List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8863536/publications.pdf

Version: 2024-02-01

ALEVEL V DEMCHENKO

#	Article	IF	CITATIONS
1	Streamlined access to carbohydrate building blocks: Methyl 2,4,6-tri-O-benzyl-α-d-glucopyranoside. Carbohydrate Research, 2022, 511, 108482.	2.3	4
2	Transitionâ€Metalâ€Mediated Glycosylation with Thioglycosides. Chemistry - A European Journal, 2022, 28,	3.3	9
3	Frontispiece: Transitionâ€Metalâ€Mediated Glycosylation with Thioglycosides. Chemistry - A European Journal, 2022, 28, .	3.3	0
4	Direct Synthesis of Glycans Containing Challenging ManNAcA Residues. Journal of Organic Chemistry, 2022, 87, 271-280.	3.2	4
5	Nâ€Alkylated Analogues of Indolylthio Glycosides as Glycosyl Donors with Enhanced Activation Profile. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
6	HPLCâ€Based Automated Synthesis of Glycans in Solution. Chemistry - A European Journal, 2022, 28, .	3.3	6
7	Development of a Simple and Effective Lipid-A Antagonist Based on Computational Prediction. ACS Infectious Diseases, 2022, 8, 1171-1178.	3.8	1
8	Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chemical Reviews, 2022, 122, 11701-11758.	47.7	34
9	A Streamlined Regenerative Glycosylation Reaction: Direct, Acidâ€Free Activation of Thioglycosides. Chemistry - A European Journal, 2021, 27, 354-361.	3.3	7
10	Bismuth(<scp>iii</scp>) triflate as a novel and efficient activator for glycosyl halides. Organic and Biomolecular Chemistry, 2021, 19, 3220-3233.	2.8	12
11	Nanoporous Gold Monolith for High Loading of Unmodified Doxorubicin and Sustained Co-Release of Doxorubicin-Rapamycin. Nanomaterials, 2021, 11, 208.	4.1	5
12	HPLC-Based Automated Oligosaccharide Synthesis. , 2021, , 623-636.		3
13	Palladium(<scp>ii</scp>)-assisted activation of thioglycosides. Organic and Biomolecular Chemistry, 2021, 19, 2044-2054.	2.8	6
14	A versatile approach to the synthesis of glycans containing mannuronic acid residues. Organic and Biomolecular Chemistry, 2021, 19, 2731-2743.	2.8	7
15	Recent Advances in Stereocontrolled Mannosylation: Focus on Glycans Comprising Acidic and/or Amino Sugars. Chemical Record, 2021, 21, 3278-3294.	5.8	5
16	Defining the Scope of the Acidâ€Catalyzed Glycosidation of Glycosyl Bromides. Chemistry - A European Journal, 2020, 26, 1042-1051.	3.3	13
17	<i>Staphylococcus aureus</i> capsular polysaccharides: a structural and synthetic perspective. Organic and Biomolecular Chemistry, 2020, 18, 783-798.	2.8	20
18	Synthesis of 2-azido-2-deoxy- and 2-acetamido-2-deoxy-D-manno derivatives as versatile building blocks. Carbohydrate Research, 2020, 488, 107900.	2.3	6

