Miguel A F SanjuÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8863473/publications.pdf

Version: 2024-02-01

289 papers

5,856 citations

94433 37 h-index 61 g-index

321 all docs

321 docs citations

times ranked

321

2361 citing authors

#	Article	IF	CITATIONS
1	Controlling chaotic transients in the Hénon and the Lozi map with the safety function. Journal of Difference Equations and Applications, 2023, 29, 876-884.	1.1	2
2	Noise activates escapes in closed Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation, 2022, 105, 106074.	3.3	3
3	A stochastic hybrid model with a fast concentration bias for chemotactic cellular attraction. Chaos, Solitons and Fractals, 2022, 156, 111792.	5.1	O
4	Weak dissipation drives and enhances Wada basins in three-dimensional chaotic scattering. Chaos, Solitons and Fractals, 2022, 156, 111891.	5.1	1
5	Vibrational resonance by using a real-time scale transformation method. Physica Scripta, 2022, 97, 045207.	2.5	2
6	A novel adaptive moving average method for signal denoising in strong noise background. European Physical Journal Plus, 2022, 137, 1.	2.6	6
7	Complex bio rhythms. European Physical Journal: Special Topics, 2022, 231, 815-818.	2.6	3
8	Classifying basins of attraction using the basin entropy. Chaos, Solitons and Fractals, 2022, 159, 112112.	5.1	10
9	Time-dependent effects hinder cooperation on the public goods game. Chaos, Solitons and Fractals, 2022, 160, 112206.	5.1	2
10	Control of escapes in two-degree-of-freedom open Hamiltonian systems. Chaos, 2022, 32, 063118.	2.5	2
11	A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering. Nonlinear Dynamics, 2022, 109, 1123-1133.	5 . 2	1
12	Stochastic resonance in image denoising as an alternative to traditional methods and deep learning. Nonlinear Dynamics, 2022, 109, 2163-2183.	5.2	6
13	A test for fractal boundaries based on the basin entropy. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105588.	3.3	13
14	How to detect Wada basins. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 717-739.	0.9	7
15	Transient chaos in time-delayed systems subjected to parameter drift. Journal of Physics Complexity, 2021, 2, 025001.	2.2	4
16	Transient Dynamics of the Lorenz System with a Parameter Drift. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150029.	1.7	4
17	Wada index based on the weighted and truncated Shannon entropy. Nonlinear Dynamics, 2021, 104, 739-751.	5.2	17
18	Forcing the escape: Partial control of escaping orbits from a transient chaotic region. Nonlinear Dynamics, 2021, 104, 1603-1612.	5.2	3

#	Article	IF	CITATIONS
19	The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105693.	3.3	8
20	Improvement in the stochastic resonance in the Duffing oscillator subjected to a Poisson white noise excitation. European Physical Journal Plus, 2021, 136, $\hat{1}$.	2.6	3
21	Adaptive denoising for strong noisy images by using positive effects of noise. European Physical Journal Plus, 2021, 136, 1.	2.6	9
22	Introduction to Focus Issue: Recent advances in modeling complex systems: Theory and applications. Chaos, 2021, 31, 070401.	2.5	3
23	Artificial Intelligence, Chaos, Prediction and Understanding in Science. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150173.	1.7	6
24	Final state sensitivity in noisy chaotic scattering. Chaos, Solitons and Fractals, 2021, 150, 111181.	5.1	6
25	Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering. Communications in Nonlinear Science and Numerical Simulation, 2021, 102, 105905.	3.3	3
26	Stochastic resetting in the Kramers problem: A Monte Carlo approach. Chaos, Solitons and Fractals, 2021, 152, 111342.	5.1	9
27	Ergodic decay laws in Newtonian and relativistic chaotic scattering. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 105987.	3.3	4
28	Delay-induced resonance suppresses damping-induced unpredictability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200232.	3.4	7
29	The role of noise in the tumor dynamics under chemotherapy treatment. European Physical Journal Plus, 2021, 136, 1.	2.6	4
30	Effect of Static Bifurcation on Logical Stochastic Resonance in a Symmetric Bistable System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	5
31	Controlling Infectious Diseases: The Decisive Phase Effect on a Seasonal Vaccination Strategy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	3
32	The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105167.	3.3	10
33	Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems. Nonlinear Dynamics, 2020, 99, 3029-3039.	5.2	15
34	Tumor Stabilization Induced by T-Cell Recruitment Fluctuations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050179.	1.7	6
35	Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem. Physical Review E, 2020, 102, 042204.	2.1	5
36	Corrigendum to "The saddle-straddle method to test for Wada basins―[Commun. Nonlinear Sci. Numer. Simulat. 84 (2020) 105167]. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105334.	3.3	O

