
Michael K Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8866517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixedâ€severity wildfire and salvage logging affect the populations of a forestâ€dependent carnivoran and a competitor. Ecosphere, 2022, 13, .	2.2	4
2	Wolf Dispersal Patterns in the Italian Alps and Implications for Wildlife Diseases Spreading. Animals, 2022, 12, 1260.	2.3	9
3	<scp>eDNAssay</scp> : A machine learning tool that accurately predicts <scp>qPCR</scp> crossâ€amplification. Molecular Ecology Resources, 2022, 22, 2994-3005.	4.8	7
4	Certain detection of uncertain taxa: eDNA detection of a cryptic mountain sucker (Pantosteus jordani) Tj ETQ	0q0 0 0 rgB1	Overlock 10
5	Allometric scaling of eDNA production in streamâ€dwelling brook trout (<i>Salvelinus fontinalis</i>) inferred from population size structure. Environmental DNA, 2021, 3, 553-560.	5.8	15
6	Tools and Technologies for Quantifying Spread and Impacts of Invasive Species. , 2021, , 243-265.		1
7	Molecular genetic analysis of air, water, and soil to detect big brown bats in North America. Biological Conservation, 2021, 261, 109252.	4.1	16
8	Making environmental DNA (eDNA) biodiversity records globally accessible. Environmental DNA, 2021, 3, 699-705.	5.8	38
9	Phylogeography of moose in western North America. Journal of Mammalogy, 2020, 101, 10-23.	1.3	11
10	Occupancy Patterns in a Reintroduced Fisher Population during Reestablishment. Journal of Wildlife Management, 2020, 84, 344-358.	1.8	9
11	Parallel, targeted analysis of environmental samples via highâ€ŧhroughput quantitative PCR. Environmental DNA, 2020, 2, 544-553.	5.8	23
12	Identifying Candidate Genetic Markers of CDV Cross-Species Pathogenicity in African Lions. Pathogens, 2020, 9, 872.	2.8	9
13	Immigration does not offset harvest mortality in groups of a cooperatively breeding carnivore. Animal Conservation, 2020, 23, 750-761.	2.9	13
14	Wolverine Occupancy, Spatial Distribution, and Monitoring Design. Journal of Wildlife Management, 2020, 84, 841-851.	1.8	17
15	Pliocene–Early Pleistocene Geological Events Structure Pacific Martens (Martes caurina). Journal of Heredity, 2020, 111, 169-181.	2.4	5
16	Population Genomics for the Management of Wild Vertebrate Populations. Population Genomics, 2020, , 419-436.	0.5	7
17	Environmental DNA Sampling Informs Fish Eradication Efforts: Case Studies and Lessons Learned. North American Journal of Fisheries Management, 2020, 40, 488-508.	1.0	18
18	Landscape genetics of wolverines (Gulo gulo): scale-dependent effects of bioclimatic, topographic, and anthropogenic variables. Journal of Mammalogy, 2020, 101, 790-803.	1.3	14