#	Article	IF	CITATIONS
19	Synthesis of βâ€Glucosides with 3â€ <i>O</i> â€Picoloylâ€Protected Glycosyl Donors in the Presence of Excess Triflic Acid: A Mechanistic Study. Chemistry - A European Journal, 2020, 26, 2927-2937.	3.3	16
20	Synthesis of βâ€Glucosides with 3â€ <i>O</i> â€Picoloylâ€Protected Glycosyl Donors in the Presence of Excess Triflic Acid: Defining the Scope. Chemistry - A European Journal, 2020, 26, 2938-2946.	3.3	6
21	Defining the Scope of the Acid atalyzed Glycosidation of Glycosyl Bromides. Chemistry - A European Journal, 2020, 26, 963-963.	3.3	5
22	HPLC-assisted automated oligosaccharide synthesis: the implementation of the two-way split valve as a mode of complete automation. Chemical Communications, 2020, 56, 1333-1336.	4.1	23
23	Stereocontrolled α-Galactosylation under Cooperative Catalysis. Journal of Organic Chemistry, 2020, 85, 15936-15944.	3.2	13
24	A pH sensitive thiolated β-cyclodextrin-modified nanoporous gold for controlled release of doxorubicin. Journal of Drug Delivery Science and Technology, 2020, 60, 101985.	3.0	8
25	The development of a dedicated polymer support for the solid-phase oligosaccharide synthesis. Chemical Communications, 2020, 56, 10568-10571.	4.1	9
26	A versatile approach to the synthesis of mannosamine glycosides. Organic and Biomolecular Chemistry, 2020, 18, 6682-6695.	2.8	14
27	Synthesis of oligosaccharide fragments of capsular polysaccharide <i>Staphylococcus aureus</i> type 8. Journal of Carbohydrate Chemistry, 2020, 39, 301-333.	1.1	5
28	Adhesion layer-free attachment of gold on silicon wafer and its application in localized surface plasmon resonance-based biosensing. Sensors and Actuators A: Physical, 2020, 312, 112155.	4.1	5
29	Picoloyl protecting group in synthesis: focus on a highly chemoselective catalytic removal. Organic and Biomolecular Chemistry, 2020, 18, 4863-4871.	2.8	10
30	A Highly Efficient Glycosidation of Glycosyl Chlorides by Using Cooperative Silver(I) Oxide–Triflic Acid Catalysis. Chemistry - A European Journal, 2020, 26, 8053-8063.	3.3	17
31	Indolylthio Glycosides As Effective Building Blocks for Chemical Glycosylation. Journal of Organic Chemistry, 2020, 85, 15885-15894.	3.2	6
32	Chemical synthesis of human milk oligosaccharides: lacto- <i>N</i> -neohexaose (Galβ1 →) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 222 1
33	Hydrogen-bond-mediated aglycone delivery (HAD) and related methods in carbohydrate chemistry. Carbohydrate Chemistry, 2020, , 93-116.	0.3	5
34	Recent Advances in the Application of Glycan-Modified Self-Assembled Monolayers. Advances in Chemistry Research, 2020, 60, 95-119.	0.1	0
35	Bromineâ€Promoted Glycosidation of Conformationally Superarmed Thioglycosides. Chemistry - A European Journal, 2019, 25, 11831-11836.	3.3	10

The chemical synthesis of human milk oligosaccharides: Lacto-N-neotetraose (Galî²1→4GlcNAcî²1→3Galî²1→4Glc), Carbohydrate Research, 2019, 483, 107743.

#	Article	IF	CITATIONS
37	Hydrolysis of Glycosyl Thioimidates by Glycoside Hydrolase Requires Remote Activation for Efficient Activity. Catalysts, 2019, 9, 826.	3.5	5
38	Direct Glycosidation of 2â€Azidoâ€2â€deoxyglycosyl Nitrates. European Journal of Organic Chemistry, 2019, 2019, 6413-6416.	2.4	5
39	Triflic acid-mediated synthesis of thioglycosides. Organic and Biomolecular Chemistry, 2019, 17, 8379-8383.	2.8	27
40	Carbohydrate Experiments in the Organic Laboratory: A Robust Synthesis and Modification of Thioglycosides. Journal of Chemical Education, 2019, 96, 2322-2325.	2.3	3
41	The chemical synthesis of human milk oligosaccharides: Lacto-N-tetraose (Gall²1→3GlcNAcl²1→3Gall²1→4Glc). Carbohydrate Research, 2019, 486, 107824.	[•] 2.3	29
42	Manual and Automated Syntheses of the N-Linked Glycoprotein Core Glycans. Journal of Organic Chemistry, 2019, 84, 6576-6588.	3.2	16
43	Synthesis of carbohydrate building blocks <i>via</i> regioselective uniform protection/deprotection strategies. Organic and Biomolecular Chemistry, 2019, 17, 4934-4950.	2.8	48
44	Chemical Synthesis of Human Milk Oligosaccharides: Lacto- <i>N</i> -hexaose Galβ1→3GlcNAcβ1→3 [Galβ1→4GlcNAcβ1→6] Galβ1→4Glc. Journal of Organic Chemistry, 2019, 84, 16192-16198.	3.2	16
45	Synthesis of D-FucNAc-D-ManNAcA Disaccharides Based On the Capsular Polysaccharides <i>Staphylococcus aureus</i> Type 5 and 8. Journal of Organic Chemistry, 2019, 84, 216-227.	3.2	8
46	Koenigs–Knorr Glycosylation Reaction Catalyzed by Trimethylsilyl Trifluoromethanesulfonate. Chemistry - A European Journal, 2019, 25, 1461-1465.	3.3	21
47	Glycosyl nitrates in synthesis: streamlined access to glucopyranose building blocks differentiated at C-2. Organic and Biomolecular Chemistry, 2018, 16, 3596-3604.	2.8	7
48	Immobilization of glycans on solid surfaces for application in glycomics. Journal of Carbohydrate Chemistry, 2018, 37, 225-249.	1.1	11
49	Regenerative Glycosylation. Journal of Organic Chemistry, 2018, 83, 374-381.	3.2	28
50	lron(<scp>iii</scp>) chloride-catalyzed activation of glycosyl chlorides. Organic and Biomolecular Chemistry, 2018, 16, 9133-9137.	2.8	21
51	Investigation of the H-bond-mediated aglycone delivery reaction in application to the synthesis of \hat{l}^2 -glucosides. Carbohydrate Research, 2018, 470, 1-7.	2.3	13
52	Investigation of Glycosyl Nitrates as Building Blocks for Chemical Glycosylation. European Journal of Organic Chemistry, 2018, 2018, 6699-6705.	2.4	5
53	Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chemical Reviews, 2018, 118, 8105-8150.	47.7	238
54	Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques. Nanomaterials, 2018, 8, 171.	4.1	60

