Martin Guilliams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868696/publications.pdf

Version: 2024-02-01

85 papers

21,287 citations

53 h-index 85 g-index

88 all docs 88 docs citations

88 times ranked 24912 citing authors

#	Article	IF	CITATIONS
1	Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 2022, 185, 379-396.e38.	28.9	343
2	Expanding dendritic cell nomenclature in the single-cell era. Nature Reviews Immunology, 2022, 22, 67-68.	22.7	49
3	Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. Journal of Experimental Medicine, 2022, 219, .	8.5	13
4	A workflow for 3Dâ€CLEM investigating liver tissue. Journal of Microscopy, 2021, 281, 231-242.	1.8	7
5	Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nature Neuroscience, 2021, 24, 595-610.	14.8	288
6	The conventional dendritic cell lineage is born. Nature Reviews Immunology, 2021, 21, 623-623.	22.7	1
7	Does tissue imprinting restrict macrophage plasticity?. Nature Immunology, 2021, 22, 118-127.	14.5	117
8	Myeloid Cells TREM Down Anti-tumor Responses. Cell, 2020, 182, 796-798.	28.9	10
9	Hepatocarcinoma Induces a Tumor Necrosis Factor-Dependent Kupffer Cell Death Pathway That Favors Its Proliferation Upon Partial Hepatectomy. Frontiers in Oncology, 2020, 10, 547013.	2.8	7
10	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	14.3	237
11	Establishment and Maintenance of the Macrophage Niche. Immunity, 2020, 52, 434-451.	14.3	308
12	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
13	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	14.8	148
14	Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity, 2020, 52, 1088-1104.e6.	14.3	79
15	Decrypting DC development. Nature Immunology, 2019, 20, 1090-1092.	14.5	3
16	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	14.3	384
17	A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience, 2019, 22, 1021-1035.	14.8	603
18	Priority lane to cDC1 open for IRF8+ progenitors. Blood, 2019, 133, 1795-1797.	1.4	1

#	Article	IF	CITATIONS
19	Niche signals and transcription factors involved in tissue-resident macrophage development. Cellular Immunology, 2018, 330, 43-53.	3.0	114
20	Developmental control of macrophage function. Current Opinion in Immunology, 2018, 50, 64-74.	5.5	65
21	Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nature Communications, 2018, 9, 5338.	12.8	44
22	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.	14.3	609
23	Tissue Unit-ed: Lung Cells Team up to Drive Alveolar Macrophage Development. Cell, 2018, 175, 898-900.	28.9	6
24	Self-Maintaining Gut Macrophages Are Essential for Intestinal Homeostasis. Cell, 2018, 175, 400-415.e13.	28.9	371
25	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	12.8	152
26	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	14.3	172
27	Cellular origin of human cardiac macrophage populations. Nature Medicine, 2018, 24, 1091-1092.	30.7	9
28	The role of Kupffer cells in hepatic iron and lipid metabolism. Journal of Hepatology, 2018, 69, 1197-1199.	3.7	63
29	Quorum sensing in the immune system. Nature Reviews Immunology, 2018, 18, 537-538.	22.7	26
30	â€~NOTCHing up' the In Vitro Production of Dendritic Cells. Trends in Immunology, 2018, 39, 765-767.	6.8	5
31	Von Hippel-Lindau Protein Is Required for Optimal Alveolar Macrophage Terminal Differentiation, Self-Renewal, and Function. Cell Reports, 2018, 24, 1738-1746.	6.4	26
32	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	6.0	155
33	Does niche competition determine the origin of tissue-resident macrophages?. Nature Reviews Immunology, 2017, 17, 451-460.	22.7	321
34	Macrophage, a long-distance middleman. Science, 2017, 355, 1258-1259.	12.6	3
35	Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells. Cell Reports, 2017, 18, 3005-3017.	6.4	104
36	A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nature Immunology, 2017, 18, 1310-1320.	14.5	164

#	Article	IF	Citations
37	Kupffer cell pool is maintained by local proliferation and the differentiation of bone marrow monocytes into short-lived monocyte-derived Kupffer cells during non-alcoholic steatohepatitis and recovery. Journal of Hepatology, 2017, 66, S435.	3.7	1
38	Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cellular Immunology, 2017, 322, 74-83.	3.0	81
39	Editorial: Dendritic Cell and Macrophage Nomenclature and Classification. Frontiers in Immunology, 2016, 7, 168.	4.8	25
40	Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications, 2016, 7, ncomms11852.	12.8	275
41	The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016, 7, 13720.	12.8	217
42	Macrophage precursors PLASTed INto alveolar space. Blood, 2016, 128, 2750-2752.	1.4	1
43	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	8.5	125
44	IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity, 2016, 45, 626-640.	14.3	273
45	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	14.3	683
46	A Matter of Perspective: Moving from a Pre-omic to a Systems-Biology Vantage of Monocyte-Derived Cell Function and Nomenclature. Immunity, 2016, 44, 5-6.	14.3	12
47	Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity, 2016, 44, 439-449.	14.3	1,296
48	Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity, 2016, 44, 755-768.	14.3	478
49	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	12.8	604
50	A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 2015, 6, 406.	4.8	99
51	A Death Notice for In-Vitro-Generated GM-CSF Dendritic Cells?. Immunity, 2015, 42, 988-990.	14.3	38
52	Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages. PLoS Pathogens, 2015, 11, e1004873.	4.7	45
53	CCR2+CD103â^' intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunology, 2015, 8, 327-339.	6.0	140
54	Mononuclear phagocytes of the intestine, the skin, and the lung. Immunological Reviews, 2014, 262, 9-24.	6.0	91

