
Urs von Gunten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/886607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactions of amines with ozone and chlorine: Two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen. Water Research, 2022, 209, 117864.	11.3	15
2	Application of UV absorbance and electron-donating capacity as surrogates for micropollutant abatement during full-scale ozonation of secondary-treated wastewater. Water Research, 2022, 209, 117858.	11.3	15
3	Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution. Water Research, 2022, 213, 118095.	11.3	16
4	Ozonation of organic compounds in water and wastewater: A critical review. Water Research, 2022, 213, 118053.	11.3	193
5	lodide sources in the aquatic environment and its fate during oxidative water treatment – A critical review. Water Research, 2022, 217, 118417.	11.3	27
6	Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production. Water Research, 2022, 217, 118383.	11.3	18
7	Ozone disinfection of waterborne pathogens and their surrogates: A critical review. Water Research, 2022, 214, 118206.	11.3	55
8	Effect of cetyltrimethylammonium chloride on various Escherichia coli strains and their inactivation kinetics by ozone and monochloramine. Water Research, 2022, 216, 118278.	11.3	3
9	Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO2 pre-oxidation for disinfection byproduct control. Water Research, 2022, 220, 118515.	11.3	3
10	Nanoplastics removal during drinking water treatment: Laboratory- and pilot-scale experiments and modeling. Journal of Hazardous Materials, 2022, 436, 129011.	12.4	27
11	Enhanced transformation of aquatic organic compounds by long-lived photooxidants (LLPO) produced from dissolved organic matter. Water Research, 2021, 190, 116707.	11.3	24
12	Optical properties and photochemical production of hydroxyl radical and singlet oxygen after ozonation of dissolved organic matter. Environmental Science: Water Research and Technology, 2021, 7, 346-356.	2.4	13
13	Enhanced Treatment of Municipal Wastewater Effluents by Fe-TAML/H ₂ O ₂ : Efficiency of Micropollutant Abatement. Environmental Science & Technology, 2021, 55, 3313-3321.	10.0	26
14	Reactions of α,β-Unsaturated Carbonyls with Free Chlorine, Free Bromine, and Combined Chlorine. Environmental Science & Technology, 2021, 55, 3305-3312.	10.0	16
15	Reaction of DMS and HOBr as a Sink for Marine DMS and an Inhibitor of Bromoform Formation. Environmental Science & Technology, 2021, 55, 5547-5558.	10.0	7
16	Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/H2O2 treatment. Water Research, 2021, 195, 116940.	11.3	12
17	Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale. Water Research, 2021, 200, 117200.	11.3	39
18	Permanganate Reduction by Hydrogen Peroxide: Formation of Reactive Manganese Species and Superoxide and Enhanced Micropollutant Abatement. ACS ES&T Engineering, 2021, 1, 1410-1419.	7.6	19

#	Article	IF	CITATIONS
19	Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Research, 2021, 202, 117415.	11.3	15
20	Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone. Water Research, 2021, 207, 117790.	11.3	23
21	Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. Water Research, 2021, 207, 117812.	11.3	36
22	Chlorination of Phenols Revisited: Unexpected Formation of α,Ĵ²-Unsaturated C ₄ -Dicarbonyl Ring Cleavage Products. Environmental Science & Technology, 2020, 54, 826-834.	10.0	60
23	Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters. Water Research, 2020, 187, 116418.	11.3	29
24	Chlorination and bromination of olefins: Kinetic and mechanistic aspects. Water Research, 2020, 187, 116424.	11.3	25
25	Assessment of the breakthrough of micropollutants in full-scale granular activated carbon adsorbers by rapid small-scale column tests and a novel pilot-scale sampling approach. Environmental Science: Water Research and Technology, 2020, 6, 2742-2751.	2.4	9
26	Quenching of an Aniline Radical Cation by Dissolved Organic Matter and Phenols: A Laser Flash Photolysis Study. Environmental Science & Technology, 2020, 54, 15057-15065.	10.0	29
27	Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical. Environmental Science & Technology, 2020, 54, 10351-10360.	10.0	93
28	Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer. Water Research, 2020, 185, 116235.	11.3	44
29	Themed issue on drinking water oxidation and disinfection processes. Environmental Science: Water Research and Technology, 2020, 6, 2252-2256.	2.4	3
30	Chlorothalonil transformation products in drinking water resources: Widespread and challenging to abate. Water Research, 2020, 183, 116066.	11.3	27
31	Comparison of the impact of ozone, chlorine dioxide, ferrate and permanganate pre-oxidation on organic disinfection byproduct formation during post-chlorination. Environmental Science: Water Research and Technology, 2020, 6, 2382-2395.	2.4	16
32	Generation of hydroxyl radical during chlorination of hydroxyphenols and natural organic matter extracts. Water Research, 2020, 177, 115691.	11.3	39
33	Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science & Technology, 2020, 54, 3064-3081.	10.0	1,779
34	Adaptation of <i>Pseudomonas aeruginosa</i> to constant sub-inhibitory concentrations of quaternary ammonium compounds. Environmental Science: Water Research and Technology, 2020, 6, 1139-1152.	2.4	18
35	Mixture effects of drinking water disinfection by-products: implications for risk assessment. Environmental Science: Water Research and Technology, 2020, 6, 2341-2351.	2.4	43
36	Kinetics of the reaction between hydrogen peroxide and aqueous iodine: Implications for technical and natural aquatic systems. Water Research, 2020, 179, 115852.	11.3	23