АLEXEI V DEMCHENKO

#	Article	IF	CITATIONS
55	S-Benzimidazolyl (SBiz) Imidates as a Platform for Oligosaccharide Synthesis via Active–Latent, Armed–Disarmed, Selective, and Orthogonal Activations. Journal of Organic Chemistry, 2017, 82, 1904-1911.	3.2	12
56	Conformationally superarmed S-ethyl glycosyl donors as effective building blocks for chemoselective oligosaccharide synthesis in one pot. Organic and Biomolecular Chemistry, 2017, 15, 559-563.	2.8	12
57	Extending the S-benzimidazolyl (SBiz) platform: N-alkylated SBiz glycosyl donors with the universal activation profile. Pure and Applied Chemistry, 2017, 89, 1321-1331.	1.9	2
58	OFox imidates as versatile glycosyl donors for chemical glycosylation. Organic and Biomolecular Chemistry, 2017, 15, 348-359.	2.8	16
59	Intramolecular glycosylation. Beilstein Journal of Organic Chemistry, 2017, 13, 2028-2048.	2.2	30
60	Picoloyl-Protecting Group in Oligosaccharide Synthesis. , 2017, , 3-10.		1
61	Templated Oligosaccharide Synthesis: Driving Forces and Mechanistic Aspects. Journal of Organic Chemistry, 2016, 81, 12232-12246.	3.2	4
62	Templated Oligosaccharide Synthesis: The Linker Effect on the Stereoselectivity of Glycosylation. Organic Letters, 2016, 18, 2316-2319.	4.6	16
63	Electrochemical impedance spectroscopy study of Concanavalin A binding to self-assembled monolayers of mannosides on gold wire electrodes. Journal of Electroanalytical Chemistry, 2016, 780, 311-320.	3.8	17
64	HPLC-Assisted Automated Oligosaccharide Synthesis: Implementation of the Autosampler as a Mode of the Reagent Delivery. Journal of Organic Chemistry, 2016, 81, 8796-8805.	3.2	41
65	Electrochemical impedance spectroscopy study of carbohydrate-terminated alkanethiol monolayers on nanoporous gold: Implications for pore wetting. Journal of Electroanalytical Chemistry, 2016, 782, 174-181.	3.8	16
66	Synthesis of the Repeating Unit of Capsular Polysaccharide <i>Staphylococcus aureus</i> Type 5 To Study Chemical Activation and Conjugation of Native CP5. Journal of Organic Chemistry, 2016, 81, 5981-5987.	3.2	15
67	2,3-Di-O-picolinyl building blocks as glycosyl donors with switchable stereoselectivity. Organic and Biomolecular Chemistry, 2016, 14, 3159-3169.	2.8	11
68	Hydrogenâ€Bondâ€Mediated Aglycone Delivery (HAD): A Highly Stereoselective Synthesis of 1,2â€ <i>cis</i> αâ€ <scp>D</scp> â€Glucosides from Common Glycosyl Donors in the Presence of Bromine. Chemistry - A European Journal, 2015, 21, 6572-6581.	3.3	56
69	Selective capture of glycoproteins using lectin-modified nanoporous gold monolith. Journal of Chromatography A, 2015, 1423, 19-30.	3.7	22
70	Halobenzoyl groups in glycosylation: effect on stereoselectivity and reactivity of glycosyl donors. Russian Chemical Bulletin, 2015, 64, 1107-1118.	1.5	7
71	Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps. Nanotechnology, 2015, 26, 085602.	2.6	20
72	A Concise Synthesis of the Repeating Unit of Capsular Polysaccharide <i>Staphylococcus aureus</i> Type 8. Organic Letters, 2015, 17, 2382-2384.	4.6	27