#	Article	IF	Citations
37	Fractional damping enhances chaos in the nonlinear Helmholtz oscillator. Nonlinear Dynamics, 2020, 102, 2323-2337.	5.2	7
38	Effects of Different Fast Periodic Excitations on the Pitchfork Bifurcation and Vibrational Resonance. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050092.	1.7	6
39	Transient chaos under coordinate transformations in relativistic systems. Physical Review E, 2020, 101, 062212.	2.1	3
40	Adaptive piecewise re-scaled stochastic resonance excited by the LFM signal. European Physical Journal Plus, 2020, 135, 1.	2.6	11
41	Stochastic resonance induced by an unknown linear frequency modulated signal in a strong noise background. Chaos, 2020, 30, 043128.	2.5	6
42	Time-frequency analysis of a new aperiodic resonance. Communications in Nonlinear Science and Numerical Simulation, 2020, 85, 105258.	3.3	15
43	Delay-Induced Resonance in the Time-Delayed Duffing Oscillator. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030007.	1.7	19
44	Recovering an unknown signal completely submerged in strong noise by a new stochastic resonance method. Communications in Nonlinear Science and Numerical Simulation, 2019, 66, 156-166.	3.3	31
45	Amplification of the LFM signal by using piecewise vibrational methods. JVC/Journal of Vibration and Control, 2019, 25, 141-150.	2.6	6
46	Preface to the Special Issue: Nonlinear systems theory and applications in engineering, control and life sciences. Nonlinear Dynamics, 2019, 97, 1783-1784.	5.2	1
47	The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104918.	3.3	8
48	Predictability of Chaotic Dynamics. Springer Series in Synergetics, 2019, , .	0.4	6
49	A new approach of the partial control method in chaotic systems. Nonlinear Dynamics, 2019, 98, 873-887.	5.2	5
50	Fourier analysis of a delayed Rulkov neuron network. Communications in Nonlinear Science and Numerical Simulation, 2019, 75, 62-75.	3.3	6
51	Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in Nonlinear Science and Numerical Simulation, 2019, 70, 307-317.	3.3	17
52	On the LFM signal improvement by piecewise vibrational resonance using a new spectral amplification factor. IET Signal Processing, $2019, 13, 65-69$.	1.5	14
53	Predictability. Springer Series in Synergetics, 2019, , 101-129.	0.4	0
54	Lyapunov Exponents. Springer Series in Synergetics, 2019, , 33-69.	0.4	0