#	Article	IF	CITATIONS
19	Crossâ€species transmission and evolutionary dynamics of canine distemper virus during a spillover in African lions of Serengeti National Park. Molecular Ecology, 2020, 29, 4308-4321.	3.9	18
20	An Inventory of Springsnails (Pyrgulopsis spp.) in and Adjacent to the Spring Mountains, Nevada. Western North American Naturalist, 2020, 80, 183.	0.4	2
21	Exploiting the Winter Trophic Relationship between Weasels (Mustela spp.) and their Microtine Prey as a Survey Method for Weasels in Meadow Ecosystems. Northwest Science, 2020, 93, 185.	0.2	3
22	Detection of 4 imperiled western North American freshwater mussel species from environmental DNA with multiplex qPCR assays. Freshwater Science, 2020, 39, 762-772.	1.8	7
23	Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biological Conservation, 2019, 236, 616-625.	4.1	23
24	Using environmental DNA sampling to monitor the invasion of nonnative <i>Esox lucius</i> (i) (northern pike) in the Columbia River basin, USA. Environmental DNA, 2019, 1, 215-226.	5.8	21
25	Identifying predators from saliva at kill sites with limited remains. Wildlife Society Bulletin, 2019, 43, 546-557.	1.6	5
26	Integrative taxonomy refutes a species hypothesis: The asymmetric hybrid origin of Arsapnia arapahoe (Plecoptera, Capniidae). Ecology and Evolution, 2019, 9, 1364-1377.	1.9	6
27	Estimating abundance of a cryptic social carnivore using spatially explicit capture–recapture. Wildlife Society Bulletin, 2019, 43, 31-41.	1.6	17
28	Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques. Biological Conservation, 2019, 229, 50-58.	4.1	78
29	Repurposing Environmental DNA Samples to Verify the Distribution of Rocky Mountain Tailed Frogs in the Warm Springs Creek Basin, Montana. Northwest Science, 2019, 93, 85.	0.2	3
30	Status of Pacific Martens (Martes caurina) on the Olympic Peninsula, Washington. Northwest Science, 2019, 93, 122.	0.2	1
31	Evolutionary Community Ecology: Time to Think Outside the (Taxonomic) Box. Trends in Ecology and Evolution, 2018, 33, 240-250.	8.7	25
32	Repurposing environmental DNA samples—detecting the western pearlshell (Margaritifera falcata) as a proof of concept. Ecology and Evolution, 2018, 8, 2659-2670.	1.9	30
33	Dynamic occupancy modelling reveals a hierarchy of competition among fishers, grey foxes and ringtails. Journal of Animal Ecology, 2018, 87, 813-824.	2.8	24
34	Crowd ourced Databases as Essential Elements for Forest Service Partnerships and Aquatic Resource Conservation. Fisheries, 2018, 43, 423-430.	0.8	14
35	Quantifying functional connectivity: The role of breeding habitat, abundance, and landscape features on rangeâ€wide gene flow in sageâ€grouse. Evolutionary Applications, 2018, 11, 1305-1321.	3.1	24
36	Fineâ€scale environmental <scp>DNA</scp> sampling reveals climateâ€nediated interactions between native and invasive trout species. Ecosphere, 2018, 9, e02500.	2.2	29

#	Article	IF	CITATIONS
37	qPCR detection of Sturgeon chub (Macrhybopsis gelida) DNA in environmental samples. PLoS ONE, 2018, 13, e0209601.	2.5	5
38	An improved environmental DNA assay for bull trout (Salvelinus confluentus) based on the ribosomal internal transcribed spacer I. PLoS ONE, 2018, 13, e0206851.	2.5	28
39	Inferring presence of the western toad (Anaxyrus boreas) species complex using environmental DNA. Global Ecology and Conservation, 2018, 15, e00438.	2.1	10
40	Capture enrichment of aquatic environmental DNA: A first proof of concept. Molecular Ecology Resources, 2018, 18, 1392-1401.	4.8	42
41	A Non-Invasive Sampling Method for Detecting Non-Native Smallmouth Bass (<i>Micropterus) Tj ETQq1 1 0.784</i>	314 rgBT 0.2	/Overlock 10
42	The genetic network of greater sageâ€grouse: Rangeâ€wide identification of keystone hubs of connectivity. Ecology and Evolution, 2018, 8, 5394-5412.	1.9	18
43	Comment: The Importance of Sound Methodology in Environmental DNA Sampling. North American Journal of Fisheries Management, 2018, 38, 592-596.	1.0	38
44	Molecular Detection of Northern Leatherside Chub (Lepidomeda copei) DNA in Environmental Samples. Western North American Naturalist, 2018, 78, 92.	0.4	1
45	Red Fox Ancestry and Connectivity Assessments Reveal Minimal Fur Farm Introgression in Greater Yellowstone Ecosystem. Journal of Fish and Wildlife Management, 2018, 9, 519-530.	0.9	4
46	Genetic recapture identifies long-distance breeding dispersal in Greater Sage-Grouse (<i>Centrocercus urophasianus</i>). Condor, 2017, 119, 155-166.	1.6	15
47	Ski areas affect Pacific marten movement, habitat use, and density. Journal of Wildlife Management, 2017, 81, 892-904.	1.8	12
48	Ecological segregation moderates a climactic conclusion to trout hybridization. Global Change Biology, 2017, 23, 5021-5023.	9.5	7
49	Sexâ€biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher. Ecosphere, 2017, 8, e01839.	2.2	17
50	Marine mammal subspecies in the age of genetics: Introductory remarks from the Associate Editor and Editorâ€inâ€Chief of <i>Marine Mammal Science</i> . Marine Mammal Science, 2017, 33, 7-11.	1.8	4
51	Tradeâ€offs and efficiencies in optimal budget onstrained multispecies corridor networks. Conservation Biology, 2017, 31, 192-202.	4.7	53
52	A Noninvasive Tool to Assess the Distribution of Pacific Lamprey (Entosphenus tridentatus) in the Columbia River Basin. PLoS ONE, 2017, 12, e0169334.	2.5	11
53	Environmental DNA assays for the sister taxa sauger (Sander canadensis) and walleye (Sander vitreus). PLoS ONE, 2017, 12, e0176459.	2.5	2
54	Where the Wild Things Are: A Research Agenda for Studying the Wildlife-Wilderness Relationship. Journal of Forestry, 2016, 114, 311-319.	1.0	2

