Weisi Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8868033/publications.pdf

Version: 2024-02-01

191	3,961	236925	197818 49
papers	citations	h-index	g-index
192	192	192	2851
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks. IEEE Transactions on Mobile Computing, 2022, 21, 1388-1401.	5.8	5
2	Neural Network Approximation of Graph Fourier Transform for Sparse Sampling of Networked Dynamics. ACM Transactions on Internet Technology, 2022, 22, 1-18.	4.4	0
3	An Integrated Framework on Autonomous-EV Charging and Autonomous Valet Parking (AVP) Management System. IEEE Transactions on Transportation Electrification, 2022, 8, 2836-2852.	7.8	14
4	Error Performance and Mutual Information for IoNT Interface System. IEEE Internet of Things Journal, 2022, 9, 9831-9842.	8.7	8
5	A Multi-Eavesdropper Scheme Against RIS Secured LoS-Dominated Channel. IEEE Communications Letters, 2022, 26, 1221-1225.	4.1	6
6	Graph Layer Security: Encrypting Information via Common Networked Physics. Sensors, 2022, 22, 3951.	3.8	3
7	Analysing region of attraction of load balancing on complex network. Journal of Complex Networks, 2022, 10, .	1.8	1
8	Green Deep Reinforcement Learning for Radio Resource Management: Architecture, Algorithm Compression, and Challenges. IEEE Vehicular Technology Magazine, 2021, 16, 29-39.	3.4	19
9	Kolmogorov Turbulence and Information Dissipation in Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 262-270.	2.1	3
10	Dynamic Complex Network Analysis of PM2.5 Concentrations in the UK, Using Hierarchical Directed Graphs (V1.0.0). Sustainability, 2021, 13, 2201.	3.2	9
11	Forecasting Wireless Demand with Extreme Values using Feature Embedding in Gaussian Processes. , 2021, , .		4
12	Editorial: Biologically Inspired Computing and Networking. Mobile Networks and Applications, 2021, 26, 1344-1346.	3.3	1
13	Signal Detection for Molecular Communication: Model-Based vs. Data-Driven Methods. IEEE Communications Magazine, 2021, 59, 47-53.	6.1	12
14	A Frequency Domain View on Diffusion-based Molecular Communication Channels. , 2021, , .		0
15	Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks. Scientific Reports, 2021, 11, 13943.	3.3	9
16	Uncertainty of Resilience in Complex Networks With Nonlinear Dynamics. IEEE Systems Journal, 2021, 15, 4687-4695.	4.6	3
17	Frequency Domain Analysis and Equalization for Molecular Communication. IEEE Transactions on Signal Processing, 2021, 69, 1952-1967.	5.3	18
18	Infection and Re-Infection: Stability of Complex Air Transport Network., 2021,,.		0