#	Article	IF	Citations
55	A Detailed Example: Galactic Dynamics. Springer Series in Synergetics, 2019, , 151-188.	0.4	О
56	Modelling Cancer Dynamics Using Cellular Automata. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 2019, , 159-205.	0.0	3
57	Dynamical Regimes and Timescales. Springer Series in Synergetics, 2019, , 71-99.	0.4	O
58	Forecasting and Chaos. Springer Series in Synergetics, 2019, , 1-31.	0.4	0
59	Uncertainty dimension and basin entropy in relativistic chaotic scattering. Physical Review E, 2018, 97, 042214.	2.1	15
60	Partial control of delay-coordinate maps. Nonlinear Dynamics, 2018, 92, 1419-1429.	5.2	3
61	Bogdanov–Takens resonance in time-delayed systems. Nonlinear Dynamics, 2018, 91, 1939-1947.	5.2	6
62	Improving the weak aperiodic signal by three kinds of vibrational resonance. Nonlinear Dynamics, 2018, 91, 2699-2713.	5.2	20
63	Stochastic resonance in dissipative drift motion. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 62-69.	3.3	11
64	Supply based on demand dynamical model. Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 402-414.	3.3	3
65	Self-similarity and adaptive aperiodic stochastic resonance in a fractional-order system. Nonlinear Dynamics, 2018, 91, 1697-1711.	5.2	27
66	Computing Complex Horseshoes by Means of Piecewise Maps. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1830039.	1.7	1
67	Resonant behavior and unpredictability in forced chaotic scattering. Physical Review E, 2018, 98, .	2.1	10
68	Reducing the number of time delays in coupled dynamical systems. European Physical Journal: Special Topics, 2018, 227, 1281-1289.	2.6	2
69	Wada structures in a binary black hole system. Physical Review D, 2018, 98, .	4.7	16
70	Low-dimensional paradigms for high-dimensional hetero-chaos. Chaos, 2018, 28, 103110.	2.5	18
71	From local uncertainty to global predictions: Making predictions on fractal basins. PLoS ONE, 2018, 13, e0194926.	2.5	7
72	Vibrational Resonance in an Overdamped System with a Fractional Order Potential Nonlinearity. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850082.	1.7	10

#	Article	IF	CITATIONS
73	Ascertaining when a basin is Wada: the merging method. Scientific Reports, 2018, 8, 9954.	3.3	20
74	Basin Entropy, a Measure of Final State Unpredictability and Its Application to the Chaotic Scattering of Cold Atoms. Understanding Complex Systems, 2018, , 9-34.	0.6	5
75	Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 3237-3274.	0.9	0
76	Global relativistic effects in chaotic scattering. Physical Review E, 2017, 95, 032205.	2.1	9
77	Partially controlling transient chaos in the Lorenz equations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160211.	3.4	18
78	Physics of cancer: the new adventure of physicists against cancer. Contemporary Physics, 2017, 58, 176-178.	1.8	0
79	Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	1.2	17
80	Dynamics of the cell-mediated immune response to tumour growth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160291.	3.4	20
81	Detecting the weak high-frequency character signal by vibrational resonance in the Duffing oscillator. Nonlinear Dynamics, 2017, 89, 2621-2628.	5.2	46
82	Predictability of Chaotic Dynamics. Springer Series in Synergetics, 2017, , .	0.4	14
83	Vibrational resonance in a harmonically trapped potential system. Communications in Nonlinear Science and Numerical Simulation, 2017, 47, 370-378.	3.3	25
84	Chaotic dynamics and fractal structures in experiments with cold atoms. Physical Review A, 2017, 95, .	2.5	34
85	Stochastic resonance in overdamped systems with fractional power nonlinearity. European Physical Journal Plus, 2017, 132, 1.	2.6	10
86	The dose-dense principle in chemotherapy. Journal of Theoretical Biology, 2017, 430, 169-176.	1.7	15
87	A new method to reduce the number of time delays in a network. Scientific Reports, 2017, 7, 2744.	3.3	3
88	Noise-induced resonance at the subharmonic frequency in bistable systems. Nonlinear Dynamics, 2017, 87, 1721-1730.	5.2	21
89	Wada property in systems with delay. Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 220-226.	3.3	21
90	Destruction of solid tumors by immune cells. Communications in Nonlinear Science and Numerical Simulation, 2017, 44, 390-403.	3.3	13