#	Article	IF	CITATIONS
55	Environmental DNA Marker Development with Sparse Biological Information: A Case Study on Opossum Shrimp (Mysis diluviana). PLoS ONE, 2016, 11, e0161664.	2.5	17
56	<scp>SNP</scp> discovery in candidate adaptive genes using exon capture in a freeâ€ranging alpine ungulate. Molecular Ecology Resources, 2016, 16, 1147-1164.	4.8	21
57	Sampling large geographic areas for rare species using environmental <scp>DNA</scp> : a study of bull trout <i>Salvelinus confluentus</i> occupancy in western Montana. Journal of Fish Biology, 2016, 88, 1215-1222.	1.6	84
58	Latent spatial models and sampling design for landscape genetics. Annals of Applied Statistics, 2016, 10,	1.1	11
59	An environmental DNA marker for detecting nonnative brown trout (Salmo trutta). Conservation Genetics Resources, 2016, 8, 259-261.	0.8	7
60	Long-distance dispersal of a subadult male cougar from South Dakota to Connecticut documented with DNA evidence. Journal of Mammalogy, 2016, 97, 1435-1440.	1.3	30
61	Recipient of the 2015 <i>Molecular Ecology</i> Prize: Fred Allendorf. Molecular Ecology, 2016, 25, 450-453.	3.9	0
62	Hierarchical population structure in greater sage-grouse provides insight into management boundary delineation. Conservation Genetics, 2016, 17, 1417-1433.	1.5	13
63	Identification of landscape features influencing gene flow: How useful are habitat selection models?. Evolutionary Applications, 2016, 9, 805-817.	3.1	36
64	Discovery of 20,000 RAD–SNPs and development of a 52-SNP array for monitoring river otters. Conservation Genetics Resources, 2016, 8, 299-302.	0.8	9
65	An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America. Conservation Genetics Resources, 2016, 8, 197-199.	0.8	30
66	Conservation genomics of natural and managed populations: building a conceptual and practical framework. Molecular Ecology, 2016, 25, 2967-2977.	3.9	141
67	Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams. Ecology and Evolution, 2016, 6, 688-706.	1.9	40
68	Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biological Conservation, 2016, 194, 209-216.	4.1	307
69	Assessing temporal genetic variation in a cougar population: influence of harvest and neighboring populations. Conservation Genetics, 2016, 17, 379-388.	1.5	5
70	An eDNA assay for river otter detection: a tool for surveying a semi-aquatic mammal. Conservation Genetics Resources, 2016, 8, 5-7.	0.8	19
71	Reply to Garner et al Trends in Ecology and Evolution, 2016, 31, 83-84.	8.7	24

Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda) Tj ETQq0 0 0 rgBT $_{2.5}^{+}$ Overlock 10 Tf 50

