Deborah Yelon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8867532/publications.pdf

Version: 2024-02-01

47 papers 4,486 citations

28 h-index 243296 44 g-index

54 all docs

54 docs citations

54 times ranked 4204 citing authors

#	Article	IF	CITATIONS
1	Cardiac Morphogenesis: Crowding and Tension Resolved through Social Distancing. Developmental Cell, 2021, 56, 159-160.	3.1	O
2	Pathways Regulating Establishment and Maintenance of Cardiac Chamber Identity in Zebrafish. Journal of Cardiovascular Development and Disease, 2021, 8, 13.	0.8	6
3	<i $>$ osr $1i> couples intermediate mesoderm cell fate with temporal dynamics of vessel progenitor cell differentiation. Development (Cambridge), 2021, 148, .$	1.2	8
4	Haematopoietic stem cell-dependent Notch transcription is mediated by p53 through the Histone chaperone Supt16h. Nature Cell Biology, 2020, 22, 1411-1422.	4.6	9
5	Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development (Cambridge), 2020, 147, .	1.2	6
6	Tmem2 restricts atrioventricular canal differentiation by regulating degradation of hyaluronic acid. Developmental Dynamics, 2019, 248, 1195-1210.	0.8	10
7	Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature Communications, 2019, 10, 4113.	5.8	33
8	Fluid forces shape the embryonic heart: Insights from zebrafish. Current Topics in Developmental Biology, 2019, 132, 395-416.	1.0	28
9	Commentary on "The precardiac areas and formation of the tubular heart in the chick embryo―by Stalsberg and DeHaan, 1969. Developmental Biology, 2019, 456, 105-137.	0.9	1
10	FGF signaling enforces cardiac chamber identity in the developing ventricle. Development (Cambridge), 2017, 144, 1328-1338.	1.2	36
11	Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. ELife, 2017, 6, .	2.8	38
12	Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Development (Cambridge), 2016, 143, 2965-72.	1.2	11
13	Utilizing Zebrafish to Understand Second Heart Field Development. , 2016, , 193-199.		13
14	Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. ELife, 2016, 5, .	2.8	20
15	Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Journal of Cell Science, 2016, 129, e1.2-e1.2.	1.2	O
16	Editorial overview: Developmental mechanisms, patterning and organogenesis. Current Opinion in Genetics and Development, 2015, 32, v-viii.	1.5	3
17	Cadm4 Restricts the Production of Cardiac Outflow Tract Progenitor Cells. Cell Reports, 2014, 7, 951-960.	2.9	43
18	Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development (Cambridge), 2014, 141, 3112-3122.	1,2	110

#	Article	IF	Citations
19	Nkx genes are essential for maintenance of ventricular identity. Development (Cambridge), 2013, 140, 4203-4213.	1.2	93
20	tal 1 regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Developmental Biology, 2013, 383, 214-226.	0.9	35
21	In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498, 497-501.	13.7	229
22	Heart under construction. Nature, 2012, 484, 459-460.	13.7	7
23	Multiple influences of blood flow on cardiomyocyte hypertrophy in the embryonic zebrafish heart. Developmental Biology, 2012, 362, 242-253.	0.9	83
24	The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development (Cambridge), 2011, 138, 3421-3430.	1.2	339
25	Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Developmental Dynamics, 2011, 240, 446-456.	0.8	115
26	The novel transmembrane protein Tmem2 is essential for coordination of myocardial and endocardial morphogenesis. Development (Cambridge), 2011, 138, 4199-4205.	1.2	52
27	Myocardial Lineage Development. Circulation Research, 2010, 107, 1428-1444.	2.0	237
28	Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development (Cambridge), 2010, 137, 3215-3220.	1.2	65
29	Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development (Cambridge), 2009, 136, 1633-1641.	1.2	234
30	Differential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac chamber proportionality. Developmental Biology, 2009, 328, 472-482.	0.9	39
31	The Spinster Homolog, Two of Hearts, Is Required for Sphingosine 1-Phosphate Signaling in Zebrafish. Current Biology, 2008, 18, 1882-1888.	1.8	157
32	Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Developmental Biology, 2008, 321, 397-406.	0.9	113
33	Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development (Cambridge), 2008, 135, 3789-3799.	1.2	91
34	Functional Modulation of Cardiac Form through Regionally Confined Cell Shape Changes. PLoS Biology, 2007, 5, e53.	2.6	260
35	Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development (Cambridge), 2007, 134, 2379-2386.	1.2	77
36	Early developmental specification of the thyroid gland depends on <i>han</i> expressing surrounding tissue and on FGF signals. Development (Cambridge), 2007, 134, 2871-2879.	1.2	64

#	Article	IF	CITATIONS
37	Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics. Seminars in Cell and Developmental Biology, 2007, 18, 27-35.	2.3	49
38	Vessel and Blood Specification Override Cardiac Potential in Anterior Mesoderm. Developmental Cell, 2007, 13, 254-267.	3.1	201
39	Organization of cardiac chamber progenitors in the zebrafish blastula. Development (Cambridge), 2004, 131, 3081-3091.	1.2	148
40	Twoendothelin 1effectors, hand 2 and bapx 1, pattern ventral pharyngeal cartilage and the jaw joint. Development (Cambridge), 2003, 130, 1353-1365.	1,2	194
41	Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development (Cambridge), 2003, 130, 6121-6129.	1.2	241
42	Pattern Formation: Swimming in Retinoic Acid. Current Biology, 2002, 12, R707-R709.	1.8	13
43	Cardiovascular System. Results and Problems in Cell Differentiation, 2002, 40, 298-321.	0.2	1
44	Cardiac patterning and morphogenesis in zebrafish. Developmental Dynamics, 2001, 222, 552-563.	0.8	102
45	casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes and Development, 2001, 15, 1493-1505.	2.7	273
46	Restricted Expression of Cardiac Myosin Genes Reveals Regulated Aspects of Heart Tube Assembly in Zebrafish. Developmental Biology, 1999, 214, 23-37.	0.9	433
47	Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Genesis, 1998, 22, 288-299.	3.1	162