#	Article	IF	CITATIONS
37	Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms. Environmental Science: Water Research and Technology, 2020, 6, 976-992.	2.4	20
38	Kinetic and mechanistic aspects of selenite oxidation by chlorine, bromine, monochloramine, ozone, permanganate, and hydrogen peroxide. Water Research, 2019, 164, 114876.	11.3	16
39	Hypobromous Acid as an Unaccounted Sink for Marine Dimethyl Sulfide?. Environmental Science & Technology, 2019, 53, 13146-13157.	10.0	10
40	Surface water treatment by UV/H2O2with subsequent soil aquifer treatment: impact on micropollutants, dissolved organic matter and biological activity. Environmental Science: Water Research and Technology, 2019, 5, 1709-1722.	2.4	9
41	Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent. Water Research, 2019, 166, 115088.	11.3	26
42	Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. Water Research, 2019, 153, 200-207.	11.3	57
43	Laser flash photolysis study of the photoinduced oxidation of 4-(dimethylamino)benzonitrile (DMABN). Photochemical and Photobiological Sciences, 2019, 18, 534-545.	2.9	12
44	Differences in Viral Disinfection Mechanisms as Revealed by Quantitative Transfection of Echovirus 11 Genomes. Applied and Environmental Microbiology, 2019, 85, .	3.1	39
45	Effects of Ozone on the Photochemical and Photophysical Properties of Dissolved Organic Matter. Environmental Science & Technology, 2019, 53, 5622-5632.	10.0	41
46	Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms. Accounts of Chemical Research, 2019, 52, 605-614.	15.6	50
47	Reactions of aliphatic amines with ozone: Kinetics and mechanisms. Water Research, 2019, 157, 514-528.	11.3	74
48	A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. Accounts of Chemical Research, 2019, 52, 615-622.	15.6	112
49	Oxidation Processes in Water Treatment: Are We on Track?. Environmental Science & Technology, 2018, 52, 5062-5075.	10.0	452
50	Ozonation of municipal wastewater effluent containing metal sulfides and metal complexes: Kinetics and mechanisms. Water Research, 2018, 134, 170-180.	11.3	35
51	Kinetics of Inactivation of Waterborne Enteric Viruses by Ozone. Environmental Science & Technology, 2018, 52, 2170-2177.	10.0	84
52	Ozonation of <i>Para</i> -Substituted Phenolic Compounds Yields <i>p</i> -Benzoquinones, Other Cyclic α,β-Unsaturated Ketones, and Substituted Catechols. Environmental Science & Technology, 2018, 52, 4763-4773.	10.0	91
53	Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination. Water Research, 2018, 135, 311-321.	11.3	30
54	Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Research, 2018, 129, 486-498.	11.3	361

#	Article	IF	CITATIONS
55	Impact of Combined Chlorination and Chloramination Conditions on <i>N</i> â€Nitrosodimethylamine Formation. Journal - American Water Works Association, 2018, 110, 11-24.	0.3	10
56	Formation of <i>N</i> -nitrosamines by micelle-catalysed nitrosation of aliphatic secondary amines. Environmental Sciences: Processes and Impacts, 2018, 20, 1479-1487.	3.5	6
57	Behavior of NDMA precursors at 21 full-scale water treatment facilities. Environmental Science: Water Research and Technology, 2018, 4, 1966-1978.	2.4	13
58	In Situ Formation of Free Chlorine During ClO ₂ Treatment: Implications on the Formation of Disinfection Byproducts. Environmental Science & amp; Technology, 2018, 52, 13421-13429.	10.0	66
59	Fate of Cr(III) during Ozonation of Secondary Municipal Wastewater Effluent. Ozone: Science and Engineering, 2018, 40, 441-447.	2.5	6
60	Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments. Water Research, 2018, 142, 267-278.	11.3	105
61	Reactions of Ferrate(VI) with Iodide and Hypoiodous Acid: Kinetics, Pathways, and Implications for the Fate of Iodine during Water Treatment. Environmental Science & Technology, 2018, 52, 7458-7467.	10.0	89
62	Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities. Water Research, 2018, 144, 64-75.	11.3	67
63	Two analytical approaches quantifying the electron donating capacities of dissolved organic matter to monitor its oxidation during chlorination and ozonation. Water Research, 2018, 144, 677-689.	11.3	41
64	Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water. Water Research, 2018, 143, 492-502.	11.3	28
65	A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms. Environmental Sciences: Processes and Impacts, 2017, 19, 465-476.	3.5	35
66	Options and limitations for bromate control during ozonation of wastewater. Water Research, 2017, 116, 76-85.	11.3	105
67	Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Water Research, 2017, 122, 234-245.	11.3	129
68	Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate. Water Research, 2017, 119, 126-135.	11.3	35
69	Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O ₃ /H ₂ O ₂ and) Tj ETQq1 1 0.784314 rgBT /Overloc	k 1100.70f 50	9 1 37 Td (UV
70	Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. Water Research, 2017, 108, 373-382.	11.3	95
71	UV/H2O2 advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays. Chemosphere, 2017, 182, 477-482.	8.2	32
72	Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential. Water Research, 2017, 122, 246-257.	11.3	33