#	Article	IF	CITATIONS
91	Bifurcation Analysis and Nonlinear Decay of a Tumor in the Presence of an Immune Response. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750223.	1.7	11
92	Escaping from a chaotic saddle in the presence of noise. International Journal of Nonlinear Dynamics and Control, $2017,1,78.$	0.1	0
93	Lyapunov Exponents. Springer Series in Synergetics, 2017, , 25-59.	0.4	1
94	Predictability. Springer Series in Synergetics, 2017, , 91-127.	0.4	1
95	Dynamical Regimes and Time Scales. Springer Series in Synergetics, 2017, , 61-89.	0.4	0
96	Kink solitary solutions to a hepatitis C evolution model. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 0-0.	0.9	1
97	Forecasting and Chaos. Springer Series in Synergetics, 2017, , 1-24.	0.4	0
98	When the firm prevents the crash: Avoiding market collapse with partial control. PLoS ONE, 2017, 12, e0181925.	2.5	0
99	Role of dark matter haloes on the predictability of computed orbits. Astronomy and Astrophysics, 2016, 595, A68.	5.1	3
100	Entanglement Entropy in a Triangular Billiard. Entropy, 2016, 18, 79.	2.2	2
101	Parametric partial control of chaotic systems. Nonlinear Dynamics, 2016, 86, 869-876.	5.2	10
102	Basin entropy: a new tool to analyze uncertainty in dynamical systems. Scientific Reports, 2016, 6, 31416.	3.3	135
103	Exploring Chaos and Entanglement in the Hénon–Heiles System Using Squeezed Coherent States. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650052.	1.7	1
104	Transient chaotic transport in dissipative drift motion. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1621-1626.	2.1	5
105	Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Communications in Nonlinear Science and Numerical Simulation, 2016, 41, 104-117.	3.3	76
106	Vibrational Resonance in Monostable Systems. Springer Series in Synergetics, 2016, , 83-117.	0.4	1
107	Harmonic and Nonlinear Resonances. Springer Series in Synergetics, 2016, , 1-38.	0.4	1
108	Coherence and Chaotic Resonances. Springer Series in Synergetics, 2016, , 333-350.	0.4	0

#	Article	IF	CITATIONS
109	Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dynamics, 2016, 83, 1803-1814.	5.2	31
110	Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin–Huxley neuronal network. Communications in Nonlinear Science and Numerical Simulation, 2016, 34, 12-22.	3.3	42
111	Nonlinear Resonances. Springer Series in Synergetics, 2016, , .	0.4	84
112	Modern Dynamics. Contemporary Physics, 2016, 57, 242-245.	1.8	1
113	Vibrational subharmonic and superharmonic resonances. Communications in Nonlinear Science and Numerical Simulation, 2016, 30, 362-372.	3.3	32
114	Decay Dynamics of Tumors. PLoS ONE, 2016, 11, e0157689.	2.5	12
115	Effect of geometry on the classical entanglement in a chaotic optical fiber. Optics Express, 2015, 23, 32191.	3.4	3
116	Testing for Basins of Wada. Scientific Reports, 2015, 5, 16579.	3.3	41
117	Bifurcation Transition and Nonlinear Response in a Fractional-Order System. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	1.2	12
118	Saddle-Node Bifurcation and Vibrational Resonance in a Fractional System with an Asymmetric Bistable Potential. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550023.	1.7	11
119	Bifurcation and resonance in a fractional Mathieu-Duffing oscillator. European Physical Journal B, 2015, 88, 1.	1.5	22
120	Optimizing the Electrical Power in an Energy Harvesting System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550171.	1.7	17
121	Mutation-selection equilibrium in finite populations playing a Hawk–Dove game. Communications in Nonlinear Science and Numerical Simulation, 2015, 25, 66-73.	3.3	5
122	The forecast of predictability for computed orbits in galactic models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3797-3811.	4.4	6
123	Infinite horseshoes and complex dynamics in physical systems. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 866-871.	3.3	0
124	Signal generation and enhancement in a delayed system. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 1158-1168.	3.3	13
125	Cyclic motifs as the governing topological factor in time-delayed oscillator networks. Physical Review E, 2014, 90, 052920.	2.1	3
126	Vibrational and Ghost-Vibrational Resonances in a Modified Chua's Circuit Model Equation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430031.	1.7	9

