
Daniel C Masison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864364/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prion-Inducing Domain of Yeast Ure2p and Protease Resistance of Ure2p in Prion-Containing Cells. Science, 1995, 270, 93-95.	12.6	370
2	Guanidine Hydrochloride Inhibits Hsp104 Activity In Vivo: A Possible Explanation for Its Effect in Curing Yeast Prions. Current Microbiology, 2001, 43, 7-10.	2.2	219
3	A Role for Cytosolic Hsp70 in Yeast [<i>PSI</i> +] Prion Propagation and [<i>PSI</i> +] as a Cellular Stress. Genetics, 2000, 156, 559-570.	2.9	197
4	Antagonistic Interactions between Yeast [PSI +] and [URE3] Prions and Curing of [URE3] by Hsp70 Protein Chaperone Ssa1p but Not by Ssa2p. Molecular and Cellular Biology, 2002, 22, 3590-3598.	2.3	178
5	[PSI] and [URE3] as yeast prions. Yeast, 1995, 11, 1671-1685.	1.7	162
6	Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6915-6920.	7.1	145
7	N-Terminal Domain of Yeast Hsp104 Chaperone Is Dispensable for Thermotolerance and Prion Propagation but Necessary for Curing Prions by Hsp104 Overexpression. Genetics, 2006, 173, 611-620.	2.9	140
8	Hsp70 Structure, Function, Regulation and Influence on Yeast Prions. Protein and Peptide Letters, 2009, 16, 571-581.	0.9	120
9	Propagation of Saccharomyces cerevisiae [PSI +] Prion Is Impaired by Factors That Regulate Hsp70 Substrate Binding. Molecular and Cellular Biology, 2004, 24, 3928-3937.	2.3	114
10	Uncovering a Region of Heat Shock Protein 90 Important for Client Binding in E.Âcoli and Chaperone Function in Yeast. Molecular Cell, 2013, 49, 464-473.	9.7	112
11	Independent Regulation of Hsp70 and Hsp90 Chaperones by Hsp70/Hsp90-organizing Protein Sti1 (Hop1). Journal of Biological Chemistry, 2005, 280, 34178-34185.	3.4	100
12	<i>Saccharomyces cerevisiae</i> Hsp70 Mutations Affect [<i>PSI</i> +] Prion Propagation and Cell Growth Differently and Implicate Hsp40 and Tetratricopeptide Repeat Cochaperones in Impairment of [<i>PSI</i> +]. Genetics, 2003, 163, 495-506.	2.9	96
13	Role for Hsp70 Chaperone in Saccharomyces cerevisiae Prion Seed Replication. Eukaryotic Cell, 2005, 4, 289-297.	3.4	91
14	Functional and physical interaction between yeast Hsp90 and Hsp70. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2210-E2219.	7.1	80
15	Ure2p Function Is Enhanced by Its Prion Domain in Saccharomyces cerevisiae. Genetics, 2007, 176, 1557-1565.	2.9	72
16	Functionally Redundant Isoforms of a Yeast Hsp70 Chaperone Subfamily Have Different Antiprion Effects. Genetics, 2008, 179, 1301-1311.	2.9	71
17	Sti1 Regulation of Hsp70 and Hsp90 Is Critical for Curing of <i>Saccharomyces cerevisiae</i> [<i>PSI⁺</i>] Prions by Hsp104. Molecular and Cellular Biology, 2010, 30, 3542-3552.	2.3	69
18	Functions of Yeast Hsp40 Chaperone Sis1p Dispensable for Prion Propagation but Important for Prion Curing and Protection From Prion Toxicity. Genetics, 2011, 188, 565-577.	2.9	65