#	Article	IF	CITATIONS
73	Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chemical Science, 2015, 6, 2687-2704.	7.4	358
74	Automated Chemical Synthesis of Oligosaccharides and Glycoconjugates. , 2015, , 247-276.		3
75	6- <i>O</i> -Picolinyl and 6- <i>O</i> -Picoloyl Building Blocks As Glycosyl Donors with Switchable Stereoselectivity. Organic Letters, 2015, 17, 4448-4451.	4.6	33
76	Glycosyl alkoxythioimidates as building blocks for glycosylation: a reactivity study. Carbohydrate Research, 2015, 403, 115-122.	2.3	6
77	Electrochemical synthesis of nanostructured gold film for the study of carbohydrate–lectin interactions using localized surface plasmon resonance spectroscopy. Carbohydrate Research, 2015, 405, 55-65.	2.3	25
78	Hydrogen Bond Mediated Aglycone Delivery: Synthesis of Linear and Branched αâ€Glucans. Angewandte Chemie - International Edition, 2014, 53, 10453-10456.	13.8	86
79	2-Acylamido Analogues of N-Acetylglucosamine Prime Formation of Chitin Oligosaccharides by Yeast Chitin Synthase 2. Journal of Biological Chemistry, 2014, 289, 12835-12841.	3.4	13
80	Modulating LPS Signal Transduction at the LPS Receptor Complex with Synthetic Lipid A Analogues. Advances in Carbohydrate Chemistry and Biochemistry, 2014, 71, 339-389.	0.9	8
81	Square-wave voltammetry assays for glycoproteins on nanoporous gold. Journal of Electroanalytical Chemistry, 2014, 717-718, 47-60.	3.8	24
82	Regenerative Glycosylation under Nucleophilic Catalysis. Journal of the American Chemical Society, 2014, 136, 921-923.	13.7	48
83	Hydrogen-Bond-Mediated Aglycone Delivery: Focus on β-Mannosylation. Organic Letters, 2014, 16, 716-719.	4.6	138
84	Surface-Tethered Iterative Carbohydrate Synthesis: A Spacer Study. Journal of Organic Chemistry, 2013, 78, 6849-6857.	3.2	18
85	Electrochemical characterization of globotriose-containing self-assembled monolayers on nanoporous gold and their binding of soybean agglutinin. Carbohydrate Research, 2013, 373, 9-17.	2.3	12
86	Superarming of Glycosyl Donors by Combined Neighboring and Conformational Effects. Organic Letters, 2013, 15, 4904-4907.	4.6	26
87	A Comparative Study of Glycosyl Thioimidates as Building Blocks for Chemical Glycosylation. Journal of Carbohydrate Chemistry, 2013, 32, 360-379.	1.1	6
88	Psychosine, the cytotoxic sphingolipid that accumulates in globoid cell leukodystrophy, alters membrane architecture. Journal of Lipid Research, 2013, 54, 3303-3311.	4.2	61
89	Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. Journal of Carbohydrate Chemistry, 2013, 32, 1-43.	1.1	127
90	Reactive thioglucoside substrates for β-glucosidase. Archives of Biochemistry and Biophysics, 2013, 537, 1-4.	3.0	6

