Pauline Maillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864242/publications.pdf

Version: 2024-02-01

69 papers 4,352 citations

33 h-index 63 g-index

83 all docs

83 docs citations

83 times ranked 7150 citing authors

#	Article	IF	CITATIONS
1	Instrumental validation of free water, peakâ€width of skeletonized mean diffusivity, and white matter hyperintensities: MarkVCID neuroimaging kits. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2022, 14, e12261.	2.4	25
2	Relations of Metabolic Health and Obesity to Brain Aging in Young to Middleâ€Aged Adults. Journal of the American Heart Association, 2022, 11, e022107.	3.7	9
3	Digital sleep measures and white matter health in the Framingham Heart Study. Exploration of Medicine, 2021, 2, 253-267.	1.5	7
4	Coronary Artery Calcium Assessed Years Before Was Positively Associated With Subtle White Matter Injury of the Brain in Asymptomatic Middle-Aged Men: The Framingham Heart Study. Circulation: Cardiovascular Imaging, 2021, 14, e011753.	2.6	4
5	Elevated complement mediator levels in endothelial-derived plasma exosomes implicate endothelial innate inflammation in diminished brain function of aging humans. Scientific Reports, 2021, 11, 16198.	3.3	14
6	MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols. Alzheimer's and Dementia, 2021, 17, 716-725.	0.8	45
7	Slow-Wave Sleep and MRI Markers of Brain Aging in a Community-Based Sample. Neurology, 2021, 96, e1462-e1469.	1.1	28
8	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11 , 4796.	12.8	61
9	A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer's disease. Scientific Reports, 2020, 10, 12063.	3.3	11
10	Association of vascular brain injury, neurodegeneration, amyloid, and cognitive trajectory. Neurology, 2020, 95, e2622-e2634.	1.1	27
11	Association of plasma abeta and tau levels in relation to cognition and brain structure in a diverse community. Alzheimer's and Dementia, 2020, 16, e039180.	0.8	O
12	PSMD, a novel marker of small vessel disease, and its association with cognitive function in the community. Alzheimer's and Dementia, 2020, 16, e041993.	0.8	0
13	Plasma YKL40 as a biomarker for brain aging and injury in three community cohorts. Alzheimer's and Dementia, 2020, 16, e042094.	0.8	1
14	Structural brain network efficiency and cognitive processing speed in healthy aging. Alzheimer's and Dementia, 2020, 16, e044563.	0.8	1
15	Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke, 2020, 51, 2111-2121.	2.0	71
16	An IL-18-centered inflammatory network as a biomarker for cerebral white matter injury. PLoS ONE, 2020, 15, e0227835.	2.5	37
17	A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Communications Biology, 2019, 2, 285.	4.4	27
18	Plasma totalâ€ŧau as a biomarker of stroke risk in the community. Annals of Neurology, 2019, 86, 463-467.	5.3	15

#	Article	IF	Citations
19	White Matter Hyperintensities and Hippocampal Atrophy in Relation to Cognition: The 90+ Study. Journal of the American Geriatrics Society, 2019, 67, 1827-1834.	2.6	28
20	Association of Accelerometer-Measured Light-Intensity Physical Activity With Brain Volume. JAMA Network Open, 2019, 2, e192745.	5.9	89
21	Cerebral white matter free water. Neurology, 2019, 92, e2221-e2231.	1.1	56
22	Vascular Burden Score Impacts Cognition Independent of Amyloid PET and MRI Measures of Alzheimer's Disease and Vascular Brain Injury. Journal of Alzheimer's Disease, 2019, 68, 187-196.	2.6	25
23	ICâ€Pâ€031: REDUCED STRUCTURAL BRAIN NETWORK MODULARITY IN HEALTHY AGING: RESULTS FROM THE FRAMINGHAM HEART STUDY. Alzheimer's and Dementia, 2019, 15, P37.	0.8	0
24	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
25	Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology, 2019, 92, .	1.1	30
26	Vascular disease and cerebral amyloid deposition. Neurology, 2018, 90, 635-636.	1,1	6
27	Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nature Communications, 2018, 9, 3945.	12.8	31
28	Circulating Vascular Growth Factors and Magnetic Resonance Imaging Markers of Small Vessel Disease and Atrophy in Middle-Aged Adults. Stroke, 2018, 49, 2227-2229.	2.0	12
29	Circulating cortisol and cognitive and structural brain measures. Neurology, 2018, 91, e1961-e1970.	1.1	90
30	Exome Chip Analysis Identifies Low-Frequency and Rare Variants in <i>MRPL38</i> for White Matter Hyperintensities on Brain Magnetic Resonance Imaging. Stroke, 2018, 49, 1812-1819.	2.0	17
31	Cerebral tract integrity relates to white matter hyperintensities, cortex volume, and cognition. Neurobiology of Aging, 2018, 72, 14-22.	3.1	37
32	Thrombolysis for acute ischemic stroke in patients with leukoaraiosis. Neurology, 2017, 88, 612-613.	1.1	4
33	Independent value added by diffusion MRI for prediction of cognitive function in older adults. Neurolmage: Clinical, 2017, 14, 166-173.	2.7	19
34	Aortic Stiffness, Increased White Matter Free Water, and Altered Microstructural Integrity. Stroke, 2017, 48, 1567-1573.	2.0	92
35	Age-related white matter integrity differences in oldest-old without dementia. Neurobiology of Aging, 2017, 56, 108-114.	3.1	36
36	Role of Bark Color on Stem Temperature and Carbohydrate Management during Dormancy Break in Persian Walnut. Journal of the American Society for Horticultural Science, 2017, 142, 454-463.	1.0	10