#	Article	IF	CITATIONS
73	MEMBRO ₃ X, a Novel Combination of a Membrane Contactor with Advanced Oxidation (O ₃ /H ₂ O ₂) for Simultaneous Micropollutant Abatement and Bromate Minimization. Environmental Science and Technology Letters, 2017, 4, 180-185.	8.7	43
74	Mechanistic Aspects of the Formation of Adsorbable Organic Bromine during Chlorination of Bromide-containing Synthetic Waters. Environmental Science & Technology, 2017, 51, 5146-5155.	10.0	71
75	Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment. Water Research, 2017, 110, 91-101.	11.3	113
76	Quantification of Total <i>N</i> -Nitrosamine Concentrations in Aqueous Samples via UV-Photolysis and Chemiluminescence Detection of Nitric Oxide. Analytical Chemistry, 2017, 89, 1574-1582.	6.5	33
77	Carbon, Hydrogen, and Nitrogen Isotope Fractionation Trends in <i>N</i> -Nitrosodimethylamine Reflect the Formation Pathway during Chloramination of Tertiary Amines. Environmental Science & Technology, 2017, 51, 13170-13179.	10.0	16
78	Kinetics and mechanisms of nitrate and ammonium formation during ozonation of dissolved organic nitrogen. Water Research, 2017, 108, 451-461.	11.3	58
79	Formation of <i>N</i> -Nitrosodimethylamine during Chloramination of Secondary and Tertiary Amines: Role of Molecular Oxygen and Radical Intermediates. Environmental Science & Technology, 2017, 51, 280-290.	10.0	58
80	Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water. Environmental Science: Water Research and Technology, 2016, 2, 875-883.	2.4	17
81	Kinetic and Mechanistic Aspects of the Reactions of lodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation. Environmental Science & Technology, 2016, 50, 4358-4365.	10.0	53
82	Sample Enrichment for Bioanalytical Assessment of Disinfected Drinking Water: Concentrating the Polar, the Volatiles, and the Unknowns. Environmental Science & Technology, 2016, 50, 6495-6505.	10.0	63
83	Emerging investigators series: prediction of trace organic contaminant abatement with UV/H ₂ O ₂ : development and validation of semi-empirical models for municipal wastewater effluents. Environmental Science: Water Research and Technology, 2016, 2, 460-473.	2.4	29
84	Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation. Environmental Science & amp; Technology, 2016, 50, 9825-9834.	10.0	127
85	Halide removal from aqueous solution by novel silver-polymeric materials. Science of the Total Environment, 2016, 573, 1125-1131.	8.0	18
86	Probing the Photosensitizing and Inhibitory Effects of Dissolved Organic Matter by Using <i>N</i> , <i>N</i> -dimethyl-4-cyanoaniline (DMABN). Environmental Science & Technology, 2016, 50, 10997-11007.	10.0	51
87	An American in Zurich: Jerry Schnoor as an Ambassador for U.S. Environmental Science and Engineering. Environmental Science & amp; Technology, 2016, 50, 6597-6598.	10.0	Ο
88	Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environmental Science & Technology, 2016, 50, 11862-11871.	10.0	175
89	Inactivation efficiency of Escherichia coli and autochthonous bacteria during ozonation of municipal wastewater effluents quantified with flow cytometry and adenosine tri-phosphate analyses. Water Research, 2016, 101, 617-627.	11.3	68
90	Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Research, 2016, 91, 19-30.	11.3	144