#	Article	IF	CITATIONS
127	Energy Harvesting Enhancement by Vibrational Resonance. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430019.	1.7	15
128	A Validated Mathematical Model of Tumor Growth Including Tumor–Host Interaction, Cell-Mediated Immune Response and Chemotherapy. Bulletin of Mathematical Biology, 2014, 76, 2884-2906.	1.9	51
129	Frequency dispersion in the time-delayed Kuramoto model. Physical Review E, 2014, 89, 032905.	2.1	20
130	Control of collective network chaos. Chaos, 2014, 24, 023127.	2.5	6
131	Ghost-vibrational resonance. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 4003-4012.	3.3	37
132	Avoiding healthy cells extinction in a cancer model. Journal of Theoretical Biology, 2014, 349, 74-81.	1.7	21
133	How to minimize the control frequency to sustain transient chaos using partial control. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 726-737.	3.3	5
134	Chaos-Based Turbo Systems in Fading Channels. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 530-541.	5.4	21
135	Effect of squeezing and Planck constant dependence in short time semiclassical entanglement. European Physical Journal D, 2014, 68, 1.	1.3	4
136	Impact of quantum–classical correspondence on entanglement enhancement by single-mode squeezing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2603-2610.	2.1	7
137	When less is more: Partial control to avoid extinction of predators in an ecological model. Ecological Complexity, 2014, 19, 1-8.	2.9	14
138	Effects of periodic forcing in chaotic scattering. Physical Review E, 2014, 89, 042909.	2.1	10
139	Modulation of synchronization dynamics in a network of self-sustained systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 656-672.	3.3	4
140	Controlling unpredictability in the randomly driven Hénon–Heiles system. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3449-3457.	3.3	16
141	Vibrational resonance in the Morse oscillator. Pramana - Journal of Physics, 2013, 81, 127-141.	1.8	26
142	Vibrational resonance in groundwater-dependent plant ecosystems. Ecological Complexity, 2013, 15, 33-42.	2.9	30
143	Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator. Pramana - Journal of Physics, 2013, 81, 943-957.	1.8	13
144	Weakly noisy chaotic scattering. Physical Review E, 2013, 88, 032914.	2.1	14

#	Article	IF	Citations
145	Vibrational resonance in a time-delayed genetic toggle switch. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 411-416.	3.3	45
146	Electronic circuit implementation of the chaotic Rulkov neuron model. Journal of the Franklin Institute, 2013, 350, 2901-2910.	3.4	10
147	Effect of multiple time-delay on vibrational resonance. Chaos, 2013, 23, 013136.	2.5	35
148	New developments in classical chaotic scattering. Reports on Progress in Physics, 2013, 76, 016001.	20.1	81
149	Effective suppressibility of chaos. Chaos, 2013, 23, 023107.	2.5	1
150	Bursting frequency versus phase synchronization in time-delayed neuron networks. Physical Review E, 2013, 87, 052903.	2.1	26
151	Non-smooth transitions in a simple city traffic model analyzed through supertracks. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 81-88.	3.3	12
152	Predictability of orbits in coupled systems through finite-time Lyapunov exponents. New Journal of Physics, 2013, 15, 113064.	2.9	16
153	STRONG SENSITIVITY OF THE VIBRATIONAL RESONANCE INDUCED BY FRACTAL STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350129.	1.7	6
154	PHASE CONTROL IN THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS AND EXTERNAL EXCITATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330042.	1.7	2
155	PARTIAL CONTROL OF ESCAPES IN CHAOTIC SCATTERING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350008.	1.7	5
156	EXPERIMENTAL EVIDENCE FOR VIBRATIONAL RESONANCE AND ENHANCED SIGNAL TRANSMISSION IN CHUA'S CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350189.	1.7	28
157	Vibrational Resonance in a Duffing System with a Generalized Delayed Feedback. Journal of Applied Nonlinear Dynamics, 2013, 2, 397-408.	0.3	13
158	The efficiency of a random and fast switch in complex dynamical systems. New Journal of Physics, 2012, 14, 083022.	2.9	10
159	Dynamics of partial control. Chaos, 2012, 22, 047507.	2.5	24
160	TO ESCAPE OR NOT TO ESCAPE, THAT IS THE QUESTION â€" PERTURBING THE HÉNONâ€"HEILES HAMILTONIA International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230010.	^{AN} 1:7	42
161	PARTIAL CONTROL OF TRANSIENT CHAOS IN ELECTRONIC CIRCUITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250032.	1.7	10
162	Finding safety in partially controllable chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4274-4280.	3.3	26