#	Article	IF	CITATIONS
73	Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams. PLoS ONE, 2016, 11, e0163563.	2.5	27
74	Estimating Bighorn Sheep (<i>Ovis canadensis</i>) Abundance Using Noninvasive Sampling at a Mineral Lick within a National Park Wilderness Area. Western North American Naturalist, 2015, 75, 181-191.	0.4	10
75	The Dual Challenges of Generality and Specificity When Developing Environmental DNA Markers for Species and Subspecies of Oncorhynchus. PLoS ONE, 2015, 10, e0142008.	2.5	72
76	<scp>rSPACE</scp> : Spatially based power analysis for conservation and ecology. Methods in Ecology and Evolution, 2015, 6, 621-625.	5.2	19
77	Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis). Conservation Genetics Resources, 2015, 7, 639-641.	0.8	79
78	Forest structure and species traits mediate projected recruitment declines in western <scp>US</scp> tree species. Global Ecology and Biogeography, 2015, 24, 917-927.	5.8	129
79	Temporal correlations in population trends: Conservation implications from time-series analysis of diverse animal taxa. Biological Conservation, 2015, 192, 247-257.	4.1	52
80	Integrating resource selection into spatial captureâ€recapture models for large carnivores. Ecosphere, 2015, 6, 1-15.	2.2	49
81	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
82	Distance, flow and <scp>PCR</scp> inhibition: e <scp>DNA</scp> dynamics in two headwater streams. Molecular Ecology Resources, 2015, 15, 216-227.	4.8	391
83	Cottus schitsuumsh, a new species of sculpin (Scorpaeniformes: Cottidae)Âin the Columbia River basin, Idaho-Montana, USA. Zootaxa, 2014, 3755, 241-58.	0.5	9
84	Spatially Explicit Power Analyses for Occupancyâ€Based Monitoring of Wolverine in the U.S. Rocky Mountains. Conservation Biology, 2014, 28, 52-62.	4.7	47
85	Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada. Conservation Genetics, 2014, 15, 123-136.	1.5	33
86	A blocking primer increases specificity in environmental DNA detection of bull trout (Salvelinus) Tj ETQq0 0 0 rg	3BT /Overlc	ock 10 Tf 50 22
87	Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates. Conservation Genetics, 2014, 15, 837-851.	1.5	16
88	Recovery of wolverines in the Western United States: Recent extirpation and recolonization or range retraction and expansion?. Journal of Wildlife Management, 2014, 78, 325-334.	1.8	15
89	Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 2014, 169, 89-98.	4.1	19
90	Evaluating sample allocation and effort in detecting population differentiation for discrete and	1.5	32

iscrete and continuously distributed individuals. Conservation Genetics, 2014, 15, 981-992. 90 1.5

#	Article	IF	CITATIONS
91	Pronounced differences in genetic structure despite overall ecological similarity for two Ambystoma salamanders in the same landscape. Conservation Genetics, 2014, 15, 573-591.	1.5	30
92	Sex-Biased Gene Flow Among Elk in the Greater Yellowstone Ecosystem. Journal of Fish and Wildlife Management, 2014, 5, 124-132.	0.9	3
93	Meta-analyses of habitat selection by fishers at resting sites in the pacific coastal region. Journal of Wildlife Management, 2013, 77, 965-974.	1.8	45
94	Estimating Abundance and Survival in the Endangered Point Arena Mountain Beaver Using Noninvasive Genetic Methods. Northwest Science, 2013, 87, 126-139.	0.2	2
95	Stand- and landscape-scale selection of large trees by fishers in the Rocky Mountains of Montana and Idaho. Forest Ecology and Management, 2013, 305, 103-111.	3.2	20
96	The climate velocity of the contiguous <scp>U</scp> nited <scp>S</scp> tates during the 20th century. Global Change Biology, 2013, 19, 241-251.	9.5	267
97	Spatial regression methods capture prediction uncertainty in species distribution model projections through time. Global Ecology and Biogeography, 2013, 22, 242-251.	5.8	29
98	Effects of Weighting Schemes on the Identification of Wildlife Corridors Generated with Least ost Methods. Conservation Biology, 2013, 27, 145-154.	4.7	45
99	<scp>DNA</scp> barcoding at riverscape scales: assessing biodiversity among fishes of the genus <i><scp>C</scp>ottus</i> (<scp>T</scp> eleostei) in northern <scp>R</scp> ocky <scp>M</scp> ountain streams. Molecular Ecology Resources, 2013, 13, 583-595.	4.8	35
100	Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity, 2013, 111, 189-199.	2.6	112
101	Small geographic range but not panmictic: how forests structure the endangered Point Arena mountain beaver (Aplodontia rufa nigra). Conservation Genetics, 2013, 14, 369-383.	1.5	9
102	Genetic Sampling of Palmer's Chipmunks in the Spring Mountains, Nevada. Western North American Naturalist, 2013, 73, 198-210.	0.4	1
103	Combined use of mark-recapture and genetic analyses reveals response of a black bear population to changes in food productivity. Journal of Wildlife Management, 2013, 77, 1572-1582.	1.8	12
104	Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity. PLoS ONE, 2013, 8, e59520.	2.5	405
105	Breed Locally, Disperse Globally: Fine-Scale Genetic Structure Despite Landscape-Scale Panmixia in a Fire-Specialist. PLoS ONE, 2013, 8, e67248.	2.5	20
106	Development of a reliable method for determining sex for a primitive rodent, the Point Arena mountain beaver (Aplodontia rufa nigra). Conservation Genetics Resources, 2012, 4, 975-977.	0.8	2
107	Detecting population recovery using gametic disequilibrium-based effective population size estimates. Conservation Genetics Resources, 2012, 4, 987-989.	0.8	8
108	Conserving genomic variability in large mammals: Effect of population fluctuations and variance in male reproductive success on variability in Yellowstone bison. Biological Conservation, 2012, 150, 159-166.	4.1	4