#	Article	IF	Citations
19	Automatic Quantification of Settlement Damage using Deep Learning of Satellite Images. , 2021, , .		1
20	Kalman Prediction-Based Neighbor Discovery and Its Effect on Routing Protocol in Vehicular Ad Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 159-169.	8.0	32
21	Optimal Sampling of Water Distribution Network Dynamics Using Graph Fourier Transform. IEEE Transactions on Network Science and Engineering, 2020, 7, 1570-1582.	6.4	14
22	Probabilistic Stability of Traffic Load Balancing on Wireless Complex Networks. IEEE Systems Journal, 2020, 14, 2551-2556.	4.6	4
23	CSI-Independent Non-Linear Signal Detection in Molecular Communications. IEEE Transactions on Signal Processing, 2020, 68, 97-112.	5.3	14
24	Hamming–Luby rateless codes for molecular erasure channels. Nano Communication Networks, 2020, 23, 100280.	2.9	2
25	High-Dimensional Metric Combining for Non-Coherent Molecular Signal Detection. IEEE Transactions on Communications, 2020, 68, 1479-1493.	7.8	19
26	Partially Explainable Big Data Driven Deep Reinforcement Learning for Green 5G UAV., 2020,,.		16
27	Molecular Signal Tracking and Detection Methods in Fluid Dynamic Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 151-159.	2.1	5
28	Sampling and Inference of Networked Dynamics Using Log-Koopman Nonlinear Graph Fourier Transform. IEEE Transactions on Signal Processing, 2020, 68, 6187-6197.	5.3	4
29	Trustworthy Deep Learning in 6G-Enabled Mass Autonomy: From Concept to Quality-of-Trust Key Performance Indicators. IEEE Vehicular Technology Magazine, 2020, 15, 112-121.	3.4	30
30	Discovering Latent Spatial Invariance of Urban Wireless Data using Compression and Deep Learning. , 2020, , .		0
31	Vertical Underwater Molecular Communications via Buoyancy: Gaussian Velocity Distribution of Signal., 2020,,.		4
32	Secure Internet-of-Nano Things for Targeted Drug Delivery: Distance-based Molecular Cipher Keys. , 2020, , .		11
33	Attention-Based LSTM with Filter Mechanism for Entity Relation Classification. Symmetry, 2020, 12, 1729.	2.2	13
34	Ant-Behavior Inspired Intelligent NanoNet for Targeted Drug Delivery in Cancer Therapy. IEEE Transactions on Nanobioscience, 2020, 19, 323-332.	3.3	20
35	Molecular Communication via Subdiffusion With a Spherical Absorbing Receiver. IEEE Wireless Communications Letters, 2020, 9, 1682-1686.	5.0	8
36	Organisational Social Influence on Directed Hierarchical Graphs, from Tyranny to Anarchy. Scientific Reports, 2020, 10, 4388.	3.3	9

#	Article	IF	CITATIONS
37	Monitoring Embedded Flow Networks Using Graph Fourier Transform Enabled Sparse Molecular Relays. IEEE Communications Letters, 2020, 24, 986-990.	4.1	2
38	Signal Detection for Molecular MIMO Communications With Asymmetrical Topology. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 60-70.	2.1	7
39	Inference in Turbulent Molecular Information Channels Using Support Vector Machine. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 25-35.	2.1	5
40	Node-Level Resilience Loss in Dynamic Complex Networks. Scientific Reports, 2020, 10, 3599.	3.3	17
41	A Survey of Online Data-Driven Proactive 5G Network Optimisation Using Machine Learning. IEEE Access, 2020, 8, 35606-35637.	4.2	61
42	Radiation Absorption Noise for Molecular Information Transfer. IEEE Access, 2020, 8, 6379-6387.	4.2	11
43	Quantifying Resilience via Multiscale Feedback Loops in Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	15
44	Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication. IEEE Transactions on Nanobioscience, 2020, 19, 422-433.	3.3	24
45	A Review of Methods to Study Resilience of Complex Engineering and Engineered Systems. IEEE Access, 2020, 8, 87775-87799.	4.2	18
46	Signal Transmission Through Human Body Via Engineered Nervous System., 2020,,.		4
47	Heterogeneous Small Cell Networks. , 2020, , 561-571.		O
48	LSTM-CRF Neural Network With Gated Self Attention for Chinese NER. IEEE Access, 2019, 7, 136694-136703.	4.2	37
49	Optimal Sampling for Dynamic Complex Networks With Graph-Bandlimited Initialization. IEEE Access, 2019, 7, 150294-150305.	4.2	6
50	Linearity of Sequential Molecular Signals in Turbulent Diffusion Channels. , 2019, , .		7
51	Mapping Consumer Sentiment Toward Wireless Services Using Geospatial Twitter Data. IEEE Access, 2019, 7, 113726-113739.	4.2	19
52	Initial Distance Estimation for Diffusive Mobile Molecular Communication Systems., 2019,,.		3
53	HS2 railway embankment monitoring: effect of soil condition on underground signals. SN Applied Sciences, $2019, 1, 1$.	2.9	4
54	Text Classification Based on Conditional Reflection. IEEE Access, 2019, 7, 76712-76719.	4.2	5