DANIEL C MASISON

#	Article	IF	CITATIONS
19	Hsp40s Specify Functions of Hsp104 and Hsp90 Protein Chaperone Machines. PLoS Genetics, 2014, 10, e1004720.	3.5	62
20	Prokaryotic Chaperones Support Yeast Prions and Thermotolerance and Define Disaggregation Machinery Interactions. Genetics, 2012, 192, 185-193.	2.9	58
21	Single methyl group determines prion propagation and protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and Ssa2p. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13665-13670.	7.1	55
22	Primate Chaperones Hsc70 (Constitutive) and Hsp70 (Induced) Differ Functionally in Supporting Growth and Prion Propagation in Saccharomyces cerevisiae. Genetics, 2006, 172, 851-861.	2.9	52
23	Influence of Hsp70s and their regulators on yeast prion propagation. Prion, 2009, 3, 65-73.	1.8	45
24	Hsp104 disaggregase at normal levels cures many [PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4193-E4202.	7.1	40
25	Curing of Yeast [<i>URE3</i>] Prion by the Hsp40 Cochaperone Ydj1p Is Mediated by Hsp70. Genetics, 2009, 181, 129-137.	2.9	37
26	Modulation and elimination of yeast prions by protein chaperones and co-chaperones Prion, 2011, 5, 245-249.	1.8	36
27	Human J-protein DnaJB6b Cures a Subset of Saccharomyces cerevisiae Prions and Selectively Blocks Assembly of Structurally Related Amyloids. Journal of Biological Chemistry, 2016, 291, 4035-4047.	3.4	31
28	An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nature Communications, 2017, 8, 15328.	12.8	31
29	Yeast prions are useful for studying protein chaperones and protein quality control. Prion, 2015, 9, 174-183.	1.8	29
30	Modulation and elimination of yeast prions by protein chaperones and co-chaperones Prion, 2011, 5, 245-249.	1.8	25
31	Sequestration of Sup35 by Aggregates of huntingtin Fragments Causes Toxicity of [PSI+] Yeast. Journal of Biological Chemistry, 2012, 287, 23346-23355.	3.4	25
32	Application of the FLP/FRT system for conditional gene deletion in yeast <i>Saccharomyces cerevisiae</i> . Yeast, 2011, 28, 673-681.	1.7	24
33	The BAG Homology Domain of Snl1 Cures Yeast Prion [URE3] Through Regulation of Hsp70 Chaperones. G3: Genes, Genomes, Genetics, 2014, 4, 461-470.	1.8	17
34	Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Genetics, 2018, 209, 1139-1154.	2.9	17
35	Schizosaccharomyces pombe Disaggregation Machinery Chaperones Support Saccharomyces cerevisiae Growth and Prion Propagation. Eukaryotic Cell, 2013, 12, 739-745.	3.4	15
36	Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. Journal of Biological Chemistry, 2018, 293, 3104-3117.	3.4	13

DANIEL C MASISON

#	Article	IF	CITATIONS
37	Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates. Molecular and Cellular Biology, 2018, 38, .	2.3	10
38	Yeast J-protein Sis1 prevents prion toxicity by moderating depletion of prion protein. Genetics, 2021, 219, .	2.9	9
39	Hsp70-nucleotide exchange factor (NEF) Fes1 has non-NEF roles in degradation of gluconeogenic enzymes and cell wall integrity. PLoS Genetics, 2019, 15, e1008219.	3.5	7
40	Molecular dynamics simulations of Hsp40ÂJ-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing <i>in vivo</i> of the yeast prion [<i>URE3</i>]. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1764-1775.	3.5	5
41	Mutations Outside the Ure2 Amyloid-Forming Region Disrupt [URE3] Prion Propagation and Alter Interactions with Protein Quality Control Factors. Molecular and Cellular Biology, 2020, 40, .	2.3	4
42	Huntingtin Polyglutamine Fragments Are a Substrate for Hsp104 in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2021, 41, e0012221.	2.3	4
43	Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast. Journal of Molecular Biology, 2020, 432, 4673-4689.	4.2	3
44	Perfecting precision of predicting prion propensity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6362-6363.	7.1	1