#	Article	lF	CITATIONS
109	Red flags: correlates of impaired species recovery. Trends in Ecology and Evolution, 2012, 27, 542-546.	8.7	34
110	Historical and Contemporary DNA Indicate Fisher Decline and Isolation Occurred Prior to the European Settlement of California. PLoS ONE, 2012, 7, e52803.	2.5	29
111	Estimating abundance of mountain lions from unstructured spatial sampling. Journal of Wildlife Management, 2012, 76, 1551-1561.	1.8	96
112	Development and evaluation of 200 novel SNP assays for population genetic studies of westslope cutthroat trout and genetic identification of related taxa. Molecular Ecology Resources, 2012, 12, 942-949.	4.8	20
113	Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. , 2011, 21, 2882-2897.		92
114	Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Molecular Ecology, 2011, 20, 1092-1107.	3.9	165
115	Understanding and Estimating Effective Population Size for Practical Application in Marine Species Management. Conservation Biology, 2011, 25, 438-449.	4.7	270
116	Integrating motionâ€detection cameras and hair snags for wolverine identification. Journal of Wildlife Management, 2011, 75, 731-739.	1.8	41
117	Bridging the gaps between non-invasive genetic sampling and population parameter estimation. European Journal of Wildlife Research, 2011, 57, 1-13.	1.4	52
118	Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecology, 2011, 11, 10.	3.0	66
119	Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conservation Genetics Resources, 2010, 2, 115-118.	0.8	30
120	Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conservation Genetics, 2010, 11, 1547-1552.	1.5	88
121	Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics, 2010, 11, 355-373.	1.5	444
122	Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 2010, 25, 1601-1612.	4.2	138
123	Do male and female blackâ€backed woodpeckers respond differently to gaps in habitat?. Evolutionary Applications, 2010, 3, 263-278.	3.1	28
124	Neglect of Genetic Diversity in Implementation of the Convention on Biological Diversity. Conservation Biology, 2010, 24, 86-88.	4.7	182
125	Scaleâ€dependent genetic structure of the Idaho giant salamander (<i>Dicamptodon aterrimus</i>) in stream networks. Molecular Ecology, 2010, 19, 898-909.	3.9	44
126	Quantifying the lag time to detect barriers in landscape genetics. Molecular Ecology, 2010, 19, 4179-4191.	3.9	426