АLEXEI V DEMCHENKO

#	Article	IF	CITATIONS
91	O-Benzoxazolyl imidates as versatile glycosyl donors for chemical glycosylation. Organic and Biomolecular Chemistry, 2013, 11, 4068.	2.8	24
92	Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neurolmage, 2013, 64, 257-266.	4.2	199
93	Noninvasive photoacoustic computed tomography of mouse brain metabolism <i>in vivo</i> . Proceedings of SPIE, 2013, , .	0.8	4
94	Lectin–carbohydrate interactions on nanoporous gold monoliths. New Journal of Chemistry, 2013, 37, 2150.	2.8	17
95	From Stereocontrolled Glycosylation to Expeditious Oligosaccharide Synthesis. Trends in Glycoscience and Glycotechnology, 2013, 25, 13-42.	0.1	30
96	HPLC-Assisted Automated Oligosaccharide Synthesis. Organic Letters, 2012, 14, 3036-3039.	4.6	85
97	How O-Substitution of Sialyl Donors Affects Their Stereoselectivity. Organic Letters, 2012, 14, 1126-1129.	4.6	36
98	Effect of Remote Picolinyl and Picoloyl Substituents on the Stereoselectivity of Chemical Glycosylation. Journal of the American Chemical Society, 2012, 134, 20097-20102.	13.7	235
99	Glycosidation of Thioglycosides in the Presence of Bromine: Mechanism, Reactivity, and Stereoselectivity. Journal of Organic Chemistry, 2012, 77, 291-299.	3.2	51
100	Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold. Journal of Carbohydrate Chemistry, 2012, 31, 466-503.	1.1	24
101	Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. Journal of Materials Chemistry, 2012, 22, 6733.	6.7	213
102	Nanoporous gold as a solid support for protein immobilization and development of an electrochemical immunoassay for prostate specific antigen and carcinoembryonic antigen. Mikrochimica Acta, 2012, 179, 71-81.	5.0	32
103	2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis. Beilstein Journal of Organic Chemistry, 2012, 8, 597-605.	2.2	20
104	Glycosyl thioimidates as versatile building blocks for organic synthesis. Chemistry of Heterocyclic Compounds, 2012, 48, 220-240.	1.2	24
105	In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. Journal of Neuroscience Methods, 2012, 203, 136-140.	2.5	53
106	Reverse orthogonal strategy for oligosaccharide synthesis. Chemical Communications, 2011, 47, 10602.	4.1	13
107	Development of LPS antagonistic therapeutics: synthesis and evaluation of glucopyranoside-spacer-amino acid motifs. RSC Advances, 2011, 1, 83.	3.6	10
108	On Orthogonal and Selective Activation of Glycosyl Thioimidates and Thioglycosides: Application to Oligosaccharide Assembly. Journal of Organic Chemistry, 2011, 76, 7388-7398.	3.2	26