#	Article	IF	CITATIONS
163	NONLINEAR RESPONSE OF THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250006.	1.7	10
164	Competitive decoders for turbo-like chaos-based systems. IET Communications, 2012, 6, 1278.	2.2	7
165	Effect of the phase on the dynamics of a perturbed bouncing ball system. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3279-3286.	3.3	11
166	Vibrational resonance in biological nonlinear maps. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3435-3445.	3.3	52
167	Effect of noise on the reinjection probability density in intermittency. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3587-3596.	3 . 3	23
168	Transition of phase locking modes in a minimal neuronal network. Neurocomputing, 2012, 81, 60-66.	5.9	5
169	Novel vibrational resonance in multistable systems. Chaos, 2011, 21, 033106.	2.5	74
170	VIBRATIONAL RESONANCE IN AN ASYMMETRIC DUFFING OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 275-286.	1.7	50
171	Map-based models in neuronal dynamics. Physics Reports, 2011, 501, 1-74.	25.6	232
172	Fractal structures in nonlinear plasma physics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 371-395.	3.4	50
173	Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback. Physical Review E, 2011, 83, 066205.	2.1	91
174	Basin boundary metamorphoses and phase control. Europhysics Letters, 2010, 90, 30002.	2.0	2
175	DETECTING DETERMINISM IN TIME SERIES WITH ORDINAL PATTERNS: A COMPARATIVE STUDY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2915-2924.	1.7	29
176	ESCAPING DYNAMICS IN THE PRESENCE OF DISSIPATION AND NOISE IN SCATTERING SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2783-2793.	1.7	27
177	EFFECT OF STEP SIZE ON BIFURCATIONS AND CHAOS OF A MAP-BASED BVP OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1789-1795.	1.7	2
178	PREDICTING THE SYNCHRONIZATION OF A NETWORK OF ELECTRONIC REPRESSILATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1751-1760.	1.7	3
179	Permutation complexity of spatiotemporal dynamics. Europhysics Letters, 2010, 90, 10007.	2.0	14
180	PHASE CONTROL IN NONLINEAR SYSTEMS. Series on Stability, Vibration and Control of Systems - Series B, 2010, , 147-187.	0.2	3

#	Article	IF	CITATIONS
181	Synchronization of uncoupled excitable systems induced by white and coloured noise. New Journal of Physics, 2010, 12, 053040.	2.9	19
182	Partial control of chaotic transients using escape times. New Journal of Physics, 2010, 12, 113038.	2.9	14
183	Role of depth and location of minima of a double-well potential on vibrational resonance. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 465101.	2.1	28
184	Improving the Performance of Chaos-Based Modulations Via Serial Concatenation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 448-459.	5.4	15
185	PARTIAL CONTROL OF CHAOTIC SYSTEMS. Series on Stability, Vibration and Control of Systems - Series B, 2010, , 315-335.	0.2	2
186	Analysis of Chaos-Based Coded Modulations under Intersymbol Interference. Journal of Computers, 2010, 5, .	0.4	5
187	A New Mechanical Model for Particle Transport by Surface Waves and Applications. Mathematical Problems in Engineering, 2009, 2009, 1-17.	1.1	0
188	Effect of noise on chaotic scattering. Physical Review E, 2009, 79, 047202.	2.1	37
189	Entraining synthetic genetic oscillators. Chaos, 2009, 19, 033139.	2.5	3
190	Single and multiple vibrational resonance in a quintic oscillator with monostable potentials. Physical Review E, 2009, 80, 046608.	2.1	89
191	Exploring partial control of chaotic systems. Physical Review E, 2009, 79, 026217.	2.1	20
192	Analysis of vibrational resonance in a quintic oscillator. Chaos, 2009, 19, 043128.	2.5	69
193	Controlling crisis-induced intermittency using its relation with a boundary crisis. New Journal of Physics, 2009, 11, 023025.	2.9	6
194	Turbo-like structures for chaos encoding and decoding. IEEE Transactions on Communications, 2009, 57, 597-601.	7.8	19
195	A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cognitive Processing, 2009, 10, 23-31.	1.4	23
196	Role of asymmetries in the chaotic dynamics of the double-well Duffing oscillator. Pramana - Journal of Physics, 2009, 72, 927-937.	1.8	3
197	Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh–Duffing oscillator. Chaos, Solitons and Fractals, 2009, 39, 1092-1099.	5.1	32
198	On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potential. Chaos, Solitons and Fractals, 2009, 41, 772-782.	5.1	26