#	Article	IF	CITATIONS
127	When are genetic methods useful for estimating contemporary abundance and detecting population trends?. Molecular Ecology Resources, 2010, 10, 684-692.	4.8	82
128	Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends in Ecology and Evolution, 2010, 25, 520-529.	8.7	454
129	The bioclimatic envelope of the wolverine (<i>GuloÂgulo</i>): do climatic constraints limit its geographic distribution?. Canadian Journal of Zoology, 2010, 88, 233-246.	1.0	99
130	Landscape Genomics: A Brief Perspective. , 2010, , 165-174.		24
131	Landscape Genetics. , 2010, , 313-328.		1
132	Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conservation Genetics, 2009, 10, 441-452.	1.5	334
133	Wolf survival and population trend using nonâ€invasive capture–recapture techniques in the Western Alps. Journal of Applied Ecology, 2009, 46, 1003-1010.	4.0	93
134	Molecules and beyond: assessing the distinctness of the Great Lakes wolf. Molecular Ecology, 2009, 18, 2307-2309.	3.9	15
135	Use of Empirically Derived Sourceâ€Destination Models to Map Regional Conservation Corridors. Conservation Biology, 2009, 23, 368-376.	4.7	198
136	Uniting ecological and genetic data for the conservation of wild ibex. Animal Conservation, 2009, 12, 103-104.	2.9	3
137	Wolverine Confirmation in California after Nearly a Century: Native or Long-Distance Immigrant?. Northwest Science, 2009, 83, 154-162.	0.2	32
138	Wolverine gene flow across a narrow climatic niche. Ecology, 2009, 90, 3222-3232.	3.2	166
139	Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources, 2009, 9, 1279-1301.	4.8	296
140	Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biology Letters, 2008, 4, 228-231.	2.3	76
141	Using Anecdotal Occurrence Data for Rare or Elusive Species: The Illusion of Reality and a Call for Evidentiary Standards. BioScience, 2008, 58, 549-555.	4.9	148
142	Canada Lynx-bobcat (lynx canadensis × L. rufus) Hybrids at the Southern Periphery of Lynx range in Maine, Minnesota and New Brunswick. American Midland Naturalist, 2008, 159, 504-508.	0.4	20
143	Does a Population of Cougars Exist in Michigan?. American Midland Naturalist, 2007, 158, 467-471.	0.4	5
144	Genetic monitoring as a promising tool for conservation and management. Trends in Ecology and Evolution, 2007, 22, 25-33.	8.7	934

#	Article	IF	CITATIONS
145	DNA Markers for Identifying Individual Snowshoe Hares Using Field-collected Pellets. Northwest Science, 2007, 81, 316-322.	0.2	7
146	Ancient Dna Confirms Native Rocky Mountain Fisher (<i>Martes pennanti</i>) Avoided Early 20th Century Extinction. Journal of Mammalogy, 2007, 88, 921-925.	1.3	13
147	Sources and Patterns of Wolverine Mortality in Western Montana. Journal of Wildlife Management, 2007, 71, 2213.	1.8	28
148	Development of 22 new microsatellite loci for fishers (Martes pennanti) with variability results from across their range. Molecular Ecology Notes, 2007, 7, 797-801.	1.7	24
149	Inferring Geographic Isolation of Wolverines in California Using Historical DNA. Journal of Wildlife Management, 2007, 71, 2170-2179.	1.8	36
150	Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. American Naturalist, 2006, 168, 486-499.	2.1	571
151	Genetic consequences of sex-biased dispersal in a solitary carnivore: Yellowstone cougars. Biology Letters, 2006, 2, 312-315.	2.3	39
152	The Efficacy of Wire and Glue Hair Snares in Identifying Mesocarnivores. Wildlife Society Bulletin, 2006, 34, 1152-1161.	1.6	32
153	WHEN REINTRODUCTIONS ARE AUGMENTATIONS: THE GENETIC LEGACY OF FISHERS (MARTES PENNANTI) IN MONTANA. Journal of Mammalogy, 2006, 87, 265-271.	1.3	20
154	DNA Analysis of Hair and Scat Collected Along Snow Tracks to Document the Presence of Canada Lynx. Wildlife Society Bulletin, 2006, 34, 451-455.	1.6	52
155	The Efficacy of Obtaining Genetic-Based Identifications from Putative Wolverine Snow Tracks. Wildlife Society Bulletin, 2006, 34, 1326-1332.	1.6	24
156	Development and characterization of microsatellite markers in the Point Arena mountain beaver Aplodontia rufa nigra. Molecular Ecology Notes, 2006, 6, 800-802.	1.7	4
157	Detecting genotyping errors and describing American black bear movement in northern Idaho. Ursus, 2006, 17, 138-148.	0.5	42
158	Felid sex identification based on noninvasive genetic samples. Molecular Ecology Notes, 2005, 5, 60-61.	1.7	133
159	dropout: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Molecular Ecology Notes, 2005, 5, 716-718.	1.7	130
160	Gene flow among San Joaquin kit fox populations in a severely changed ecosystem. Conservation Genetics, 2005, 6, 25-37.	1.5	18
161	Gene flow after inbreeding leads to higher survival in deer mice. Biological Conservation, 2005, 123, 413-420.	4.1	25
162	Moa were many. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S430-2.	2.6	28