#	Article	IF	CITATIONS
109	Direct Synthesis of Diastereomerically Pure Clycosyl Sulfonium Salts. Organic Letters, 2011, 13, 2928-2931.	4.6	37
110	Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy. Nanoscale, 2011, 3, 3395.	5.6	40
111	Knowledge of a Molecule: An Experimental and Theoretical Study of the Structure and Enthalpy of Formation of Tetrahydro-2 <i>H</i> -1,3-oxazine-2-thione. Journal of Chemical & Engineering Data, 2011, 56, 4725-4732.	1.9	8
112	Sâ€Benzimidazolyl Glycosides as a Platform for Oligosaccharide Synthesis by an Active–Latent Strategy. Angewandte Chemie - International Edition, 2011, 50, 4197-4201.	13.8	44
113	Expeditious oligosaccharide synthesis via selective, semi-orthogonal, and orthogonal activation. Carbohydrate Research, 2011, 346, 1371-1388.	2.3	66
114	Concise synthesis of 1,3-di-O-substituted tetrahydropyran derivatives as conformationally stable pyranose mimetics. Comptes Rendus Chimie, 2011, 14, 301-306.	0.5	2
115	Identification of a Simple Chemical Structure Associated with Protective Human Antibodies against Multiple Pneumococcal Serogroups. Infection and Immunity, 2011, 79, 3472-3472.	2.2	0
116	Concise Synthesis of the Unnatural Sphingosine and Psychosine Enantiomer. European Journal of Organic Chemistry, 2010, 2010, 3269-3274.	2.4	10
117	On the stereoselectivity of glycosidation of thiocyanates, thioimidates, and thioglycosides. Carbohydrate Research, 2010, 345, 2146-2150.	2.3	19
118	Superarmed and Superdisarmed Building Blocks in Expeditious Oligosaccharide Synthesis. Topics in Current Chemistry, 2010, 301, 189-221.	4.0	39
119	Experimental and Theoretical Study of the Structures and Enthalpies of Formation of 3 <i>H</i> -1,3-Benzoxazole-2-thione, 3 <i>H</i> -1,3-Benzothiazole-2-thione, and Their Tautomers. Journal of Physical Chemistry A, 2010, 114, 6336-6341.	2.5	24
120	Comparison of the Armed/Disarmed Building Blocks of the d-Gluco and d-Glucosamino Series in the Context of Chemoselective Oligosaccharide Synthesis. Organic Letters, 2010, 12, 3078-3081.	4.6	19
121	Superarming Common Glycosyl Donors by Simple 2- <i>O</i> -Benzoyl-3,4,6-tri- <i>O</i> -benzyl Protection. Journal of Organic Chemistry, 2010, 75, 1095-1100.	3.2	71
122	Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Organic and Biomolecular Chemistry, 2010, 8, 497-510.	2.8	240
123	Glycosyl Alkoxythioimidates as Complementary Building Blocks for Chemical Glycosylation. Organic Letters, 2010, 12, 5628-5631.	4.6	63
124	Synthesis, characterization and reactivity of carbohydrate platinum(iv) complexes with thioglycoside ligands. Dalton Transactions, 2010, 39, 6327.	3.3	15
125	Energetics of the Lighter Chalcogen Analogues of Carboxylic Acid Esters. Journal of Physical Chemistry B, 2010, 114, 16253-16262.	2.6	15
126	Identification of a Simple Chemical Structure Associated with Protective Human Antibodies against Multiple Pneumococcal Serogroups. Infection and Immunity, 2009, 77, 3374-3379.	2.2	17

#	Article	IF	CITATIONS
127	Synthesis, Conjugation, and Immunological Evaluation of the Serogroup 6 Pneumococcal Oligosaccharides. ChemBioChem, 2009, 10, 2893-2899.	2.6	18
128	Unexpected Orthogonality of S-Benzoxazolyl and S-Thiazolinyl Glycosides: Application to Expeditious Oligosaccharide Assembly. Organic Letters, 2009, 11, 799-802.	4.6	43
129	Experimental and Theoretical Study of the Structures and Enthalpies of Formation of the Synthetic Reagents 1,3-Thiazolidine-2-thione and 1,3-Oxazolidine-2-thione. Journal of Physical Chemistry A, 2009, 113, 10772-10778.	2.5	27
130	Chapter 5 Oligosaccharide Synthesis: From Conventional Methods to Modern Expeditious Strategies. Advances in Carbohydrate Chemistry and Biochemistry, 2009, 62, 161-250.	0.9	108
131	Coordination chemistry approach to the long-standing challenge of stereocontrolled chemical glycosylation. Chemical Communications, 2009, , 6379.	4.1	19
132	STICS: surface-tethered iterative carbohydrate synthesis. Chemical Communications, 2009, , 1834.	4.1	37
133	Thermophysical properties in medium temperature range of several thio and dithiocarbamates. Journal of Thermal Analysis and Calorimetry, 2008, 91, 471-475.	3.6	13
134	Synthesis of spacer-containing analogs of serogroup 6 pneumococcal oligosaccharides. Carbohydrate Research, 2008, 343, 1707-1717.	2.3	12
135	Silver(I) tetrafluoroborate as a potent promoter for chemical glycosylation. Tetrahedron Letters, 2008, 49, 1542-1545.	1.4	33
136	Application of Glycosyl Thioimidates in Solid-Phase Oligosaccharide Synthesis. Journal of Organic Chemistry, 2008, 73, 1716-1725.	3.2	28
137	4-(Pyridin-2-yl)thiazol-2-yl thioglycosides as bidentate ligands for oligosaccharide synthesis via temporary deactivation. Chemical Communications, 2008, , 5633.	4.1	15
138	Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform. Analyst, The, 2008, 133, 319.	3.5	58
139	Application of the Superarmed Glycosyl Donor to Chemoselective Oligosaccharide Synthesis. Organic Letters, 2008, 10, 2107-2110.	4.6	77
140	How the Arming Participating Moieties can Broaden the Scope of Chemoselective Oligosaccharide Synthesis by Allowing the Inverse Armedâ^'Disarmed Approach. Journal of Organic Chemistry, 2008, 73, 8838-8850.	3.2	65
141	Superarming the <i>S</i> -Benzoxazolyl Glycosyl Donors by Simple 2- <i>O</i> -Benzoyl-3,4,6-tri- <i>O</i> -benzyl Protection. Organic Letters, 2008, 10, 2103-2106.	4.6	84
142	Preparation and Characterization of Porous Gold and Its Application as a Platform for Immobilization of Acetylcholine Esterase. Chemistry of Materials, 2007, 19, 3902-3911.	6.7	95
143	<i>S</i> Benzoxazolyl as a Stable Protecting Moiety and a Potent Anomeric Leaving Group in Oligosaccharide Synthesis. Journal of Organic Chemistry, 2007, 72, 6947-6955.	3.2	29
144	Chemoselective Synthesis of Oligosaccharides of 2-Deoxy-2-aminosugars. Journal of Organic Chemistry, 2007, 72, 1480-1483.	3.2	30

