Paul T Leisnham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869689/publications.pdf

Version: 2024-02-01

DALIL TI FISNHAM

#	Article	IF	CITATIONS
1	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	2.5	357
2	The ecological foundations of transmission potential and vectorâ€borne disease in urban landscapes. Functional Ecology, 2015, 29, 889-901.	3.6	144
3	Higher Mosquito Production in Low-Income Neighborhoods of Baltimore and Washington, DC: Understanding Ecological Drivers and Mosquito-Borne Disease Risk in Temperate Cities. International Journal of Environmental Research and Public Health, 2013, 10, 1505-1526.	2.6	108
4	Impacts of Climate, Land Use, and Biological Invasion on the Ecology of Immature Aedes Mosquitoes: Implications for La Crosse Emergence. EcoHealth, 2012, 9, 217-228.	2.0	71
5	Spatial and Temporal Habitat Segregation of Mosquitoes in Urban Florida. PLoS ONE, 2014, 9, e91655.	2.5	66
6	Socio-Ecological Mechanisms Supporting High Densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. Journal of Medical Entomology, 2017, 54, 1183-1192.	1.8	60
7	Socioeconomic Status Affects Mosquito (Diptera: Culicidae) Larval Habitat Type Availability and Infestation Level. Journal of Medical Entomology, 2013, 50, 764-772.	1.8	57
8	Linking Mosquito Infestation to Resident Socioeconomic Status, Knowledge, and Source Reduction Practices in Suburban Washington, DC. EcoHealth, 2013, 10, 36-47.	2.0	55
9	Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasites and Vectors, 2018, 11, 218.	2.5	55
10	Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia, 2009, 160, 343-352.	2.0	54
11	Interpopulation divergence in competitive interactions of the mosquito <i>Aedes albopictus</i> . Ecology, 2009, 90, 2405-2413.	3.2	51
12	Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion by a superior competitor. Oecologia, 2010, 164, 221-230.	2.0	42
13	A Tale of Two City Blocks: Differences in Immature and Adult Mosquito Abundances between Socioeconomically Different Urban Blocks in Baltimore (Maryland, USA). International Journal of Environmental Research and Public Health, 2014, 11, 3256-3270.	2.6	42
14	Metapopulation dynamics of a flightless alpine insect Hemideina maori in a naturally fragmented habitat. Ecological Entomology, 2002, 27, 574-580.	2.2	28
15	Anthropogenic Landscape Change and Vectors in New Zealand: Effects of Shade and Nutrient Levels on Mosquito Productivity. EcoHealth, 2004, 1, 306.	2.0	27
16	Increased Larval Mosquito Densities from Modified Landuses in the Kapiti Region, New Zealand: Vegetation, Water Quality, and Predators as Associated Environmental Factors. EcoHealth, 2005, 2, 313-322.	2.0	25
17	Geographic Variation of Photoperiodic Diapause but Not Adult Survival or Reproduction of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) in North America. Annals of the Entomological Society of America, 2011, 104, 1309-1318.	2.5	25
18	Effectiveness of Print Education at Reducing Urban Mosquito Infestation through Improved Resident-Based Management. PLoS ONE, 2016, 11, e0155011.	2.5	25

