Agnieszka Loboda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8867513/publications.pdf

Version: 2024-02-01

52 papers 4,468 citations

28 h-index 52 g-index

54 all docs

54 docs citations

54 times ranked 7291 citing authors

#	Article	IF	Citations
1	miR-378 affects metabolic disturbances in the mdx model of Duchenne muscular dystrophy. Scientific Reports, 2022, 12, 3945.	3.3	7
2	Dysregulated Autophagy and Mitophagy in a Mouse Model of Duchenne Muscular Dystrophy Remain Unchanged Following Heme Oxygenase-1 Knockout. International Journal of Molecular Sciences, 2022, 23, 470.	4.1	7
3	Potential of enhancer of zeste homolog 2 inhibitors for the treatment of SWI/SNF mutant cancers and tumor microenvironment modulation. Drug Development Research, 2021, 82, 730-753.	2.9	5
4	Age-Dependent Dysregulation of Muscle Vasculature and Blood Flow Recovery after Hindlimb Ischemia in the mdx Model of Duchenne Muscular Dystrophy. Biomedicines, 2021, 9, 481.	3.2	12
5	Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Skeletal Muscle, 2021, 11, 21.	4.2	14
6	miR-378a influences vascularization in skeletal muscles. Cardiovascular Research, 2020, 116, 1386-1397.	3.8	22
7	Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacological Reports, 2020, 72, 1227-1263.	3.3	46
8	Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules, 2020, 10, 1614.	4.0	28
9	The role of Nrf2 in acute and chronic muscle injury. Skeletal Muscle, 2020, 10, 35.	4.2	18
10	Serine Biosynthesis Pathway Supports MYC–miR-494–EZH2 Feed-Forward Circuit Necessary to Maintain Metabolic and Epigenetic Reprogramming of Burkitt Lymphoma Cells. Cancers, 2020, 12, 580.	3.7	33
11	Synthetically Lethal Interactions of Heme Oxygenase-1 and Fumarate Hydratase Genes. Biomolecules, 2020, 10, 143.	4.0	12
12	HIF-1 stabilization exerts anticancer effects in breast cancer cells in vitro and in vivo. Biochemical Pharmacology, 2020, 175, 113922.	4.4	30
13	Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight, 2020, 5, .	5.0	22
14	miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skeletal Muscle, 2019, 9, 22.	4.2	16
15	Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment. Archives of Biochemistry and Biophysics, 2019, 671, 130-142.	3.0	25
16	Targeting angiogenesis in Duchenne muscular dystrophy. Cellular and Molecular Life Sciences, 2019, 76, 1507-1528.	5.4	36
17	Daily Regulation of Phototransduction, Circadian Clock, DNA Repair, and Immune Gene Expression by Heme Oxygenase in the Retina of Drosophila. Genes, 2019, 10, 6.	2.4	15
18	Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Antioxidants and Redox Signaling, 2018, 29, 128-148.	5.4	29

#	Article	IF	CITATIONS
19	Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury. American Journal of Pathology, 2018, 188, 491-506.	3.8	32
20	Pharmacological versus genetic inhibition of heme oxygenase-1 $\hat{a} \in$ the comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system. Acta Biochimica Polonica, 2018, 65, 277-286.	0.5	20
21	Heme oxygenase inhibition in cancers: possible tools and targets. Wspolczesna Onkologia, 2018, 2018, 23-32.	1.4	54
22	Effect of heme oxygenase-1 on ochratoxin A-induced nephrotoxicity in mice. International Journal of Biochemistry and Cell Biology, 2017, 84, 46-57.	2.8	27
23	MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis, 2017, 20, 325-340.	7.2	61
24	Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology, 2017, 389, 42-52.	4.2	36
25	Haeme oxygenase protects against UV light DNA damages in the retina in clock-dependent manner. Scientific Reports, 2017, 7, 5197.	3.3	8
26	Interactions Between the Circadian Clock and Heme Oxygenase in the Retina of Drosophila melanogaster. Molecular Neurobiology, 2017, 54, 4953-4962.	4.0	23
27	TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle 1 $ Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators of Inflammation, 2016, 2016, 1-12.	3.0	239
28	Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences, 2016, 73, 3221-3247.	5.4	1,687
29	Heme Oxygenase-1 Controls an HDAC4-miR-206 Pathway of Oxidative Stress in Rhabdomyosarcoma. Cancer Research, 2016, 76, 5707-5718.	0.9	46
30	Limb ischemia and vessel regeneration: Is there a role for VEGF?. Vascular Pharmacology, 2016, 86, 18-30.	2.1	41
31	Clock and clock-controlled genes are differently expressed in the retina, lamina and in selected cells of the visual system of Drosophila melanogaster. Frontiers in Cellular Neuroscience, 2015, 9, 353.	3.7	16
32	HO-1/CO system in tumor growth, angiogenesis and metabolism $\hat{a} \in$ Targeting HO-1 as an anti-tumor therapy. Vascular Pharmacology, 2015, 74, 11-22.	2.1	148
33	Letter by Loboda et al Regarding Article, "Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis― IL-8 Is Not Present in Murine Genome Hence it Cannot Be Responsible for the Bach1 Effect on Angiogenesis in Mice. Circulation Research, 2015, 117, e75-6.	4.5	3
34	Comment on "Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells― Toxicology, 2015, 328, 82-83.	4.2	1
35	Heme Oxygenase-1 Is Required for Angiogenic Function of Bone Marrow-Derived Progenitor Cells: Role in Therapeutic Revascularization. Antioxidants and Redox Signaling, 2014, 20, 1677-1692.	5.4	47
36	Nrf2 Regulates Angiogenesis: Effect on Endothelial Cells, Bone Marrow-Derived Proangiogenic Cells and Hind Limb Ischemia. Antioxidants and Redox Signaling, 2014, 20, 1693-1708.	5 . 4	89