#	Article	IF	CITATIONS
145	Versatile Synthesis and Mechanism of Activation of <i>S</i> -Benzoxazolyl Glycosides. Journal of Organic Chemistry, 2007, 72, 6938-6946.	3.2	60
146	Efficient stereoselective synthesis of oligosaccharides of Streptococcus pneumoniae serotypes 6A and 6B containing multiple 1,2-cis glycosidic linkages. Tetrahedron, 2007, 63, 10083-10091.	1.9	19
147	Glycosyl Thioimidates as Versatile Glycosyl Donors for Stereoselective O-Glycosylation and Convergent Oligosaccharide Synthesis. ACS Symposium Series, 2007, , 165-189.	0.5	15
148	Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. Carbohydrate Research, 2007, 342, 374-406.	2.3	190
149	Acetal Protecting Groups in the Organic Laboratory: Synthesis of Methyl 4,6-O-Benzylidene-î±-D-Glucopyranoside. Journal of Chemical Education, 2006, 83, 782.	2.3	30
150	Synthesis of cancer-associated glycoantigens: stage-specific embryonic antigen 3 (SSEA-3). Carbohydrate Research, 2006, 341, 1458-1466.	2.3	10
151	S-Thiazolinyl (STaz) Glycosides as Versatile Building Blocks for Convergent Selective, Chemoselective, and Orthogonal Oligosaccharide Synthesis. Chemistry - A European Journal, 2006, 12, 6630-6646.	3.3	94
152	Remote Participation-Assisted Synthesis of ?-Mannosides. European Journal of Organic Chemistry, 2005, 2005, 706-711.	2.4	57
153	Development of an Arming Participating Group for Stereoselective Glycosylation and Chemoselective Oligosaccharide Synthesis. Angewandte Chemie - International Edition, 2005, 44, 7123-7126.	13.8	120
154	Glycosyl thioimidates in a highly convergent one-pot strategy for oligosaccharide synthesis. Tetrahedron: Asymmetry, 2005, 16, 433-439.	1.8	47
155	Synthesis, Glycosidation, and Hydrolytic Stability of Novel Glycosyl Thioimidates. Journal of Carbohydrate Chemistry, 2005, 24, 649-663.	1.1	26
156	Revisiting the Armedâ^'Disarmed Concept Rationale: S-Benzoxazolyl Glycosides in Chemoselective Oligosaccharide Synthesisâ€. Organic Letters, 2005, 7, 3215-3218.	4.6	98
157	The Chemistry of Sialic Acid. , 2005, , 55-102.		10
158	Highlights in Organic Chemistry (Strategic Approach to the Chemical Synthesis of Oligosaccharides). Letters in Organic Chemistry, 2005, 2, 580-589.	0.5	61
159	Nickel(II) Chloride-Mediated Regioselective Benzylation and Benzoylation of Diequatorial Vicinal Diols. Synlett, 2004, 2004, 2191-2193.	1.8	10
160	Potent, Versatile, and Stable: Thiazolyl Thioglycosides as Glycosyl Donors. Angewandte Chemie - International Edition, 2004, 43, 3069-3072.	13.8	118
161	A Novel Strategy for Oligosaccharide Synthesis via Temporarily DeactivatedS-Thiazolyl Glycosides as Glycosyl Acceptors. Organic Letters, 2004, 6, 4515-4518.	4.6	46
162	1,2-cis O-Glycosylation: Methods, Strategies, Principles. ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
163	S-Benzoxazolyl (SBox) Glycosides as Novel, Versatile Glycosyl Donors for Stereoselective 1,2-Cis Glycosylation. Organic Letters, 2003, 5, 455-458.	4.6	121
164	Synthesis and Biological Evaluation of Rhizobium sin-1 Lipid A Derivatives. Journal of the American Chemical Society, 2003, 125, 6103-6112.	13.7	44