#	Article	IF	CITATIONS
55	Global air transport complex network: multi-scale analysis. SN Applied Sciences, 2019, 1, 1.	2.9	12
56	Resilience or robustness: identifying topological vulnerabilities in rail networks. Royal Society Open Science, 2019, 6, 181301.	2.4	40
57	Metric combinations in non-coherent signal detection for molecular communication. Nano Communication Networks, 2019, 20, 1-10.	2.9	9
58	Assessing Simulations of Imperial Dynamics and Conflict in the Ancient World. Cliodynamics, 2019, 10, .	0.1	0
59	Programmable Wireless Channel for Multi-User MIMO Transmission Using Meta-Surface. , 2019, , .		15
60	Dynamic Spatial Cluster Process Model of Geo-Tagged Tweets in London., 2019,,.		2
61	Geo-Tagging Quality-of-Experience Self-Reporting on Twitter to Mobile Network Outage Events. , 2019, ,		5
62	Monitoring Networked Infrastructure with Minimum Data via Sequential Graph Fourier Transforms. , 2019, , .		3
63	A Tale of Two Cities: Multiplexed Banking Access in Birmingham and London. , 2019, , .		0
64	Mutual Information and Noise Distributions of Molecular Signals Using Laser Induced Fluorescence. , 2019, , .		17
65	On the Stability of the Foschini-Miljanic Algorithm with Uncertainty over Channel Gains. , 2019, , .		2
66	Swarm UAV Communications with Diversity and Delay Trade-off using Mobile Caching. , 2019, , .		1
67	Sequential Bayesian Detection of Spike Activities From Fluorescence Observations. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2019, 5, 3-18.	2.1	3
68	Analytical Evaluation of Cellular Network Uplink Communications With Higher Order Sectorization Deployments. IEEE Transactions on Vehicular Technology, 2019, 68, 12179-12189.	6.3	7
69	Deep learning for bridge load capacity estimation in post-disaster and -conflict zones. Royal Society Open Science, 2019, 6, 190227.	2.4	8
70	Gang confrontation: The case of Medellin (Colombia). PLoS ONE, 2019, 14, e0225689.	2.5	1
71	Common statistical patterns in urban terrorism. Royal Society Open Science, 2019, 6, 190645.	2.4	9
72	On the Impact of Transposition Errors in Diffusion-Based Channels. IEEE Transactions on Communications, 2019, 67, 364-374.	7.8	11

#	Article	IF	Citations
73	Spectrum Detection and Link Quality Assessment for Heterogeneous Shared Access Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 1431-1445.	6.3	10
74	Conflict Detection in Linguistically Diverse On-line Social Networks. , 2019, , .		2
75	Synchronization with Molecular Signals on Spatial-Temporal Complex Networks. , 2019, , .		1
76	One Symbol Blind Synchronization in SIMO Molecular Communication Systems. IEEE Wireless Communications Letters, 2018, 7, 530-533.	5.0	32
77	5G Multiscale Mobility : A Look at Current and Upcoming Models in the Next Technology Era. IEEE Vehicular Technology Magazine, 2018, 13, 120-129.	3.4	6
78	SMIET: Simultaneous Molecular Information and Energy Transfer. IEEE Wireless Communications, 2018, 25, 106-113.	9.0	25
79	RACH Preamble Repetition in NB-IoT Network. IEEE Communications Letters, 2018, 22, 1244-1247.	4.1	52
80	Learning-Based Spectrum Sharing and Spatial Reuse in mm-Wave Ultradense Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 4954-4968.	6.3	47
81	Asynchronous Device Detection for Cognitive Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2018, 17, 2443-2456.	9.2	9
82	Data-Driven Deployment and Cooperative Self-Organization in Ultra-Dense Small Cell Networks. IEEE Access, 2018, 6, 22839-22848.	4.2	24
83	Uncertainty Quantification in Molecular Signals Using Polynomial Chaos Expansion. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 248-256.	2.1	6
84	Molecular Information Delivery in Porous Media. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 257-262.	2.1	3
85	On Flow-Induced Diffusive Mobile Molecular Communication: First Hitting Time and Performance Analysis. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 195-207.	2.1	24
86	Impact of Cooperation in Flow-Induced Diffusive Mobile Molecular Communication., 2018,,.		4
87	Toward High Capacity Molecular Communications Using Sequential Vortex Rings. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 39-42.	2.1	14
88	Retool AI to forecast and limit wars. Nature, 2018, 562, 331-333.	27.8	23
89	Twitter Usage Across Industry: A Spatiotemporal Analysis. , 2018, , .		9
90	Experimental molecular communications in obstacle rich fluids. , 2018, , .		20