#	Article	IF	CITATIONS
37	Crossâ€talk between micro <scp>RNA</scp> s, nuclear factor <scp>E</scp> 2â€related factor 2, and heme oxygenaseâ€1 in ochratoxin <scp>A</scp> â€induced toxic effects in renal proximal tubular epithelial cells. Molecular Nutrition and Food Research, 2013, 57, 504-515.	3.3	88
38	Interplay Between Heme Oxygenase-1 and miR-378 Affects Non-Small Cell Lung Carcinoma Growth, Vascularization, and Metastasis. Antioxidants and Redox Signaling, 2013, 19, 644-660.	5.4	131
39	HIF-1 versus HIF-2 â€" Is one more important than the other?. Vascular Pharmacology, 2012, 56, 245-251.	2.1	122
40	Heme Oxygenase-1 Inhibits Myoblast Differentiation by Targeting Myomirs. Antioxidants and Redox Signaling, 2012, 16, 113-127.	5 . 4	97
41	Targeting Nrf2-Mediated Gene Transcription by Triterpenoids and Their Derivatives. Biomolecules and Therapeutics, 2012, 20, 499-505.	2.4	28
42	Aristolochic acid I and ochratoxin A differentially regulate VEGF expression in porcine kidney epithelial cellsâ€"The involvement of SP-1 and HIFs transcription factors. Toxicology Letters, 2011, 204, 118-126.	0.8	15
43	Opposite effects of HIF- $1\hat{l}\pm$ and HIF- $2\hat{l}\pm$ on the regulation of IL-8 expression in endothelial cells. Free Radical Biology and Medicine, 2011, 51, 1882-1892.	2.9	71
44	MicroRNAs as biomarkers of disease onset. Analytical and Bioanalytical Chemistry, 2011, 401, 2051-2061.	3.7	86
45	HIF-1 and HIF-2 Transcription Factors - Similar but Not Identical. Molecules and Cells, 2010, 29, 435-442.	2.6	351
46	HIF-1 attenuates Ref-1 expression in endothelial cells: Reversal by siRNA and inhibition of geranylgeranylation. Vascular Pharmacology, 2009, 51, 133-139.	2.1	20
47	HIF-1 Induction Attenuates Nrf2-Dependent IL-8 Expression in Human Endothelial Cells. Antioxidants and Redox Signaling, 2009, 11, 1501-1517.	5.4	89
48	Janus face of Nrf2–HO-1 axis in cancer—Friend in chemoprevention, foe in anticancer therapy. Lung Cancer, 2008, 60, 1-3.	2.0	34
49	Heme Oxygenase-1 and the Vascular Bed: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants and Redox Signaling, 2008, 10, 1767-1812.	5.4	238
50	Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells. Atherosclerosis, 2006, 187, 26-30.	0.8	38
51	Angiogenic transcriptome of human microvascular endothelial cells: Effect of hypoxia, modulation by atorvastatin. Vascular Pharmacology, 2006, 44, 206-214.	2.1	43
52	Atorvastatin Affects Several Angiogenic Mediators in Human Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2005, 12, 233-241.	1.7	62