Urs von Gunten

#	Article	IF	CITATIONS
91	Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects. Water Research, 2016, 93, 110-120.	11.3	43
92	Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products. Water Research, 2016, 94, 350-362.	11.3	75
93	How do you like your tap water?. Science, 2016, 351, 912-914.	12.6	115
94	Organic Contaminant Abatement in Reclaimed Water by UV/H ₂ O ₂ and a Combined Process Consisting of O ₃ /H ₂ O ₂ Followed by UV/H ₂ O ₂ . Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation. Environmental Science & Samp; Technology, 2016, 50, 3809-3819.	10.0	146
95	Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. Environmental Science: Water Research and Technology, 2016, 2, 421-442.	2.4	131
96	Catalytic processes and new materials and technologies in water/wastewater treatment. Water Research, 2015, 86, 1.	11.3	7
97	Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2. Water Research, 2015, 74, 143-154.	11.3	108
98	Compound-Specific Carbon, Nitrogen, and Hydrogen Isotope Analysis of <i>N</i> -Nitrosodimethylamine in Aqueous Solutions. Analytical Chemistry, 2015, 87, 2916-2924.	6.5	28
99	Peracetic Acid Oxidation of Saline Waters in the Absence and Presence of H ₂ O ₂ : Secondary Oxidant and Disinfection Byproduct Formation. Environmental Science & Technology, 2015, 49, 1698-1705.	10.0	91
100	Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. Water Research, 2015, 84, 161-170.	11.3	46
101	Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects. Biochemical Engineering Journal, 2015, 103, 47-59.	3.6	79
102	Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents. Water Research, 2015, 81, 388-397.	11.3	95
103	Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation. Environmental Science & amp; Technology, 2015, 49, 8541-8549.	10.0	80
104	Development of Prediction Models for the Reactivity of Organic Compounds with Ozone in Aqueous Solution by Quantum Chemical Calculations: The Role of Delocalized and Localized Molecular Orbitals. Environmental Science & Technology, 2015, 49, 9925-9935.	10.0	83
105	Trichloramine reactions with nitrogenous and carbonaceous compounds: Kinetics, products and chloroform formation. Water Research, 2015, 71, 318-329.	11.3	20
106	Novel test procedure to evaluate the treatability of wastewater with ozone. Water Research, 2015, 75, 324-335.	11.3	87
107	Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters. Environmental Science: Water Research and Technology, 2015, 1, 465-480.	2.4	65
108	Molecular Mechanism of NDMA Formation from <i>N</i> , <i>N</i> -Dimethylsulfamide During Ozonation: Quantum Chemical Insights into a Bromide-Catalyzed Pathway. Environmental Science & Technology, 2015, 49, 4163-4175.	10.0	53

#	Article	IF	CITATIONS
109	Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent. Environmental Science & Technology, 2015, 49, 10911-10919.	10.0	38
110	Mechanistic Study on the Formation of Cl-/Br-/I-Trihalomethanes during Chlorination/Chloramination Combined with a Theoretical Cytotoxicity Evaluation. Environmental Science & Technology, 2015, 49, 11105-11114.	10.0	119
111	Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts – Electrophilic aromatic substitution and oxidation. Water Research, 2015, 85, 476-486.	11.3	235
112	Evaluation of the persistence of transformation products from ozonation of trace organic compounds – A critical review. Water Research, 2015, 68, 150-170.	11.3	174
113	Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment ofÂswimming pool water. Water Research, 2014, 56, 280-291.	11.3	56
114	Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds $\hat{a} \in$ " A critical review. Water Research, 2014, 48, 15-42.	11.3	412
115	Chlorination of Iodide-Containing Waters in the Presence of CuO: Formation of Periodate. Environmental Science & Technology, 2014, 48, 13173-13180.	10.0	27
116	Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research, 2014, 64, 134-148.	11.3	198
117	Comparison of a novel extraction-based colorimetric (ABTS) method with membrane introduction mass spectrometry (MIMS): Trichloramine dynamics in pool water. Water Research, 2014, 58, 258-268.	11.3	22
118	Development of mutagenicity during degradation of N -nitrosamines by advanced oxidation processes. Water Research, 2014, 66, 399-410.	11.3	40
119	Reaction of Ferrate(VI) with ABTS and Self-Decay of Ferrate(VI): Kinetics and Mechanisms. Environmental Science & Technology, 2014, 48, 5154-5162.	10.0	248
120	Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents. Water Research, 2014, 57, 183-192.	11.3	121
121	Column studies to assess the effects of climate variables on redox processes during riverbank filtration. Water Research, 2014, 61, 263-275.	11.3	32
122	Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. Chemosphere, 2014, 112, 256-266.	8.2	108
123	Enhanced Chlorine Dioxide Decay in the Presence of Metal Oxides: Relevance to Drinking Water Distribution Systems. Environmental Science & Technology, 2013, 47, 130719133951006.	10.0	9
124	Elimination of Micropollutants during Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV. Environmental Science & Technology, 2013, 47, 7899-7908.	10.0	309
125	Analysis of N-nitrosamines and other nitro(so) compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction. Water Research, 2013, 47, 4893-4903.	11.3	40
126	Chemical Oxidation of Dissolved Organic Matter by Chlorine Dioxide, Chlorine, And Ozone: Effects on Its Optical and Antioxidant Properties. Environmental Science & Technology, 2013, 47, 11147-11156.	10.0	244

