
Pauline Maillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8864242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurology, The, 2012, 11, 1039-1047.	10.2	269
2	Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study. BMJ: British Medical Journal, 2011, 342, c7357-c7357.	2.3	204
3	Genomeâ€wide association studies of cerebral white matter lesion burden. Annals of Neurology, 2011, 69, 928-939.	5.3	201
4	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
5	White Matter Hyperintensity Penumbra. Stroke, 2011, 42, 1917-1922.	2.0	185
6	Antihypertensive Treatment and Change in Blood Pressure Are Associated With the Progression of White Matter Lesion Volumes. Circulation, 2011, 123, 266-273.	1.6	166
7	White Matter Hyperintensities and Their Penumbra Lie Along a Continuum of Injury in the Aging Brain. Stroke, 2014, 45, 1721-1726.	2.0	148
8	Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. British Journal of Psychiatry, 2011, 198, 199-205.	2.8	147
9	FLAIR and Diffusion MRI Signals Are Independent Predictors of White Matter Hyperintensities. American Journal of Neuroradiology, 2013, 34, 54-61.	2.4	143
10	Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimer's and Dementia, 2015, 11, 740-756.	0.8	142
11	White Matter Lesions as a Predictor of Depression in the Elderly: The 3C-Dijon Study. Biological Psychiatry, 2008, 63, 663-669.	1.3	137
12	Coevolution of white matter hyperintensities and cognition in the elderly. Neurology, 2012, 79, 442-448.	1.1	137
13	Association of Aortic Stiffness With Cognition and Brain Aging in Young and Middle-Aged Adults. Hypertension, 2016, 67, 513-519.	2.7	127
14	Glucose indices are associated with cognitive and structural brain measures in young adults. Neurology, 2015, 84, 2329-2337.	1.1	115
15	White matter lesions volume and motor performances in the elderly. Annals of Neurology, 2009, 65, 706-715.	5.3	109
16	Neuroimaging correlates of subjective memory deficits in a community population. Neurology, 2008, 70, 1601-1607.	1.1	104
17	Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Frontiers in Human Neuroscience, 2012, 6, 56.	2.0	100
18	Effects of Arterial Stiffness on Brain Integrity in Young Adults From the Framingham Heart Study. Stroke, 2016, 47, 1030-1036.	2.0	99

PAULINE MAILLARD

#	Article	IF	CITATIONS
19	Joint Effect of White Matter Lesions and Hippocampal Volumes on Severity of Cognitive Decline: The 3C-Dijon MRI Study. Journal of Alzheimer's Disease, 2010, 20, 453-463.	2.6	97
20	Aortic Stiffness, Increased White Matter Free Water, and Altered Microstructural Integrity. Stroke, 2017, 48, 1567-1573.	2.0	92
21	Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 2012, 79, 642-650.	1.1	91
22	Circulating cortisol and cognitive and structural brain measures. Neurology, 2018, 91, e1961-e1970.	1.1	90
23	Association of Accelerometer-Measured Light-Intensity Physical Activity With Brain Volume. JAMA Network Open, 2019, 2, e192745.	5.9	89
24	An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2,) Tj ETQq0 (databases. Neuroradiology, 2008, 50, 31-42.	0 0 rgBT 2.2	Overlock 10 86
25	Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke, 2020, 51, 2111-2121.	2.0	71
26	Association of White-Matter Lesions with Brain Atrophy Markers: The Three-City Dijon MRI Study. Cerebrovascular Diseases, 2009, 28, 177-184.	1.7	65
27	Cerebral White Matter Lesions Are Associated With the Risk of Stroke But Not With Other Vascular Events. Stroke, 2009, 40, 2327-2331.	2.0	62
28	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
29	Apolipoprotein E Genotype Is Related to Progression of White Matter Lesion Load. Stroke, 2009, 40, 3186-3190.	2.0	58
30	Cerebral white matter free water. Neurology, 2019, 92, e2221-e2231.	1.1	56
31	MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols. Alzheimer's and Dementia, 2021, 17, 716-725.	0.8	45
32	Cerebral tract integrity relates to white matter hyperintensities, cortex volume, and cognition. Neurobiology of Aging, 2018, 72, 14-22.	3.1	37
33	An IL-18-centered inflammatory network as a biomarker for cerebral white matter injury. PLoS ONE, 2020, 15, e0227835.	2.5	37
34	Age-related white matter integrity differences in oldest-old without dementia. Neurobiology of Aging, 2017, 56, 108-114.	3.1	36
35	Longitudinal follow-up of individual white matter hyperintensities in a large cohort of elderly. Neuroradiology, 2009, 51, 209-220.	2.2	35
36	Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults. Neurobiology of Aging, 2016, 48, 48-52.	3.1	32

