Thang Phan Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8866079/publications.pdf

Version: 2024-02-01

48 papers 1,834 citations

236925 25 h-index 265206 42 g-index

49 all docs 49 docs citations

49 times ranked 2391 citing authors

#	Article	IF	CITATIONS
1	Tungsten Oxide-Modified ITO Electrode for Electrochromic Window Based on Reversible Metal Electrodeposition. Electronic Materials Letters, 2022, 18, 36-46.	2.2	5
2	In Situ Growth of W2C/WS2 with Carbon-Nanotube Networks for Lithium-Ion Storage. Nanomaterials, 2022, 12, 1003.	4.1	8
3	Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries. Materials, 2022, 15, 2034.	2.9	5
4	Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction. International Journal of Energy Research, 2022, 46, 11479-11491.	4.5	8
5	Restructuring NiO to LiNiO2: Ultrastable and reversible anodes for lithium-ion batteries. Chemical Engineering Journal, 2022, 437, 135292.	12.7	14
6	Synthesis of nanoâ€coral tungsten carbide/carbon fibers as efficient catalysts for hydrogen evolution reaction. International Journal of Energy Research, 2022, 46, 13089-13098.	4.5	2
7	Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage. Nanomaterials, 2021, 11, 626.	4.1	21
8	Metal salt-modified biochars derived from agro-waste for effective congo red dye removal. Environmental Research, 2021, 200, 111492.	7.5	57
9	WS2–WC–WO3 nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction. Nano Convergence, 2021, 8, 28.	12.1	19
10	Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film. Journal of Alloys and Compounds, 2021, 882, 160718.	5.5	26
11	Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance. Applied Surface Science, 2020, 504, 144389.	6.1	47
12	Facile synthesis of WS2 hollow spheres and their hydrogen evolution reaction performance. Applied Surface Science, 2020, 505, 144574.	6.1	58
13	Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arabian Journal of Chemistry, 2020, 13, 3653-3671.	4.9	120
14	SnO ₂ @WS ₂ /p-Si Heterostructure Photocathode for Photoelectrochemical Hydrogen Production. Journal of Physical Chemistry C, 2020, 124, 647-652.	3.1	21
15	W2C/WS2 Alloy Nanoflowers as Anode Materials for Lithium-Ion Storage. Nanomaterials, 2020, 10, 1336.	4.1	22
16	Self-Assembled Few-Layered MoS2 on SnO2 Anode for Enhancing Lithium-Ion Storage. Nanomaterials, 2020, 10, 2558.	4.1	16
17	Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster. Food Control, 2020, 114, 107225.	5 . 5	29
18	Strategy for controlling the morphology and work function of W2C/WS2 nanoflowers. Journal of Alloys and Compounds, 2020, 829, 154582.	5 . 5	18

#	Article	lF	Citations
19	MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Molecular Catalysis, 2020, 486, 110850.	2.0	97
20	Hierarchical molybdenum disulfide on carbon nanotube–reduced graphene oxide composite paper as efficient catalysts for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 823, 153897.	5 . 5	36
21	Graphene-mediated enhanced Raman scattering and coherent light lasing from CsPbI3 perovskite nanorods. Nano Energy, 2020, 70, 104497.	16.0	9
22	Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets. Ceramics International, 2020, 46, 18742-18749.	4.8	48
23	Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceramics International, 2020, 46, 19209-19216.	4.8	58
24	Characteristics of quadruplet Ti–Mo–TiB2–TiC composites prepared by spark plasma sintering. Ceramics International, 2020, 46, 20885-20895.	4.8	36
25	Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Talanta, 2019, 205, 120087.	5.5	19
26	CdSe Quantum Dots Doped WS 2 Nanoflowers for Enhanced Solar Hydrogen Production. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800853.	1.8	14
27	NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process. Sensors and Actuators B: Chemical, 2019, 286, 512-520.	7.8	45
28	Independent spectral characteristics of functionalized silver nanoparticles for colorimetric assay of arginine and spermine in biofluids. New Journal of Chemistry, 2019, 43, 17069-17077.	2.8	13
29	Facile synthesis of CsPbBr ₃ /PbSe composite clusters. Science and Technology of Advanced Materials, 2018, 19, 10-17.	6.1	23
30	Morphological evolution of upconversion nanoparticles and their biomedical signal generation. Scientific Reports, 2018, 8, 17101.	3.3	37
31	Surface extension of MeS2 (Me=Mo or W) nanosheets by embedding MeSx for hydrogen evolution reaction. Electrochimica Acta, 2018, 292, 136-141.	5.2	31
32	The role of metal dopants in WS2 nanoflowers in enhancing the hydrogen evolution reaction. Applied Catalysis A: General, 2018, 567, 73-79.	4.3	66
33	Gold-copper nanoshell dot-blot immunoassay for naked-eye sensitive detection of tuberculosis specific CFP-10 antigen. Biosensors and Bioelectronics, 2018, 121, 111-117.	10.1	36
34	A thorough study on electrochromic properties of metal doped tungsten trioxide film prepared by a facile solution process. Electrochimica Acta, 2018, 283, 1195-1202.	5 . 2	18
35	Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr(VI) ion and biomonitoring of cancer cells. Materials Science and Engineering C, 2018, 93, 429-436.	7.3	50
36	Facile Solution Synthesis of Tungsten Trioxide Doped with Nanocrystalline Molybdenum Trioxide for Electrochromic Devices. Scientific Reports, 2017, 7, 13258.	3.3	42

#	Article	IF	CITATION
37	MoS2-nanosheet/graphene-oxide composite hole injection layer in organic light-emitting diodes. Electronic Materials Letters, 2017, 13, 344-350.	2.2	39
38	Size-Dependent Properties of Two-Dimensional MoS ₂ and WS ₂ . Journal of Physical Chemistry C, 2016, 120, 10078-10085.	3.1	144
39	Bottomâ€Up Synthesis of MeS _x Nanodots for Optoelectronic Device Applications. Advanced Optical Materials, 2016, 4, 1796-1804.	7.3	28
40	Nanocomposites of Molybdenum Disulfide/Methoxy Polyethylene Glycol- <i>co</i> -Amplified Photoacoustic Signal. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29213-29219.	8.0	17
41	Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 3929-3935.	3.1	101
42	(NH 4) 2 WS 4 precursor as a hole-injection layer in organic optoelectronic devices. Chemical Engineering Journal, 2016, 284, 285-293.	12.7	15
43	Performances of Liquidâ€Exfoliated Transition Metal Dichalcogenides as Hole Injection Layers in Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2015, 25, 4512-4519.	14.9	91
44	MoS ₂ Nanosheets Exfoliated by Sonication and Their Application in Organic Photovoltaic Cells. Science of Advanced Materials, 2015, 7, 700-705.	0.7	24
45	UV/ozoneâ€treated WS ₂ holeâ€extraction layer in organic photovoltaic cells. Physica Status Solidi - Rapid Research Letters, 2014, 8, 390-394.	2.4	56
46	Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cells. Physical Chemistry Chemical Physics, 2014, 16, 25468-25472.	2.8	51
47	The use of UV/ozone-treated MoS ₂ nanosheets for extended air stability in organic photovoltaic cells. Physical Chemistry Chemical Physics, 2014, 16, 13123-13128.	2.8	86
48	Converting biomass of agrowastes and invasive plant into alternative materials for water remediation. Biomass Conversion and Biorefinery, 0 , 1 .	4.6	4