#	Article	IF	CITATIONS
127	Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection. Water Research, 2013, 47, 5381-5391.	11.3	46
128	Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine. Water Research, 2013, 47, 79-90.	11.3	97
129	Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter. Water Research, 2013, 47, 535-546.	11.3	80
130	NOM degradation during river infiltration: Effects of the climate variables temperature and discharge. Water Research, 2013, 47, 6585-6595.	11.3	39
131	Ozonation of iodide-containing waters: Selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs. Water Research, 2013, 47, 1953-1960.	11.3	93
132	Process Control For Ozonation Systems: A Novel Real-Time Approach. Ozone: Science and Engineering, 2013, 35, 168-185.	2.5	35
133	Prediction of Micropollutant Elimination during Ozonation of Municipal Wastewater Effluents: Use of Kinetic and Water Specific Information. Environmental Science & Technology, 2013, 47, 5872-5881.	10.0	355
134	Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofÂsynthetic metal oxides and deposits formed inÂdrinking water distribution systems. Water Research, 2013, 47, 5307-5315.	11.3	41
135	Oxidation of Manganese(II) during Chlorination: Role of Bromide. Environmental Science & Technology, 2013, 47, 8716-8723.	10.0	60
136	Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications. , 2012, , .		236
137	Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Research, 2012, 46, 6257-6272.	11.3	175
138	Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Research, 2012, 46, 6177-6195.	11.3	305
139	Kinetic and Mechanistic Investigations of the Oxidation of Tramadol by Ferrate and Ozone. Environmental Science & Technology, 2012, 46, 876-884.	10.0	129
140	Trade-Offs in Disinfection Byproduct Formation Associated with Precursor Preoxidation for Control of <i>N</i> -Nitrosodimethylamine Formation. Environmental Science & Technology, 2012, 46, 4809-4818.	10.0	152
141	Enhanced Bromate Formation during Chlorination of Bromide-Containing Waters in the Presence of CuO: Catalytic Disproportionation of Hypobromous Acid. Environmental Science & amp; Technology, 2012, 46, 11054-11061.	10.0	79
142	Iodate and Iodo-Trihalomethane Formation during Chlorination of Iodide-Containing Waters: Role of Bromide. Environmental Science & Technology, 2012, 46, 7350-7357.	10.0	117
143	Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. Environmental Pollution, 2012, 161, 30-35.	7.5	42
144	The Chlorine Dilemma. Science, 2011, 331, 42-43.	12.6	338

#	Article	IF	CITATIONS
145	Reply to Comment on "Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical― Environmental Science & Technology, 2011, 45, 7947-7948.	10.0	4
146	Effect of Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited Triplet States and the Hydroxyl Radical. Environmental Science & Technology, 2011, 45, 1334-1340.	10.0	388
147	Evolution of algal toxicity during (photo)oxidative degradation of diuron. Aquatic Toxicology, 2011, 101, 466-473.	4.0	44
148	Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: Micropollutant oxidation, by-product formation and disinfection. Water Research, 2011, 45, 605-617.	11.3	261
149	Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. Water Research, 2011, 45, 1490-1500.	11.3	175
150	Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate. Water Research, 2011, 45, 2002-2010.	11.3	113
151	Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 2011, 45, 3811-3822.	11.3	288
152	Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Research, 2011, 45, 3951-3959.	11.3	191
153	Transformation of Î ² -Lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Technology, 2010, 44, 5940-5948.	10.0	92
154	Kinetics and Mechanisms of <i>N</i> -Nitrosodimethylamine Formation upon Ozonation of <i>N</i> , <i>N</i> -Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Technology, 2010, 44, 5762-5768.	10.0	147
155	Transformation of β-lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Technology, 2010, 44, 8790-8790.	10.0	6
156	Global Water Pollution and Human Health. Annual Review of Environment and Resources, 2010, 35, 109-136.	13.4	1,381
157	Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research, 2010, 44, 555-566.	11.3	632
158	Editorial to special issue in Water ResearchEmerging contaminants in water. Water Research, 2010, 44, 351-351.	11.3	19
159	Taste and odour problems generated in distribution systems: a case study on the formation of 2,4,6-trichloroanisole. Journal of Water Supply: Research and Technology - AQUA, 2009, 58, 386-394.	1.4	20
160	Trihalomethane formation during water disinfection in four water supplies in the Somes river basin in Romania. Environmental Science and Pollution Research, 2009, 16, 55-65.	5.3	24
161	Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environmental Science & Technology, 2009, 43, 7862-7869.	10.0	726
162	Transformation of 17α-Ethinylestradiol during Water Chlorination: Effects of Bromide on Kinetics, Products, and Transformation Pathways. Environmental Science & Technology, 2009, 43, 480-487.	10.0	62