PAULINE MAILLARD

#	Article	IF	CITATIONS
37	Cooccurrence of vascular risk factors and late-life white-matter integrity changes. Neurobiology of Aging, 2015, 36, 1670-1677.	3.1	31
38	Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nature Communications, 2018, 9, 3945.	12.8	31
39	Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology, 2019, 92, .	1.1	30
40	White Matter Hyperintensities and Hippocampal Atrophy in Relation to Cognition: The 90+ Study. Journal of the American Geriatrics Society, 2019, 67, 1827-1834.	2.6	28
41	Slow-Wave Sleep and MRI Markers of Brain Aging in a Community-Based Sample. Neurology, 2021, 96, e1462-e1469.	1.1	28
42	β-amyloid, hippocampal atrophy and their relation to longitudinal brain change in cognitively normal individuals. Neurobiology of Aging, 2016, 40, 173-180.	3.1	27
43	A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Communications Biology, 2019, 2, 285.	4.4	27
44	Association of vascular brain injury, neurodegeneration, amyloid, and cognitive trajectory. Neurology, 2020, 95, e2622-e2634.	1.1	27
45	Vascular Burden Score Impacts Cognition Independent of Amyloid PET and MRI Measures of Alzheimer's Disease and Vascular Brain Injury. Journal of Alzheimer's Disease, 2019, 68, 187-196.	2.6	25
46	Instrumental validation of free water, peakâ€width of skeletonized mean diffusivity, and white matter hyperintensities: MarkVCID neuroimaging kits. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2022, 14, e12261.	2.4	25
47	Plasma β-amyloid and MRI markers of cerebral small vessel disease. Neurology, 2014, 83, 2038-2045.	1.1	24
48	Independent value added by diffusion MRI for prediction of cognitive function in older adults. NeuroImage: Clinical, 2017, 14, 166-173.	2.7	19
49	The Contributions of MRI-Based Measures of Gray Matter, White Matter Hyperintensity, and White Matter Integrity to Late-Life Cognition. American Journal of Neuroradiology, 2012, 33, 1797-1803.	2.4	18
50	Lower Extremity Overuse Conditions Affecting Figure Skaters During Daily Training. Orthopaedic Journal of Sports Medicine, 2015, 3, 232596711559651.	1.7	18
51	Exome Chip Analysis Identifies Low-Frequency and Rare Variants in <i>MRPL38</i> for White Matter Hyperintensities on Brain Magnetic Resonance Imaging. Stroke, 2018, 49, 1812-1819.	2.0	17
52	Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx. Integrative Biology (United Kingdom), 2014, 6, 662-672.	1.3	15
53	Plasma totalâ€ŧau as a biomarker of stroke risk in the community. Annals of Neurology, 2019, 86, 463-467.	5.3	15
54	Elevated complement mediator levels in endothelial-derived plasma exosomes implicate endothelial innate inflammation in diminished brain function of aging humans. Scientific Reports, 2021, 11, 16198.	3.3	14

PAULINE MAILLARD

#	Article	IF	CITATIONS
55	Circulating Vascular Growth Factors and Magnetic Resonance Imaging Markers of Small Vessel Disease and Atrophy in Middle-Aged Adults. Stroke, 2018, 49, 2227-2229.	2.0	12
56	A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer's disease. Scientific Reports, 2020, 10, 12063.	3.3	11
57	Role of Bark Color on Stem Temperature and Carbohydrate Management during Dormancy Break in Persian Walnut. Journal of the American Society for Horticultural Science, 2017, 142, 454-463.	1.0	10
58	Relations of Metabolic Health and Obesity to Brain Aging in Young to Middleâ€Aged Adults. Journal of the American Heart Association, 2022, 11, e022107.	3.7	9
59	Digital sleep measures and white matter health in the Framingham Heart Study. Exploration of Medicine, 2021, 2, 253-267.	1.5	7
60	Vascular disease and cerebral amyloid deposition. Neurology, 2018, 90, 635-636.	1.1	6
61	Thrombolysis for acute ischemic stroke in patients with leukoaraiosis. Neurology, 2017, 88, 612-613.	1.1	4
62	Coronary Artery Calcium Assessed Years Before Was Positively Associated With Subtle White Matter Injury of the Brain in Asymptomatic Middle-Aged Men: The Framingham Heart Study. Circulation: Cardiovascular Imaging, 2021, 14, e011753.	2.6	4
63	Measurement of Extracellular Ion Fluxes Using the Ion-selective Self-referencing Microelectrode Technique. Journal of Visualized Experiments, 2015, , e52782.	0.3	3
64	Plasma YKL40 as a biomarker for brain aging and injury in three community cohorts. Alzheimer's and Dementia, 2020, 16, e042094.	0.8	1
65	Structural brain network efficiency and cognitive processing speed in healthy aging. Alzheimer's and Dementia, 2020, 16, e044563.	0.8	1
66	P3-200: GREATER LONGITUDINAL WHITE MATTER DEGENERATION IS ASSOCIATED WITH GREATER CONCURRENT COGNITIVE DECLINE: A DIFFUSION TENSOR IMAGING STUDY. , 2014, 10, P703-P703.		0
67	ICâ€Pâ€031: REDUCED STRUCTURAL BRAIN NETWORK MODULARITY IN HEALTHY AGING: RESULTS FROM THE FRAMINGHAM HEART STUDY. Alzheimer's and Dementia, 2019, 15, P37.	0.8	0
68	Association of plasma abeta and tau levels in relation to cognition and brain structure in a diverse community. Alzheimer's and Dementia, 2020, 16, e039180.	0.8	0
69	PSMD, a novel marker of small vessel disease, and its association with cognitive function in the community. Alzheimer's and Dementia, 2020, 16, e041993.	0.8	Ο