PAUL T LEISNHAM

#	Article	IF	CITATIONS
19	New approaches to facilitate learning from youth: Exploring the use of Photovoice in identifying local watershed issues. Journal of Environmental Education, 2017, 48, 109-120.	1.8	23
20	Effects of tire leachate on the invasive mosquito <i>Aedes albopictus</i> and the native congener <i>Aedes triseriatus</i> . PeerJ, 2017, 5, e3756.	2.0	22
21	Understanding stakeholder perspectives on agricultural best management practices and environmental change in the Chesapeake Bay: A Q methodology study. Journal of Rural Studies, 2018, 60, 21-31.	4.7	20
22	Effectiveness of Best Management Practices with Changing Climate in a Maryland Watershed. Transactions of the ASABE, 2017, 60, 769-782.	1.1	19
23	A Diagnostic Decision Support System for BMP Selection in Small Urban Watershed. Water Resources Management, 2017, 31, 1649-1664.	3.9	18
24	Effects of ultraviolet radiation on metabolic rate and fitness of <i>Aedes albopictus</i> and <i>Culex pipiens</i> mosquitoes. PeerJ, 2018, 6, e6133.	2.0	18
25	Interspecific Competition between Aedes albopictus and A. sierrensis: Potential for Competitive Displacement in the Western United States. PLoS ONE, 2014, 9, e89698.	2.5	16
26	Roles of spatial partitioning, competition, and predation in the North American invasion of an exotic mosquito. Oecologia, 2014, 175, 601-611.	2.0	15
27	Linking stormwater Best Management Practices to social factors in two suburban watersheds. PLoS ONE, 2018, 13, e0202638.	2.5	14
28	Relationships between mosquito densities in artificial container habitats, land use and temperature in the Kapitiâ€Horowhenua region, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2006, 40, 285-297.	2.0	13
29	Towards attaining green sustainability goals of cities through social transitions: Comparing stakeholders' knowledge and perceptions between two Chesapeake Bay watersheds, USA. Sustainable Cities and Society, 2021, 75, 103318.	10.4	13
30	Reflecting on Efforts to Design an Inclusive Citizen Science Project in West Baltimore. Citizen Science: Theory and Practice, 2019, 4, .	1.2	13
31	Mosquito density, macroinvertebrate diversity, and water chemistry in waterâ€filled containers: Relationships to land use. New Zealand Journal of Zoology, 2007, 34, 203-218.	1.1	12
32	Effects of Elevated Atmospheric CO ₂ on Competition Between the Mosquitoes <i>Aedes albopictus</i> and <i>Ae. triseriatus</i> via Changes in Litter Quality and Production. Journal of Medical Entomology, 2013, 50, 521-532.	1.8	12
33	Evaluation of global research trends in the area of food waste due to date labeling using a scientometrics approach. Food Control, 2020, 115, 107307.	5.5	12
34	Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula. International Journal of Environmental Research and Public Health, 2011, 8, 3099-3113.	2.6	11
35	Beyond "the Mosquito People†The Challenges of Engaging Community for Environmental Justice in Infested Urban Spaces. , 2018, , 295-318.		11
36	Higher West Nile Virus Infection in Aedes albopictus (Diptera: Culicidae) and Culex (Diptera: Culicidae) Mosquitoes From Lower Income Neighborhoods in Urban Baltimore, MD. Journal of Medical Entomology, 2021, 58, 1424-1428.	1.8	11

PAUL T LEISNHAM

#	Article	IF	CITATIONS
37	Effects of Competition and Predation by Native Mosquitoes on the North American Invasion of <l>Aedes japonicus japonicus</l> (Diptera: Culicidae). Journal of Medical Entomology, 2014, 51, 1159-1167.	1.8	10
38	Healthy Wetlands, Healthy People: Mosquito Borne Disease. Wetlands: Ecology, Conservation and Management, 2015, , 95-121.	0.2	10
39	Aedes albopictus Body Size Differs Across Neighborhoods With Varying Infrastructural Abandonment. Journal of Medical Entomology, 2020, 57, 615-619.	1.8	9
40	Impact of Spatial Discretization of Hydrologic Models on Spatial Distribution of Nonpoint Source Pollution Hotspots. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	8
41	Effects of Detritus on the Mosquito Culex pipiens: Phragmites and Schedonorus (Festuca) Invasion Affect Population Performance. International Journal of Environmental Research and Public Health, 2019, 16, 4118.	2.6	7
42	Relationships Among Immature-Stage Metrics and Adult Abundances of Mosquito Populations in Baltimore, MD. Journal of Medical Entomology, 2019, 56, 192-198.	1.8	7
43	Evaluation of two dipping methods for sampling immature <i>Culex</i> and <i>Ochlerotatus</i> mosquitoes (Diptera: Culicidae) from artificial containers. New Zealand Journal of Marine and Freshwater Research, 2005, 39, 1233-1241.	2.0	6
44	Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter. PLoS ONE, 2015, 10, e0128956.	2.5	6
45	Knowing nature and community through mosquitoes: reframing pest management through lay vector ecologies. Local Environment, 2019, 24, 1119-1135.	2.4	5
46	Condition-Specific Competitive Effects of the Invasive Mosquito Aedes albopictus on the Resident Culex pipiens among Different Urban Container Habitats May Explain Their Coexistence in the Field. Insects, 2021, 12, 993.	2.2	5
47	Effects of a Red Marker Dye onAedesandCulexLarvae: Are There Implications for Operational Mosquito Control?. Journal of the American Mosquito Control Association, 2015, 31, 375-379.	0.7	2