10

#	Article	IF	CITATIONS
163	GENETIC ERRORS ASSOCIATED WITH POPULATION ESTIMATION USING NON-INVASIVE MOLECULAR TAGGING: PROBLEMS AND NEW SOLUTIONS. Journal of Wildlife Management, 2004, 68, 439-448.	1.8	138
164	PROVIDING RELIABLE AND ACCURATE GENETIC CAPTURE–MARK–RECAPTURE ESTIMATES IN A COST-EFFECTI WAY. Journal of Wildlife Management, 2004, 68, 453-456.	VE I.8	26
165	Hybridization Between Canada Lynx and Bobcats: Genetic Results and Management Implications. Conservation Genetics, 2004, 5, 349-355.	1.5	71
166	Landscape location affects genetic variation of Canada lynx (Lynx canadensis). Molecular Ecology, 2003, 12, 1807-1816.	3.9	116
167	Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 2003, 18, 189-197.	8.7	1,907
168	Measuring and interpreting connectivity for mammals in coniferous forests. , 2003, , 587-613.		10
169	DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature, 2002, 415, 520-522.	27.8	144
170	Rearranging the Deck Chairs on the Malthusian Ship: Reply to Phifer and Roebuck. Conservation Biology, 2001, 15, 1812-1813.	4.7	1
171	KINSHIP, SOCIAL RELATIONSHIPS, AND DEN SHARING IN KIT FOXES. Journal of Mammalogy, 2001, 82, 858.	1.3	44
172	Kinship, Social Relationships, and Den Sharing in Kit Foxes. Journal of Mammalogy, 2001, 82, 858-866.	1.3	8
173	The Tyranny of Population Growth. Conservation Biology, 2000, 14, 1918-1919.	4.7	8
174	Identifying lynx and other North American felids based on MtDNA analysis. Conservation Genetics, 2000, 1, 285-288.	1.5	72
175	ESTIMATING ANIMAL ABUNDANCE USING NONINVASIVE DNA SAMPLING: PROMISE AND PITFALLS. , 2000, 10, 283-294.		328
176	The Tyranny of Population Growth. Conservation Biology, 2000, 14, 1918-1919.	4.7	7
177	Female-solicited extrapair matings in Humboldt penguins fail to produce extrapair fertilizations. Behavioral Ecology, 1999, 10, 242-250.	2.2	46
178	Using genetics to estimate the size of wild populations: many methods, much potential, uncertain utility. Animal Conservation, 1999, 2, 321-323.	2.9	30
179	Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica. Journal of Zoology, 1999, 249, 97-109.	1.7	46
180	Using genetics to estimate the size of wild populations: many methods, much potential, uncertain utility. Animal Conservation, 1999, 2, 321-323.	2.9	2

#	Article	IF	CITATIONS
181	Review of DNA-based census and effective population size estimators. Animal Conservation, 1998, 1, 293-299.	2.9	120
182	POPULATION GROWTH OF ANTARCTIC FUR SEALS: LIMITATION BY A TOP PREDATOR, THE LEOPARD SEAL?. Ecology, 1998, 79, 2863-2877.	3.2	70
183	Review of DNA-based census and effective population size estimators. Animal Conservation, 1998, 1, 293-299.	2.9	13
184	Population Growth of Antarctic Fur Seals: Limitation by a Top Predator, the Leopard Seal?. Ecology, 1998, 79, 2863.	3.2	3