#	Article	IF	CITATIONS
163	Sorption and catalytic oxidation of Fe(II) at the surface of calcite. Geochimica Et Cosmochimica Acta, 2009, 73, 1826-1840.	3.9	36
164	Iron isotope fractionation and atom exchange during sorption of ferrous iron to mineral surfaces. Geochimica Et Cosmochimica Acta, 2009, 73, 1795-1812.	3.9	82
165	Clobal sensitivity analysis for model-based prediction of oxidative micropollutant transformation during drinking water treatment. Water Research, 2009, 43, 997-1004.	11.3	23
166	Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. Water Research, 2009, 43, 2191-2200.	11.3	97
167	Oxidation of iodide and iodine on birnessite (δ-MnO2) in the pH range 4–8. Water Research, 2009, 43, 3417-3426.	11.3	87
168	Ferrate (Fe(VI)) Application for Municipal Wastewater Treatment: A Novel Process for Simultaneous Micropollutant Oxidation and Phosphate Removal. Environmental Science & Technology, 2009, 43, 3831-3838.	10.0	296
169	Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological Activity during Aqueous Ozonation Processes. Environmental Science & Technology, 2009, 43, 2498-2504.	10.0	233
170	Formation of Iodinated Organic Compounds by Oxidation of Iodide-Containing Waters with Manganese Dioxide. Environmental Science & Technology, 2009, 43, 7003-7009.	10.0	95
171	Mechanisms of Phenol Ozonation—Kinetics of Formation of Primary and Secondary Reaction Products. Ozone: Science and Engineering, 2009, 31, 201-215.	2.5	101
172	Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research, 2008, 42, 13-51.	11.3	1,557
173	Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research, 2008, 42, 121-128.	11.3	335
174	Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters. Water Research, 2008, 42, 433-441.	11.3	98
175	Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Research, 2008, 42, 3003-3012.	11.3	244
176	Ozonation of Source-Separated Urine for Resource Recovery and Waste Minimization: Process Modeling, Reaction Chemistry, and Operational Considerations. Environmental Science & Technology, 2008, 42, 9329-9337.	10.0	61
177	Evaluation of Functional Groups Responsible for Chloroform Formation during Water Chlorination Using Compound Specific Isotope Analysis. Environmental Science & Technology, 2008, 42, 7778-7785.	10.0	58
178	Efficient Removal of Estrogenic Activity during Oxidative Treatment of Waters Containing Steroid Estrogens. Environmental Science & Technology, 2008, 42, 6333-6339.	10.0	136
179	Ag-doped carbon aerogels for removing halide ions in water treatment. Water Research, 2007, 41, 1031-1037.	11.3	69
180	Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. Water Research, 2007, 41, 467-475.	11.3	36

#	Article	IF	CITATIONS
181	Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Research, 2007, 41, 581-590.	11.3	216
182	Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Research, 2007, 41, 1447-1454.	11.3	102
183	Uncertainty in prediction of disinfection performance. Water Research, 2007, 41, 2371-2378.	11.3	20
184	Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: Relevance to municipal wastewater ozonation. Water Research, 2007, 41, 2481-2490.	11.3	124
185	Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 2007, 41, 3381-3393.	11.3	222
186	Permeability of low molecular weight organics through nanofiltration membranes. Water Research, 2007, 41, 3968-3976.	11.3	76
187	Oxidation Kinetics of Selected Taste and Odor Compounds During Ozonation of Drinking Water. Environmental Science & Technology, 2007, 41, 626-631.	10.0	163
188	Sources of Parameter Uncertainty in Predicting Treatment Performance:Â The Case of Preozonation in Drinking Water Engineering. Environmental Science & Technology, 2007, 41, 3991-3996.	10.0	7
189	Selective Oxidation of Key Functional Groups in Cyanotoxins during Drinking Water Ozonation. Environmental Science & Technology, 2007, 41, 4397-4404.	10.0	152
190	Oxidation ofN-Nitrosodimethylamine (NDMA) Precursors with Ozone and Chlorine Dioxide:Â Kinetics and Effect on NDMA Formation Potential. Environmental Science & Technology, 2007, 41, 2056-2063.	10.0	223
191	Bromide and iodide removal from waters under dynamic conditions by Ag-doped aerogels. Journal of Colloid and Interface Science, 2007, 306, 183-186.	9.4	23
192	Phenols and Amine Induced HO•Generation During the Initial Phase of Natural Water Ozonation. Environmental Science & Technology, 2006, 40, 3057-3063.	10.0	177
193	Oxidation of Antibacterial Molecules by Aqueous Ozone:  Moiety-Specific Reaction Kinetics and Application to Ozone-Based Wastewater Treatment. Environmental Science & Technology, 2006, 40, 1969-1977.	10.0	416
194	Ozonation and Advanced Oxidation of Wastewater: Effect of O3Dose, pH, DOM and HO•-Scavengers on Ozone Decomposition and HO•Generation. Ozone: Science and Engineering, 2006, 28, 247-259.	2.5	199
195	The Challenge of Micropollutants in Aquatic Systems. Science, 2006, 313, 1072-1077.	12.6	2,873
196	Kinetics and Mechanistic Aspects of As(III) Oxidation by Aqueous Chlorine, Chloramines, and Ozone:Â Relevance to Drinking Water Treatment. Environmental Science & Technology, 2006, 40, 3285-3292.	10.0	155
197	The impact of selected water quality parameters on the inactivation of Bacillus subtilis spores by monochloramine and ozone. Water Research, 2006, 40, 373-382.	11.3	34
198	Differences in the chlorine reactivity of four microcystin analogues. Water Research, 2006, 40, 1200-1209.	11.3	100

