
Christian D P Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8867281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 2016, 353, 503-505.	12.6	285
2	Privileged Scaffolds or Promiscuous Binders: A Comparative Study on Rhodanines and Related Heterocycles in Medicinal Chemistry. Journal of Medicinal Chemistry, 2012, 55, 743-753.	6.4	254
3	Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nature Reviews Drug Discovery, 2017, 16, 565-586.	46.4	227
4	Surprisingly Stable Helical Conformations inα/β-Peptides by Incorporation ofcis-β-Aminocyclopropane Carboxylic Acids. Angewandte Chemie - International Edition, 2004, 43, 511-514.	13.8	202
5	Promiscuity and Selectivity in Covalent Enzyme Inhibition: AÂSystematic Study of Electrophilic Fragments. Journal of Medicinal Chemistry, 2014, 57, 7590-7599.	6.4	134
6	Biochemistry and Medicinal Chemistry of the Dengue Virus Protease. Chemical Reviews, 2014, 114, 11348-11381.	47.7	120
7	Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorganic and Medicinal Chemistry, 2011, 19, 4067-4074.	3.0	117
8	The Medicinal Chemistry of Dengue Virus. Journal of Medicinal Chemistry, 2016, 59, 5622-5649.	6.4	114
9	Thiazolidinone–Peptide Hybrids as Dengue Virus Protease Inhibitors with Antiviral Activity in Cell Culture. Journal of Medicinal Chemistry, 2013, 56, 8389-8403.	6.4	110
10	Peptide–Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal Chemistry and Structural Biology. Journal of Medicinal Chemistry, 2017, 60, 511-516.	6.4	105
11	Metal-Mediated Inhibition ofEscherichiacoliMethionine Aminopeptidase:Â Structureâ^'Activity Relationships and Development of a Novel Scoring Function for Metalâ^'Ligand Interactions. Journal of Medicinal Chemistry, 2006, 49, 511-522.	6.4	100
12	Synthesis ofÂ3-substituted-2-oxoindole analogues andÂtheirÂevaluation asÂkinase inhibitors, anticancer andÂantiangiogenic agents. European Journal of Medicinal Chemistry, 2006, 41, 296-305.	5.5	98
13	Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases. Bioorganic and Medicinal Chemistry, 2011, 19, 7318-7337.	3.0	90
14	Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue. Journal of Medicinal Chemistry, 2015, 58, 9354-9370.	6.4	86
15	Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5605-5609.	2.2	80
16	Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Research, 2012, 94, 72-79.	4.1	78
17	Synthesis and Evaluation of (Pyridylmethylene)tetrahydronaphthalenes/-indanes and Structurally Modified Derivatives:Â Potent and Selective Inhibitors of Aldosterone Synthase. Journal of Medicinal Chemistry, 2005, 48, 1563-1575.	6.4	72
18	Prediction of Proteinâ^'Protein Interaction Inhibitors by Chemoinformatics and Machine Learning Methods. Journal of Medicinal Chemistry, 2007, 50, 4665-4668.	6.4	69