#	Article	IF	Citations
37	Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults. Neurobiology of Aging, 2016, 48, 48-52.	3.1	32
38	\hat{l}^2 -amyloid, hippocampal atrophy and their relation to longitudinal brain change in cognitively normal individuals. Neurobiology of Aging, 2016, 40, 173-180.	3.1	27
39	Effects of Arterial Stiffness on Brain Integrity in Young Adults From the Framingham Heart Study. Stroke, 2016, 47, 1030-1036.	2.0	99
40	Association of Aortic Stiffness With Cognition and Brain Aging in Young and Middle-Aged Adults. Hypertension, 2016, 67, 513-519.	2.7	127
41	Measurement of Extracellular Ion Fluxes Using the Ion-selective Self-referencing Microelectrode Technique. Journal of Visualized Experiments, 2015, , e52782.	0.3	3
42	Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimer's and Dementia, 2015, 11, 740-756.	0.8	142
43	Glucose indices are associated with cognitive and structural brain measures in young adults. Neurology, 2015, 84, 2329-2337.	1.1	115
44	Cooccurrence of vascular risk factors and late-life white-matter integrity changes. Neurobiology of Aging, 2015, 36, 1670-1677.	3.1	31
45	Lower Extremity Overuse Conditions Affecting Figure Skaters During Daily Training. Orthopaedic Journal of Sports Medicine, 2015, 3, 232596711559651.	1.7	18
46	Plasma \hat{l}^2 -amyloid and MRI markers of cerebral small vessel disease. Neurology, 2014, 83, 2038-2045.	1.1	24
47	White Matter Hyperintensities and Their Penumbra Lie Along a Continuum of Injury in the Aging Brain. Stroke, 2014, 45, 1721-1726.	2.0	148
48	Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx. Integrative Biology (United Kingdom), 2014, 6, 662-672.	1.3	15
49	P3-200: GREATER LONGITUDINAL WHITE MATTER DEGENERATION IS ASSOCIATED WITH GREATER CONCURRENT COGNITIVE DECLINE: A DIFFUSION TENSOR IMAGING STUDY. , 2014, 10, P703-P703.		0
50	FLAIR and Diffusion MRI Signals Are Independent Predictors of White Matter Hyperintensities. American Journal of Neuroradiology, 2013, 34, 54-61.	2.4	143
51	Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 2012, 79, 642-650.	1.1	91
52	The Contributions of MRI-Based Measures of Gray Matter, White Matter Hyperintensity, and White Matter Integrity to Late-Life Cognition. American Journal of Neuroradiology, 2012, 33, 1797-1803.	2.4	18
53	Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurology, The, 2012, 11, 1039-1047.	10.2	269
54	Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Frontiers in Human Neuroscience, 2012, 6, 56.	2.0	100

#	Article	IF	CITATIONS
55	Coevolution of white matter hyperintensities and cognition in the elderly. Neurology, 2012, 79, 442-448.	1.1	137
56	Genomeâ€wide association studies of cerebral white matter lesion burden. Annals of Neurology, 2011, 69, 928-939.	5.3	201
57	Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. British Journal of Psychiatry, 2011, 198, 199-205.	2.8	147
58	White Matter Hyperintensity Penumbra. Stroke, 2011, 42, 1917-1922.	2.0	185
59	Antihypertensive Treatment and Change in Blood Pressure Are Associated With the Progression of White Matter Lesion Volumes. Circulation, 2011, 123, 266-273.	1.6	166
60	Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study. BMJ: British Medical Journal, 2011, 342, c7357-c7357.	2.3	204
61	Joint Effect of White Matter Lesions and Hippocampal Volumes on Severity of Cognitive Decline: The 3C-Dijon MRI Study. Journal of Alzheimer's Disease, 2010, 20, 453-463.	2.6	97
62	Association of White-Matter Lesions with Brain Atrophy Markers: The Three-City Dijon MRI Study. Cerebrovascular Diseases, 2009, 28, 177-184.	1.7	65
63	Cerebral White Matter Lesions Are Associated With the Risk of Stroke But Not With Other Vascular Events. Stroke, 2009, 40, 2327-2331.	2.0	62
64	Apolipoprotein E Genotype Is Related to Progression of White Matter Lesion Load. Stroke, 2009, 40, 3186-3190.	2.0	58
65	White matter lesions volume and motor performances in the elderly. Annals of Neurology, 2009, 65, 706-715.	5.3	109
66	Longitudinal follow-up of individual white matter hyperintensities in a large cohort of elderly. Neuroradiology, 2009, 51, 209-220.	2.2	35
67	An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2,) Tj ETQq1 databases. Neuroradiology, 2008, 50, 31-42.	l 0.78431 2.2	4 rgBT /Ove 86
68	White Matter Lesions as a Predictor of Depression in the Elderly: The 3C-Dijon Study. Biological Psychiatry, 2008, 63, 663-669.	1.3	137
69	Neuroimaging correlates of subjective memory deficits in a community population. Neurology, 2008, 70, 1601-1607.	1.1	104