
InÃ^as Cebola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869994/publications.pdf

Version: 2024-02-01

INÃAS CEROLA

#	Article	IF	CITATIONS
1	Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nature Genetics, 2014, 46, 136-143.	21.4	475
2	Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nature Genetics, 2014, 46, 61-64.	21.4	255
3	Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nature Genetics, 2019, 51, 1137-1148.	21.4	208
4	TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nature Cell Biology, 2015, 17, 615-626.	10.3	188
5	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	10.7	122
6	Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia, 2011, 25, 960-967.	7.2	101
7	Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer. Clinical Epigenetics, 2015, 7, 74.	4.1	44
8	Epigenetic deregulation of the COX pathway in cancer. Progress in Lipid Research, 2012, 51, 301-313.	11.6	40
9	MiRâ€184 expression is regulated by AMPK in pancreatic islets. FASEB Journal, 2018, 32, 2587-2600.	0.5	39
10	Epigenetics of Hepatic Insulin Resistance. Frontiers in Endocrinology, 2021, 12, 681356.	3.5	23
11	Dysregulated RNA polyadenylation contributes to metabolic impairment in non-alcoholic fatty liver disease. Nucleic Acids Research, 2022, 50, 3379-3393.	14.5	14
12	Non-coding genome functions in diabetes. Journal of Molecular Endocrinology, 2016, 56, R1-R20.	2.5	12
13	Pancreatic Islet Transcriptional Enhancers and Diabetes. Current Diabetes Reports, 2019, 19, 145.	4.2	11
14	Deletion of Regulatory Elements with All-in-One CRISPR-Cas9 Vectors. Methods in Molecular Biology, 2021, 2351, 321-334.	0.9	4
15	Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion. Cell Reports, 2021, 34, 108703.	6.4	4
16	Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1480.	6.6	1
17	Glucose regulates miR-184 via AMP-activated protein kinase (AMPK) in pancreatic [beta]-cells. Endocrine Abstracts, 0, , .	0.0	0
18	Chromatin 3D Interaction Analysis of the <i>STARD10</i> Locus Unveils <i>FCHSD2</i> as a New Regulator of Insulin Secretion. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
19	Regulation and role of MiR-125b in [beta]-cells. Endocrine Abstracts, 0, , .	0.0	Ο
20	Unravelling of new type 2 diabetes genes with 3D chromatin topology analysis and CRISPR-Cas9 perturbations. Endocrine Abstracts, 0, , .	0.0	0