#	Article	IF	CITATIONS
199	Fractal structures in nonlinear dynamics. Reviews of Modern Physics, 2009, 81, 333-386.	45. 6	281
200	Exponential decay and scaling laws in noisy chaotic scattering. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 110-116.	2.1	52
201	Combinatorial detection of determinism in noisy time series. Europhysics Letters, 2008, 83, 60005.	2.0	95
202	Chaotic pattern of unsmoothed isochromatics around the regions of concentrated stresses. Computers and Graphics, 2008, 32, 116-119.	2.5	0
203	Chaos-Coded Modulations Over Rician and Rayleigh Flat Fading Channels. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 581-585.	3.0	18
204	Partial Control of a System with Fractal Basin Boundaries. , 2008, , .		1
205	Transport of particles by surface waves: a modification of the classical bouncer model. New Journal of Physics, 2008, 10, 083017.	2.9	9
206	Experimental demonstration of bidirectional chaotic communication by means of isochronal synchronization. Europhysics Letters, 2008, 81, 40005.	2.0	20
207	Phase control of excitable systems. New Journal of Physics, 2008, 10, 073030.	2.9	22
208	Corrections to "Chaos-Coded Modulation Over Rician and Rayleigh Flat Fading Channels". IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 1314-1314.	3.0	0
209	Partial control of chaotic systems. Physical Review E, 2008, 77, 055201.	2.1	22
210	Bursting regimes in map-based neuron models coupled through fast threshold modulation. Physical Review E, 2008, 77, 051918.	2.1	51
211	Publisher's Note: Partial control of chaotic systems [Phys. Rev. E77, 055201 (2008)]. Physical Review E, 2008, 77, .	2.1	2
212	Effects of intersymbol interference on chaos-based modulations. , 2008, , .		1
213	Local predictability and nonhyperbolicity through finite Lyapunov exponent distributions in two-degrees-of-freedom Hamiltonian systems. Physical Review E, 2008, 78, 066204.	2.1	15
214	Avoiding escapes in open dynamical systems using phase control. Physical Review E, 2008, 78, 016205.	2.1	27
215	ELECTRONIC DESIGN OF SYNTHETIC GENETIC NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3507-3511.	1.7	6
216	HIERARCHICAL MODELING OF A FORCED ROBERTS DYNAMO. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3589-3593.	1.7	1

#	Article	IF	Citations
217	ADAPTIVE PROCEDURE FOR THE PARAMETER ESTIMATION OF A MODEL OF A (font) CO(font) (sub) CHAOTIC LASER. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3639-3643.	1.7	1
218	FRACTAL AND WADA EXIT BASIN BOUNDARIES IN TOKAMAKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 4067-4079.	1.7	26
219	The interplay of universities and industry through the FP5 network. New Journal of Physics, 2007, 9, 183-183.	2.9	13
220	Applicability of time-average moiré techniques for chaotic oscillations. Physical Review E, 2007, 76, 036208.	2.1	13
221	Sensitivity versus resonance in two-dimensional spiking-bursting neuron models. Physical Review E, 2007, 75, 041902.	2.1	14
222	Fractal dimension in dissipative chaotic scattering. Physical Review E, 2007, 76, 016208.	2.1	51
223	Isochronous synchronization in mutually coupled chaotic circuits. Chaos, 2007, 17, 023128.	2.5	28
224	Patterns in inhibitory networks of simple map neurons. Physical Review E, 2007, 75, 041911.	2.1	26
225	Parallel concatenated chaos coded modulations. , 2007, , .		4
226	True and false forbidden patterns in deterministic and random dynamics. Europhysics Letters, 2007, 79, 50001.	2.0	148
227	Map-based neuron networks. AIP Conference Proceedings, 2007, , .	0.4	2
228	Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator. Chaos, Solitons and Fractals, 2007, 34, 197-212.	5.1	52
229	The network of scientific collaborations within the European framework programme. Physica A: Statistical Mechanics and Its Applications, 2007, 384, 675-683.	2.6	20
230	Chaos-induced resonant effects and its control. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 428-432.	2.1	23
231	Control of Transient Chaos Using Safe Sets in Simple Dynamical Systems. , 2007, , 425-435.		3
232	A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - Series B, 2007, 7, 275-284.	0.9	4
233	Low-dimensional dynamo modelling and symmetry-breaking bifurcations. Physica D: Nonlinear Phenomena, 2006, 223, 151-162.	2.8	6
234	Exploiting symbolic dynamics in chaos coded communications with maximum a posteriori algorithm. Electronics Letters, 2006, 42, 984.	1.0	9