#	Article	IF	Citations
91	Multi-Scale Energy Harvesting. , 2018, , 157-185.		O
92	Heterogeneous Small Cell Networks. , 2018, , 1-10.		0
93	Enabling Energy Efficient Molecular Communication via Molecule Energy Transfer. IEEE Communications Letters, 2017, 21, 254-257.	4.1	27
94	Uncovering wireless blackspots using Twitter data. Electronics Letters, 2017, 53, 814-816.	1.0	9
95	Transposition Errors in Diffusion-Based Mobile Molecular Communication. IEEE Communications Letters, 2017, 21, 1973-1976.	4.1	50
96	Molecular Channel Fading Due to Diffusivity Fluctuations. IEEE Communications Letters, 2017, 21, 676-679.	4.1	7
97	Bacterial Relay for Energy-Efficient Molecular Communications. IEEE Transactions on Nanobioscience, 2017, 16, 555-562.	3.3	23
98	Effective Enzyme Deployment for Degradation of Interference Molecules in Molecular Communication. , 2017, , .		17
99	Google Trends can improve surveillance of Type 2 diabetes. Scientific Reports, 2017, 7, 4993.	3.3	50
100	Effective interâ€symbol interference mitigation with a limited amount of enzymes in molecular communications. Transactions on Emerging Telecommunications Technologies, 2017, 28, e3106.	3.9	6
101	Interferenceâ€aware multiâ€hop path selection for deviceâ€toâ€device communications in a cellular interference environment. IET Communications, 2017, 11, 1741-1750.	2.2	15
102	Non-Linear Signal Detection for Molecular Communications. , 2017, , .		5
103	Analyzing Large-Scale Multiuser Molecular Communication via 3-D Stochastic Geometry. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 118-133.	2.1	62
104	Global network centrality of university rankings. Royal Society Open Science, 2017, 4, 171172.	2.4	6
105	Normal Inverse Gaussian Approximation for Arrival Time Difference in Flow-Induced Molecular Communications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 259-264.	2.1	4
106	Communication System Design and Analysis for Asynchronous Molecular Timing Channels. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 239-253.	2.1	18
107	3D Stochastic Geometry Model for Large-Scale Molecular Communication Systems. , 2016, , .		17
108	On the Impact of Time-Synchronization in Molecular Timing Channels. , 2016, , .		7

#	Article	IF	Citations
109	Device-to-device meets LTE-unlicensed. , 2016, 54, 154-159.		57
110	Local Convexity Inspired Low-Complexity Noncoherent Signal Detector for Nanoscale Molecular Communications. IEEE Transactions on Communications, 2016, 64, 2079-2091.	7.8	50
111	Device-to-Device communications in LTE-Unlicensed heterogeneous network. , 2016, , .		4
112	London underground: Neighbourhood centrality and relation to urban geography., 2016,,.		3
113	Understanding happiness in cities using Twitter: Jobs, children, and transport., 2016,,.		20
114	Molecular communications: channel model and physical layer techniques. IEEE Wireless Communications, 2016, 23, 120-127.	9.0	89
115	Core identification and attack strategies against regenerative complex networks. Electronics Letters, 2016, 52, 450-452.	1.0	1
116	lunius: A Cross-Layer Peer-to-Peer System With Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2016, 15, 7005-7017.	9.2	14
117	Mobile molecular communications: Positional-distance codes., 2016,,.		9
118	Fuzzy partition technique for clustering Big Urban dataset. , 2016, , .		5
119	Cascade decode-and-forward: spatial diversity reuse in sensor networks. International Journal of Sensor Networks, 2016, 20, 219.	0.4	1
120	Simultaneous Information and Energy Flow for IoT Relay Systems with Crowd Harvesting. , 2016, 54, $143-149$.		60
121	Eavesdropper Localization in Random Walk Channels. IEEE Communications Letters, 2016, 20, 1776-1779.	4.1	26
122	Interference reduction via enzyme deployment for molecular communication. Electronics Letters, 2016, 52, 1094-1096.	1.0	13
123	Estimating Mobile Traffic Demand Using Twitter. IEEE Wireless Communications Letters, 2016, 5, 380-383.	5.0	33
124	A Comprehensive Survey of Recent Advancements in Molecular Communication. IEEE Communications Surveys and Tutorials, 2016, 18, 1887-1919.	39.4	681
125	Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications. IEEE Transactions on Nanobioscience, 2016, 15, 3-10.	3.3	47
126	Smartphone data usage: downlink and uplink asymmetry. Electronics Letters, 2016, 52, 243-245.	1.0	11