Urs von Gunten

#	Article	IF	CITATIONS
199	Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: Application to disinfection and pharmaceutical oxidation. Water Research, 2006, 40, 1884-1894.	11.3	186
200	Implications of sequential use of UV and ozone for drinking water quality. Water Research, 2006, 40, 1864-1876.	11.3	123
201	Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Research, 2006, 40, 2275-2286.	11.3	214
202	Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. Water Research, 2006, 40, 3375-3384.	11.3	58
203	Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Research, 2006, 40, 3695-3704.	11.3	407
204	Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels. Journal of Colloid and Interface Science, 2006, 300, 437-441.	9.4	68
205	Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation Processes. Ozone: Science and Engineering, 2006, 28, 237-245.	2.5	62
206	REMOVAL OF PHARMACEUTICALS AND PERSONAL CARE PRODUCTS: RESULTS OF THE POSEIDON PROJECT. Proceedings of the Water Environment Federation, 2005, 2005, 227-243.	0.0	14
207	Kinetics of the Oxidation of Phenols and Phenolic Endocrine Disruptors during Water Treatment with Ferrate (Fe(VI)). Environmental Science & amp; Technology, 2005, 39, 8978-8984.	10.0	265
208	Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine:Â Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Technology, 2005, 39, 7065-7076.	10.0	235
209	Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochimica Et Cosmochimica Acta, 2005, 69, 4175-4185.	3.9	118
210	Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water Research, 2005, 39, 1946-1953.	11.3	211
211	Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: Assessment of taste and odor development. Water Research, 2005, 39, 2979-2993.	11.3	170
212	Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research, 2005, 39, 3189-3198.	11.3	265
213	Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Research, 2005, 39, 3607-3617.	11.3	280
214	Ozonation of Carbamazepine in Drinking Water:  Identification and Kinetic Study of Major Oxidation Products. Environmental Science & Technology, 2005, 39, 8014-8022.	10.0	259
215	Photosensitizer Method to Determine Rate Constants for the Reaction of Carbonate Radical with Organic Compounds. Environmental Science & amp; Technology, 2005, 39, 9182-9188.	10.0	407
216	Oxidation of Pharmaceuticals during Ozonation of Municipal Wastewater Effluents:Â A Pilot Study. Environmental Science & Technology, 2005, 39, 4290-4299.	10.0	713

#	Article	IF	CITATIONS
217	Enhanced Bromate Control during Ozonation:Â The Chlorine-Ammonia Process. Environmental Science & Technology, 2004, 38, 5187-5195.	10.0	124
218	Simultaneous Prediction ofCryptosporidium parvumOocyst Inactivation and Bromate Formation during Ozonation of Synthetic Waters. Environmental Science & amp; Technology, 2004, 38, 2232-2241.	10.0	36
219	Removal of Estrogenic Activity and Formation of Oxidation Products during Ozonation of 17α-Ethinylestradiol. Environmental Science & Technology, 2004, 38, 5177-5186.	10.0	235
220	Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Comp.; Technology, 2003, 37, 1016-1024.	10.0	1,370
221	Bromate in Drinking Water A problem in Switzerland?. Ozone: Science and Engineering, 2003, 25, 159-166.	2.5	19
222	A stochastic model of an ozonation reactor. Water Research, 2003, 37, 1667-1677.	11.3	36
223	Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37, 1443-1467.	11.3	1,960
224	Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research, 2003, 37, 1469-1487.	11.3	1,122
225	Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Water Research, 2003, 37, 3242-3252.	11.3	74
226	Chlorination of Phenols:Â Kinetics and Formation of Chloroform. Environmental Science & Technology, 2002, 36, 884-890.	10.0	343
227	Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research, 2002, 36, 65-74.	11.3	402
228	Solar Oxidation and Removal of Arsenic at Circumneutral pH in Iron Containing Waters. Environmental Science & Technology, 2001, 35, 2114-2121.	10.0	304
229	Oxidation of metal–diethylenetriamine-pentaacetate (DTPA) – complexes during drinking water ozonation. Water Research, 2001, 35, 1877-1886.	11.3	22
230	Inactivation of bacillus subtilis spores and formation of bromate during ozonation. Water Research, 2001, 35, 2950-2960.	11.3	67
231	By-products formation during drinking water disinfection: a tool to assess disinfection efficiency?. Water Research, 2001, 35, 2095-2099.	11.3	70
232	MTBE Oxidation by Conventional Ozonation and the Combination Ozone/Hydrogen Peroxide:Â Efficiency of the Processes and Bromate Formation. Environmental Science & Technology, 2001, 35, 4252-4259.	10.0	153
233	Bromate Minimization during Ozonation:Â Mechanistic Considerations. Environmental Science & Technology, 2001, 35, 2525-2531.	10.0	253
234	Characterization of Oxidation processes: ozonation and the AOP O ₃ /H ₂ O ₂ . Journal - American Water Works Association, 2001, 93, 90-100.	0.3	133