165	Stereoselective Chemical 1,2-cis O-Glycosylation: From â€~Sugar Ray' to Modern Techniques of the 21st Century. Synlett, 2003, 2003, 1225.	1.8	161
166	S-Benzoxazolyl (SBox) Glycosides in Oligosaccharide Synthesis: Novel Glycosylation Approach to the Synthesis of β-d-Glucosides, β-d-Galactosides, and α-d-Mannosides. Synlett, 2003, 2003, 1287.	1.8	46
167	1,2-cis O-Glycosylation: Methods, Strategies, Principles. Current Organic Chemistry, 2003, 7, 35-79.	1.6	179
168	Semi-orthogonality of O-pentenyl and S-ethyl glycosides: application for the oligosaccharide synthesis. Tetrahedron Letters, 2002, 43, 8819-8822.	1.4	55
169	A Stereoselective Approach for the Synthesis of α-Sialosides. Journal of Organic Chemistry, 2001, 66, 5490-5497.	3.2	134
170	A Highly Convergent Synthesis of a Complex Oligosaccharide Derived from Group B Type IIIStreptococcus. Journal of Organic Chemistry, 2001, 66, 2547-2554.	3.2	45
171	Recent Advances inO-Sialylation. Chemical Reviews, 2000, 100, 4539-4566.	47.7	339
172	Stereoselective 1,2-cis-galactosylation assisted by remote neighboring group participation and solvent effects. Tetrahedron Letters, 1999, 40, 6523-6526.	1.4	175
173	A Novel Direct Glycosylation Approach for the Synthesis of Dimers ofN-Acetylneuraminic Acid. Chemistry - A European Journal, 1999, 5, 1278-1283.	3.3	97
174	A Novel Direct Glycosylation Approach for the Synthesis of Dimers of N-Acetylneuraminic Acid. Chemistry - A European Journal, 1999, 5, 1278-1283.	3.3	1
175	A novel and versatile glycosyl donor for the preparation of glycosides of N-acetylneuraminic acid. Tetrahedron Letters, 1998, 39, 3065-3068.	1.4	119
176	Solvent and Other Effects on the Stereoselectivity of Thioglycoside Glycosidations. Synlett, 1997, 1997, 1997, 818-820.	1.8	161
177	A highly convergent synthesis of a hexasaccharide derived from the oligosaccharide of group B type III Streptococcus. Tetrahedron Letters, 1997, 38, 1629-1632.	1.4	27
178	Stereospecific synthesis of 1,2-cis-glycosides of 2-amino sugars. Carbohydrate Research, 1993, 242, C7-C10.	2.3	19
179	Synthesis of polysaccharides with 1,2-cis-glycosidic linkages by tritylthiocyanate polycondensation. Stereoregular α-(1-6)-D-glucan. Tetrahedron Letters, 1992, 33, 381-384.	1.4	12
180	Stereospecific 1,2-cis-glycosylation: a modified thiocyanate method. Carbohydrate Research, 1992, 232, C1-C5.	2.3	20

#	Article	IF	CITATIONS
181	A new stereospecific method for 1,2-cis-glycosylation. Carbohydrate Research, 1991, 212, 77-91.	2.3	55
182	Glycoside Synthesis from Anomeric Halides. , 0, , 29-93.		11
183	Other Methods for Glycoside Synthesis: Sections 5.3 and 5.4. , 0, , 449-496.		0
184	A study of silver (I) perchlorate as an effective promoter for chemical glycosylation with thioimidates and thioglycosides. Reports in Organic Chemistry, 0, , 1.	1.0	4
185	Self-Assembled Monolayers of Carbohydrate Derivatives on Gold Surfaces. , 0, , .		10
186	Structure and Applications of Gold in Nanoporous Form. , 0, , .		1