#	Article	IF	Citations
127	Lowâ€complexity energyâ€efficient resource allocation for delayâ€tolerant twoâ€way orthogonal frequencyâ€division multiplexing relays. IET Communications, 2016, 10, 2488-2495.	2.2	2
128	Long Range and Long Duration Underwater Localization Using Molecular Messaging. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1, 363-370.	2.1	12
129	Stable Distributions as Noise Models for Molecular Communication. , 2015, , .		35
130	Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum., 2015, 53, 158-164.		360
131	Ubiquitous monitoring of human sunlight exposure in cities. , 2015, , .		2
132	Experimental Nakagami distributed noise model for molecular communication channels with no drift. Electronics Letters, 2015, 51, 611-613.	1.0	4
133	Molecular Communications With Longitudinal Carrier Waves: Baseband to Passband Modulation. IEEE Communications Letters, 2015, 19, 1512-1515.	4.1	6
134	Molecular Versus Electromagnetic Wave Propagation Loss in Macro-Scale Environments. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1, 18-25.	2.1	64
135	Under-water molecular signalling: A hidden transmitter and absent receivers problem. , 2015, , .		8
136	Network coding in device-to-device (D2D) communications underlaying cellular networks. , 2015, , .		23
137	Molecular barcodes: Information transmission via persistent chemical tags. , 2015, , .		9
138	D2D multi-hop routing: Collision probability and routing strategy with limited location information. , 2015, , .		3
139	Outage Probability for Multi-Hop D2D Communications With Shortest Path Routing. IEEE Communications Letters, 2015, 19, 1997-2000.	4.1	39
140	Emergency route selection for D2D cellular communications during an urban terrorist attack. , 2014, , .		29
141	Optimal resource management for device-to-device communications underlaying SC-FDMA systems. , 2014, , .		6
142	Performance analysis of micro unmanned airborne communication relays for cellular networks. , 2014, , .		53
143	Three-dimensional SOlar RAdiation Model (SORAM) and its application to 3-D urban planning. Solar Energy, 2014, 101, 63-73.	6.1	50
144	Performance of macro-scale molecular communications with sensor cleanse time., 2014,,.		12

#	Article	IF	Citations
145	Molecular communication link., 2014, , .		12
146	Downlink interference estimation without feedback for heterogeneous network interference avoidance. , $2014, , .$		8
147	A molecular communication link for monitoring in confined environments. , 2014, , .		5
148	Transmit pulse shaping for molecular communications. , 2014, , .		19
149	Distance distributions for real cellular networks. , 2014, , .		5
150	Interference Allocation Scheduler for Green Multimedia Delivery. IEEE Transactions on Vehicular Technology, 2014, 63, 2059-2070.	6.3	4
151	Stable Distributions as Noise Models for Molecular Communication. , 2014, , .		10
152	Nanoparticle communications: from chemical signals in nature to wireless sensor networks. Nanotechnology Perceptions, 2014, 10, . 29-41.	0.2	1
153	Sustainable Growth for Cellular Wireless Networks. Advances in Wireless Technologies and Telecommunication Book Series, 2014, , 18-43.	0.4	1
154	Radioâ€frequency energy harvesting potential: a stochastic analysis. Transactions on Emerging Telecommunications Technologies, 2013, 24, 453-457.	3.9	9
155	Automated small-cell deployment for heterogeneous cellular networks. , 2013, 51, 46-53.		72
156	Relay Deployment in Cellular Networks: Planning and Optimization. IEEE Journal on Selected Areas in Communications, 2013, 31, 1597-1606.	14.0	57
157	Dynamic Cell Expansion with Self-Organizing Cooperation. IEEE Journal on Selected Areas in Communications, 2013, 31, 851-860.	14.0	45
158	Mobile Crowd-Sensing Wireless Activity with Measured Interference Power. IEEE Wireless Communications Letters, 2013, 2, 539-542.	5.0	19
159	Reliable communication envelopes of molecular diffusion channels. Electronics Letters, 2013, 49, 1248-1249.	1.0	17
160	Energy and cost implications of a traffic aware and qualityâ€ofâ€service constrained sleep mode mechanism. IET Communications, 2013, 7, 2092-2101.	2.2	6
161	Energy Consumption of 4G Cellular Networks: A London Case Study. , 2013, , .		7
162	User data traffic analysis for 3G cellular networks. , 2013, , .		33