CHRISTIAN D P KLEIN

#	Article	IF	CITATIONS
19	Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7719-7733.	6.4	69
20	<i>De Novo</i> Discovery of Nonstandard Macrocyclic Peptides as Noncompetitive Inhibitors of the Zika Virus NS2B-NS3 Protease. ACS Medicinal Chemistry Letters, 2019, 10, 168-174.	2.8	62
21	Inhibition of CYP 17, a New Strategy for the Treatment of Prostate Cancer. Archiv Der Pharmazie, 2002, 335, 119-128.	4.1	57
22	Synthesis and Evaluation of Imidazolylmethylenetetrahydronaphthalenes and Imidazolylmethyleneindanes:Â Potent Inhibitors of Aldosterone Synthase. Journal of Medicinal Chemistry, 2005, 48, 1796-1805.	6.4	56
23	Metal Ions as Cofactors for the Binding of Inhibitors to Methionine Aminopeptidase: A Critical View of the Relevance of In Vitro Metalloenzyme Assays. Angewandte Chemie - International Edition, 2005, 44, 3620-3623.	13.8	55
24	Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. Journal of the American Chemical Society, 2016, 138, 4539-4546.	13.7	53
25	C-Terminal Residue Optimization and Fragment Merging: Discovery of a Potent Peptide-Hybrid Inhibitor of Dengue Protease. ACS Medicinal Chemistry Letters, 2014, 5, 1037-1042.	2.8	51
26	Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease. Antiviral Research, 2017, 142, 141-147.	4.1	45
27	Optimization of Assay Conditions for Dengue Virus Protease: Effect of Various Polyols and Nonionic Detergents. Journal of Biomolecular Screening, 2009, 14, 1102-1108.	2.6	44
28	Virtues of Volatility: A Facile Transesterification Approach to Boronic Acids. Organic Letters, 2019, 21, 3048-3052.	4.6	44
29	Aqueous microwave-assisted one-pot synthesis of N-substituted rhodanines. Tetrahedron Letters, 2012, 53, 5197-5201.	1.4	42
30	Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. European Journal of Medicinal Chemistry, 2020, 186, 111850.	5.5	42
31	Dual inhibitors of the dengue and West Nile virus NS2B–NS3 proteases: Synthesis, biological evaluation and docking studies of novel peptide-hybrids. Bioorganic and Medicinal Chemistry, 2015, 23, 5748-5755.	3.0	37
32	Phenylglycine racemization in Fmoc-based solid-phase peptide synthesis: Stereochemical stability is achieved by choice of reaction conditions. Tetrahedron Letters, 2017, 58, 2325-2329.	1.4	37
33	Identification of fused bicyclic derivatives of pyrrolidine and imidazolidinone as dengue virus-2 NS2B-NS3 protease inhibitors. European Journal of Medicinal Chemistry, 2017, 125, 751-759.	5.5	36
34	Synthesis, Biological Evaluation, and Molecular Docking of Combretastatin and Colchicine Derivatives and their hCE1â€Activated Prodrugs as Antiviral Agents. ChemMedChem, 2019, 14, 469-483.	3.2	36
35	Structure–activity relationships of tulipalines, tuliposides, and related compounds as inhibitors of MurA. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5757-5762.	2.2	35
36	The Unusual Binding Mode of Cnicin to the Antibacterial Target Enzyme MurA Revealed by X-ray Crystallography. Journal of Medicinal Chemistry, 2008, 51, 5143-5147.	6.4	34

CHRISTIAN D P KLEIN

#	Article	IF	CITATIONS
37	Discovery of novel Tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality. European Journal of Medicinal Chemistry, 2016, 122, 619-634.	5.5	28
38	Pharmacological activity and membrane interactions of antiarrhythmics: 4D-QSAR/QSPR analysis. , 1998, 15, 303-311.		27
39	Spiroepoxytriazoles Are Fumagillin-like Irreversible Inhibitors of MetAP2 with Potent Cellular Activity. ACS Chemical Biology, 2016, 11, 1001-1011.	3.4	27
40	Synthesis and Biological Properties of Novel Brefeldin A Analogues. Journal of Medicinal Chemistry, 2013, 56, 5872-5884.	6.4	26
41	Chemical, biochemical and microbiological properties of a brominated nitrovinylfuran with broad-spectrum antibacterial activity. Bioorganic and Medicinal Chemistry, 2013, 21, 795-804.	3.0	25
42	Subtype-selectivity of metal-dependent methionine aminopeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4038-4044.	2.2	23
43	Syntheses and Biological Properties of Brefeldin Analogues. European Journal of Organic Chemistry, 2011, 2011, 878-891.	2.4	22
44	Peptide-β-lactam Inhibitors of Dengue and West Nile Virus NS2B-NS3 Protease Display Two Distinct Binding Modes. Journal of Medicinal Chemistry, 2020, 63, 140-156.	6.4	22
45	Identification of Terfenadine as an Inhibitor of Human CD81-Receptor HCV-E2 Interaction: Synthesis and Structure Optimization. Molecules, 2008, 13, 1081-1110.	3.8	21
46	A New Class of Dengue and West Nile Virus Protease Inhibitors with Submicromolar Activity in Reporter Gene DENV-2 Protease and Viral Replication Assays. Journal of Medicinal Chemistry, 2020, 63, 8179-8197.	6.4	21
47	S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors. Biochimie, 2012, 94, 704-710.	2.6	19
48	Conformational selection in the flaviviral NS2B-NS3 protease. Biochimie, 2020, 174, 117-125.	2.6	19
49	Fluorimetric and HPLC-Based Dengue Virus Protease Assays Using a FRET Substrate. Methods in Molecular Biology, 2013, 1030, 221-236.	0.9	19
50	Beta-aminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5310-5314.	2.2	18
51	Machine Learning in Mass Spectrometry: A MALDI-TOF MS Approach to Phenotypic Antibacterial Screening. Journal of Medicinal Chemistry, 2020, 63, 8849-8856.	6.4	18
52	Lipophilicity and membrane interactions of cationic-amphiphilic compounds: syntheses and structure–property relationships. European Journal of Pharmaceutical Sciences, 2001, 14, 167-175.	4.0	16
53	Beyond Basicity: Discovery of Nonbasic DENV-2 Protease Inhibitors with Potent Activity in Cell Culture. Journal of Medicinal Chemistry, 2021, 64, 4567-4587.	6.4	16
54	Synthesis, Pharmacological and Biophysical Characterization, and Membrane-Interaction QSAR Analysis of Cationic Amphiphilic Model Compounds⊥. Journal of Medicinal Chemistry, 1999, 42, 3874-3888.	6.4	15