#	Article	IF	CITATIONS
55	Monocytes find a new place to dwell in the niche of heartbreak hotel. Journal of Experimental Medicine, 2014, 211, 2136-2136.	8.5	12
56	The function of $Fc\hat{l}^3$ receptors in dendritic cells and macrophages. Nature Reviews Immunology, 2014, 14, 94-108.	22.7	530
57	Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology, 2014, 14, 571-578.	22.7	1,494
58	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 1073-1079.	14.3	26
59	Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin. Immunity, 2013, 39, 925-938.	14.3	651
60	Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine, 2013, 210, 1977-1992.	8.5	976
61	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 79-91.	14.3	2,528
62	Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite Allergen. Immunity, 2013, 38, 322-335.	14.3	770
63	Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunology, 2013, 6, 464-473.	6.0	223
64	Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunology, 2013, 6, 498-510.	6.0	749
65	The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-β. PLoS ONE, 2013, 8, e59822.	2.5	35
66	CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization. Journal of Immunology, 2012, 188, 1751-1760.	0.8	243
67	<scp>CD</scp> 64 distinguishes macrophages from dendritic cells in the gut and reveals the <scp>T</scp> h1â€inducing role of mesenteric lymph node macrophages during colitis. European Journal of Immunology, 2012, 42, 3150-3166.	2.9	430
68	Sensorimotor reconditioning during and after spaceflight. NeuroRehabilitation, 2011, 29, 185-195.	1.3	49
69	Test Battery Designed to Quickly and Safely Assess Diverse Indices of Neuromuscular Function After Unweighting. Journal of Strength and Conditioning Research, 2011, 25, 545-555.	2.1	15
70	Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8i±+ Type. Journal of Immunology, 2011, 187, 4411-4415.	0.8	202
71	Skin-draining lymph nodes contain dermis-derived CD103â^ dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood, 2010, 115, 1958-1968.	1.4	286
72	From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. European Journal of Immunology, 2010, 40, 2089-2094.	2.9	120

#	Article	IF	Citations
73	Disentangling the complexity of the skin dendritic cell network. Immunology and Cell Biology, 2010, 88, 366-375.	2.3	92
74	Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunological Reviews, 2010, 234, 177-198.	6.0	177
75	CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. Journal of Experimental Medicine, 2010, 207, 189-206.	8.5	350
76	Tip-DC Development during Parasitic Infection Is Regulated by IL-10 and Requires CCL2/CCR2, IFN- \hat{I}^3 and MyD88 Signaling. PLoS Pathogens, 2010, 6, e1001045.	4.7	124
77	IL-10 Dampens TNF/Inducible Nitric Oxide Synthase-Producing Dendritic Cell-Mediated Pathogenicity during Parasitic Infection. Journal of Immunology, 2009, 182, 1107-1118.	0.8	108
78	Differentiation, activation and function of CD11b+Ly6C+ TNF/iNOS-producing dendritic cells during parasitic infection. Cytokine, 2009, 48, 135.	3.2	0
79	Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology, 2009, 214, 737-747.	1.9	25
80	Alternatively Activated Myeloid Cells Limit Pathogenicity Associated with African Trypanosomiasis through the IL-10 Inducible Gene Selenoprotein P. Journal of Immunology, 2008, 180, 6168-6175.	0.8	92
81	Experimental Expansion of the Regulatory T Cell Population Increases Resistance to African Trypanosomiasis. Journal of Infectious Diseases, 2008, 198, 781-791.	4.0	44
82	Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity. Blood, 2008, 111, 4233-4244.	1.4	1,081
83	African Trypanosomiasis: Naturally Occurring Regulatory T Cells Favor Trypanotolerance by Limiting Pathology Associated with Sustained Type 1 Inflammation. Journal of Immunology, 2007, 179, 2748-2757.	0.8	81
84	A Glycosylphosphatidylinositol-Based Treatment Alleviates Trypanosomiasis-Associated Immunopathology. Journal of Immunology, 2007, 179, 4003-4014.	0.8	68
85	African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 2007, 148, 3-13.	1.8	57