#	Article	IF	CITATIONS
163	Spectral- and energy-efficient antenna tilting in a HetNet using reinforcement learning. , 2013, , .		22
164	Capacity expression and power allocation for arbitrary modulation and coding rates., 2013,,.		16
165	Tabletop Molecular Communication: Text Messages through Chemical Signals. PLoS ONE, 2013, 8, e82935.	2.5	202
166	Energy efficient coordinated radio resource management: a two player sequential game modelling for the long-term evolution downlink. IET Communications, 2012, 6, 2239.	2.2	11
167	A robust wide-area wireless sensor network for GNSS monitoring of flowing glaciers. , 2012, , .		1
168	Capacity-Energy-Cost Tradeoff in Small Cell Networks. , 2012, , .		21
169	Energy Efficiency Evaluation of SISO and MIMO between LTE-Femtocells and 802.11n Networks. , 2012, , .		5
170	Power-Capacity-Tradeoff for Low Energy Interference Limited Cellular Networks. , 2012, , .		0
171	Interference-Aware Self-Deploying Femto-Cell. IEEE Wireless Communications Letters, 2012, 1, 609-612.	5. 0	28
172	Integrated cross-layer energy savings in a smart and flexible cellular network. , 2012, , .		3
173	Long Term Evolution Downlink Packet Scheduling Using a Novel Proportional-Fair-Energy Policy. , 2012, , .		10
174	Two-tier Cellular Networks with Frequency Selective Surface., 2012,,.		8
175	Dynamic Cell Expansion: Traffic Aware Low Energy Cellular Network. , 2012, , .		8
176	Capacity-Outage-Tradeoff (COT) for Cooperative Networks. IEEE Journal on Selected Areas in Communications, 2012, 30, 1641-1648.	14.0	10
177	Optimising Femtocell Placement in an Interference Limited Network: Theory and Simulation. , 2012, , .		10
178	Low energy indoor network: deployment optimisation. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	2.4	8
179	DYNAMIC BASESTATION ANTENNA DESIGN FOR LOW ENERGY NETWORKS. Progress in Electromagnetics Research C, 2012, 31, 153-168.	0.9	11
180	Small-Net vs. Relays in a Heterogeneous Low Energy LTE Architecture. Journal of Communications, 2012, 7, .	1.6	2

#	Article	lF	CITATIONS
181	Green cellular network: Deployment solutions, sensitivity and tradeoffs. , 2011, , .		31
182	Exact and Asymptotic Outage Probability Analysis for Decode-and-Forward Networks. IEEE Transactions on Communications, 2011, 59, 376-381.	7.8	14
183	Evolution Game Theoretic Optimization of Realistic Cooperative Networks Using Power Control with Imperfect Feedback., 2011,,.		1
184	Survey and analysis of power control for collaborative networks. , 2010, , .		1
185	Partner Selection and Power Control for Asymmetrical Collaborative Networks. , 2010, , .		6
186	Power control for turbo coded symmetrical collaborative networks. , 2010, , .		0
187	Error Probability Analysis of Unselfish Cooperation over Quasi-Static Fading Channels. , 2010, , .		4
188	Performance analysis and adaptive power control for block coded collaborative networks., 2009,,.		3
189	Comparison of cooperative schemes using joint channel coding and high-order modulation. , 2008, , .		7
190	Energy-efficient architectures and techniques. , 0, , 426-452.		0
191	Robust satellite antenna fingerprinting under degradation using recurrent neural network. Modern Physics Letters B, O, , .	1.9	1