CHRISTIAN D P KLEIN

#	Article	IF	CITATIONS
55	Understanding the Selectivity of Fumagillin for the Methionine Aminopeptidase Type II. Oncology Research, 2003, 13, 513-520.	1.5	15
56	Molecular modeling and bioinformatical analysis of the antibacterial target enzyme MurA from a drug design perspective. Journal of Computer-Aided Molecular Design, 2006, 20, 621-628.	2.9	15
57	Metal promiscuity and metal-dependent substrate preferences ofÂTrypanosoma brucei methionine aminopeptidase 1. Biochimie, 2015, 115, 35-43.	2.6	15
58	Efficiency Improvements and Discovery of New Substrates for a SARS-CoV-2 Main Protease FRET Assay. SLAS Discovery, 2021, 26, 1189-1199.	2.7	14
59	Protonation States of Methionine Aminopeptidase and Their Relevance for Inhibitor Binding and Catalytic Activity. Journal of Biological Chemistry, 2003, 278, 47862-47867.	3.4	13
60	Structural Modifications of Salicylates: Inhibitors of Human CD81â€Receptor HCVâ€E2 Interaction. Archiv Der Pharmazie, 2008, 341, 478-484.	4.1	13
61	Solid Phase Synthesis of C-Terminal Boronic Acid Peptides. Organic Letters, 2016, 18, 2016-2019.	4.6	13
62	Nasally delivered VEGFD mimetics mitigate stroke-induced dendrite loss and brain damage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8616-8623.	7.1	13
63	Diversity-oriented synthesis of peptide-boronic acids by a versatile building-block approach. Chemical Science, 2020, 11, 9898-9903.	7.4	11
64	Inhibitor potency and assay conditions: A case study on SARS-CoV-2 main protease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
65	Discovery of potent benzoxaborole inhibitors against SARS-CoV-2 main and dengue virus proteases. European Journal of Medicinal Chemistry, 2022, 240, 114585.	5.5	9
66	Synthesis and Evaluation of Steroidal Hydroxamic Acids as Inhibitors of P450 17 (17α-Hydroxylase/C17-20-Lyase). Archiv Der Pharmazie, 2001, 334, 138-140.	4.1	8
67	Protein-dynamics of the putative HCV receptor CD81 large extracellular loop. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1765-1769.	2.2	7
68	Development and Evaluation of a FACS-Based Medium-Throughput Assay for HCV Entry Inhibitors. Journal of Biomolecular Screening, 2009, 14, 620-626.	2.6	7
69	N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b. Applied Microbiology and Biotechnology, 2016, 100, 7091-7102.	3.6	7
70	Backbone modifications in peptidic inhibitors of flaviviral proteases. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1913-1917.	2.2	6
71	Naphthalene and 2,3-dihydrobenzo[b][1,4]dioxine derivatives with extended side chains as new scaffolds of CB2-selective ligands. MedChemComm, 2014, 5, 1571-1576.	3.4	5
72	Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids To Selectively Target Infected Cells. ACS Medicinal Chemistry Letters, 2019, 10, 1115-1121.	2.8	5

#	Article	IF	CITATIONS
73	Synthesis and structure-activity relationships of small-molecular di-basic esters, amides and carbamates as flaviviral protease inhibitors. European Journal of Medicinal Chemistry, 2019, 176, 187-194.	5.5	5
74	On track to tackle dengue: History and future of NS4B ligands. Cell Host and Microbe, 2021, 29, 1735-1737.	11.0	5
75	Computational Methods Facilitate the Assignment of Protein Functions. Angewandte Chemie - International Edition, 2001, 40, 4175-4177.	13.8	4
76	A facile approach towards amidinophenylalanine derivatives as building blocks for the synthesis of non-natural peptides and peptidomimetics. Tetrahedron Letters, 2021, 81, 153342.	1.4	2
77	The spectrum between substrates and inhibitors: Pinpointing the binding mode of dengue protease ligands with modulated basicity and hydrophobicity. Bioorganic and Medicinal Chemistry, 2021, 48, 116412.	3.0	2
78	Corona versus Dengue: Distinct Mechanisms for Inhibition of Polyprotein Processing by Antiviral Drugs. ACS Pharmacology and Translational Science, 0, , .	4.9	2