#	Article	IF	CITATIONS
235	Ozonation as Pre-Treatment Step for the Biological Batch Degradation of Industrial Wastewater Containing 3-Methyl-Pyridine Ozone: Science and Engineering, 2001, 23, 189-198.	2.5	7
236	DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environmental and Molecular Mutagenesis, 2000, 36, 5-12.	2.2	66
237	OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 1. Reactions of peroxyl radicals derived from 2-butoxyethanol in water. Atmospheric Environment, 2000, 34, 4241-4252.	4.1	35
238	OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 2. Reactions of peroxyl radicals with transition metals. Atmospheric Environment, 2000, 34, 4253-4264.	4.1	29
239	The Influence of Dissolved Organic Matter Character on Ozone Decomposition Rates and <i>R_{ct}</i> . ACS Symposium Series, 2000, , 248-269.	0.5	9
240	Steady-state modelling of biogeochemical processes in columns with aquifer material:. Chemical Geology, 2000, 167, 271-284.	3.3	7
241	Hypoiodous acid: kinetics of the buffer-catalyzed disproportionation. Water Research, 2000, 34, 3197-3203.	11.3	73
242	Methods for the photometric determination of reactive bromine and chlorine species with ABTS. Water Research, 2000, 34, 4343-4350.	11.3	173
243	Degradation Kinetics of Atrazine and Its Degradation Products with Ozone and OH Radicals:  A Predictive Tool for Drinking Water Treatment. Environmental Science & Technology, 2000, 34, 591-597.	10.0	350
244	Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties. Ozone: Science and Engineering, 2000, 22, 123-150.	2.5	269
245	Influence of Carbonate on the Ozone/Hydrogen Peroxide Based Advanced Oxidation Process for Drinking Water Treatment. Ozone: Science and Engineering, 2000, 22, 305-328.	2.5	124
246	Formation of Iodo-Trihalomethanes during Disinfection and Oxidation of Iodide-Containing Waters. Environmental Science & Technology, 2000, 34, 2784-2791.	10.0	333
247	Determination of chlorate at low μg/l levels by ion-chromatography with postcolumn reaction. Journal of Chromatography A, 1999, 849, 209-215.	3.7	23
248	Determination of Iodide and Iodate by Ion Chromatography with Postcolumn Reaction and UV/Visible Detection. Analytical Chemistry, 1999, 71, 34-38.	6.5	167
249	Simultaneous determination of bromide, bromate and nitrite in low μg lâ~'1 levels by ion chromatography without sample pretreatment. Water Research, 1999, 33, 3239-3244.	11.3	92
250	Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The R _{ct} Concept. Ozone: Science and Engineering, 1999, 21, 239-260.	2.5	610
251	Oxidation of lodide and Hypoiodous Acid in the Disinfection of Natural Waters. Environmental Science & Technology, 1999, 33, 4040-4045.	10.0	327
252	Advanced Oxidation of Bromide-Containing Waters:Â Bromate Formation Mechanisms. Environmental Science & Technology, 1998, 32, 63-70.	10.0	309

#	Article	IF	CITATIONS
253	Kinetics of the reaction between hydrogen peroxide and hypobromous acid: Implication on water treatment and natural systems. Water Research, 1997, 31, 900-906.	11.3	132
254	Reductive Dissolution of Fe(III) (Hydr)oxides by Cysteine: Kinetics and Mechanism. Journal of Colloid and Interface Science, 1997, 194, 194-206.	9.4	83
255	Steady-state modelling of biogeochemical processes in columns with aquifer material 1. Speciation and mass balances. Chemical Geology, 1996, 133, 15-28.	3.3	17
256	Bromate formation in advanced oxidation processes. Journal - American Water Works Association, 1996, 88, 53-65.	0.3	79
257	Bromate Formation during Ozonization of Bromide-Containing Waters: Interaction of Ozone and Hydroxyl Radical Reactions. Environmental Science & Technology, 1994, 28, 1234-1242.	10.0	508
258	Biogeochemical changes in groundwater-infiltration systems: Column studies. Geochimica Et Cosmochimica Acta, 1993, 57, 3895-3906.	3.9	112
259	Primary products of the oxygenation of iron(II) at an oxic—anoxic boundary: Nucleation, aggregation, and aging. Journal of Colloid and Interface Science, 1991, 145, 127-139.	9.4	56
260	195Pt, 119Sn and 31P NMR studies of alkyl, aryl and acyl trichlorostannate complexes of platinum(II). The crystal structure of trans-[Pt(SnCl3)(COC6H5)(PEt3)2]. Journal of Organometallic Chemistry, 1985, 295, 239-256.	1.8	38

16