9, 547-557.	0.5	5
240	Synthesis and anti-HIV evaluation of 2',3'-dideoxyribo-5-chloropyrimidine analogs: reduced toxicity of 5-chlorinated 2',3'-dideoxynucleosides. Journal of Medicinal Chemistry, 1990, 33, 1833-1839.	6.4	54
241	Potent and Selective Anti-HIV Activity of 5-Chloro-Substituted Derivatives of 3'-Azido-2',3'-Dideoxycytidine, 3'-Fluoro-2',3'-Dideoxycytidine, and 2',3'-Didehydro-2',3'-Dideoxycytidine. Annals of the New York Academy of Sciences, 1990, 616, 480-482.	3.8	0
242	5'-O-Phosphonomethyl-2',3'-dideoxynucleosides: synthesis and anti-HIV activity. Journal of Medicinal Chemistry, 1990, 33, 2481-2487.	6.4	39
243	Synthesis and antiviral activity of 3'-heterocyclic substituted 3'-deoxythymidines. Journal of Medicinal Chemistry, 1990, 33, 868-873.	6.4	33
244	2′-Azido-2′,3′-dideoxythymidine: Synthesis and crystal structure of a 2′-substituted dideoxynucleoside Antiviral Research, 1990, 14, 357-369.	· 4.1	9
245	Nucleoside Analogues with a 1,4â€Dioxane, 1,4â€Oxathiane or 1,4â€Oxazine Ring Structure as the Carbohydrate Fragment. Bulletin Des Sociétés Chimiques Belges, 1990, 99, 769-777.	0.0	10
246	Hydrolytic stability of potential antiviral nucleoside analogues: 3'-Substituted 2',3'-dideoxy- and 2',3'-didehydro-2',3'-dideoxyribonucleosides. Collection of Czechoslovak Chemical Communications, 1990, 55, 17-20.	1.0	11
247	5'-O-Phosphonomethyl-2',3'-dideoxynucleosides: Synthesis and anti-HIV activity. Collection of Czechoslovak Chemical Communications, 1990, 55, 129-132.	1.0	1
248	Heterocycles in the 5-position of 2'-deoxyuridine. Collection of Czechoslovak Chemical Communications, 1990, 55, 5-8.	1.0	0
249	Influence of Fluorination of the Sugar Moiety on the Anti-HIV-1 Activity of 2',3'-Dideoxynucleosides. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1121-1122.	1.1	9
250	Sugar and Base-Modified 2',3'-Dideoxynucleosides as Potential Anti-Aids Drugs. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1125-1126.	1.1	1
251	Anti-Hiv-1 Activity of 2',3'-Dideoxinucleoside Analogues : Structure-Activity Relationship. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 659-671.	1.1	92
252	Synthesis of 2-Amino-6-acetamidomethyl-9-(β-D-ribofuranosyl) purine. Synthesis, 1989, 1989, 961-962.	2.3	8

#	Article	IF	CITATIONS
253	Synthesis of 9-(3-azido-2,3-dideoxy-β-Dpentofuranosyl)-2,6-diaminopurine (AzddDAP). Tetrahedron Letters, 1989, 30, 855-858.	1.4	15
254	3'-Fluoro-2',3'-dideoxy-5-chlorouridine: most selective anti-HIV-1 agent among a series of new 2'- and 3'-fluorinated 2',3'-dideoxynucleoside analogs. Journal of Medicinal Chemistry, 1989, 32, 1743-1749.	6.4	99
255	2′,3′-Didehydro-2′,3′-dideoxy-5-chlorocytidine is a selective anti-retrovirus agent. Biochemical and Biophysical Research Communications, 1989, 164, 1190-1197.	2.1	9
256	5-chloro-substituted derivatives of 2',3'-didehydro-2' ,3'-dideoxyuridine, 3'-fluoro-2' ,3'-dideoxyuridine and 3'-azido-2' ,3'-dideoxyuridine as anti-HIV agents. Biochemical Pharmacology, 1989, 38, 869-874.	4.4	45
257	Synthesis and antiviral activity evaluation of 3′-fluoro-3′-deoxyribonucleosides: broad-spectrum antiviral activity of 3′-fluoro-3′-deoxyadenosine. Antiviral Research, 1989, 12, 133-150.	4.1	37
258	Synthesis and Biological Activity of the Mono- and Diamino Analogues of 2′-Deoxyadenosine, Cordycepin, 9-(3-Deoxy-α-D-Threo-Pentofuranosyl)-Adenine (A Structural Component of Agrocin 84) and 9-(2-Deoxy-α-D-Threo-Pentofuranosyl)Adenine. Nucleosides & Nucleotides, 1989, 8, 1231-1257.	0.5	18
259	Synthesis of 3'-Fluoro-3'-Deoxyribonucleosides; Anti-HIV-1 and Cytostatic Properties. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1123-1124.	1.1	6
260	3′â€(1,2,3â€Triazolâ€1â€yl)â€2′,3′â€dideoxythymidine and 3′â€(1,2,3â€triazolâ€1â€yl)â€2′,3â€ Chemistry, 1989, 26, 1635-1642.	²â €d ideox 2.6	yuridine. Jou

261	Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides. Journal of Medicinal Chemistry, 1988, 31, 2040-2048.	6.4	117
262	Silica Gel Functionalised with Different Spacers as Solid Support for Oligonucleotide Synthesis. Nucleosides & Nucleotides, 1988, 7, 75-90.	0.5	9
263	Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors. RSC Chemical Biology, 0, , .	4.1	1