#	Article	IF	CITATIONS
235	Numerical and experimental exploration of phase control of chaos. Chaos, 2006, 16, 013111.	2.5	28
236	Basin topology in dissipative chaotic scattering. Chaos, 2006, 16, 023101.	2.5	60
237	Synchronization of electronic genetic networks. Chaos, 2006, 16, 013127.	2.5	16
238	Synchronization and propagation of bursts in networks of coupled map neurons. Chaos, 2006, 16, 013113.	2.5	74
239	Sparse repulsive coupling enhances synchronization in complex networks. Physical Review E, 2006, 74, 056112.	2.1	45
240	Phase control of intermittency in dynamical systems. Physical Review E, 2006, 74, 016202.	2.1	16
241	Evaluation of channel coding and decoding algorithms using discrete chaotic maps. Chaos, 2006, 16, 013103.	2.5	10
242	BUILDING ELECTRONIC BURSTERS WITH THE MORRIS–LECAR NEURON MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 3617-3630.	1.7	16
243	Congestion schemes and Nash equilibrium in complex networks. Physica A: Statistical Mechanics and Its Applications, 2005, 355, 602-618.	2.6	3
244	Intersections of stable and unstable manifolds: the skeleton of Lagrangian chaos. Chaos, Solitons and Fractals, 2005, 24, 947-956.	5.1	12
245	Crisis-induced intermittency in two coupled chaotic maps: Towards understanding chaotic itinerancy. Physical Review E, 2005, 71, 016219.	2.1	23
246	Coupling scheme for complete synchronization of periodically forced chaoticCO2lasers. Physical Review E, 2004, 70, 036208.	2.1	8
247	Analysis of the noise-induced bursting-spiking transition in a pancreatic \hat{l}^2 -cell model. Physical Review E, 2004, 69, 041910.	2.1	19
248	Controlling chaotic transients: Yorke's game of survival. Physical Review E, 2004, 69, 016203.	2.1	19
249	WINNERLESS COMPETITION IN NETWORKS OF COUPLED MAP NEURONS. Modern Physics Letters B, 2004, 18, 1347-1366.	1.9	13
250	Complex networks and the WWW market. Physica A: Statistical Mechanics and Its Applications, 2003, 324, 754-758.	2.6	14
251	Information flow in generalized hierarchical networks. Physica A: Statistical Mechanics and Its Applications, 2003, 324, 424-429.	2.6	9
252	Controlling chaos in a fluid flow past a movable cylinder. Chaos, Solitons and Fractals, 2003, 15, 255-263.	5.1	4

#	Article	lF	CITATIONS
253	A generalized perturbed pendulum. Chaos, Solitons and Fractals, 2003, 15, 911-924.	5.1	35
254	Characterization of the local instability in the Hénon–Heiles Hamiltonian. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 311, 26-38.	2.1	22
255	Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Physical Review E, 2003, 67, 066119.	2.1	159
256	Opening a closed Hamiltonian map. Chaos, 2003, 13, 17-24.	2.5	17
257	On the estimate of the stochastic layer width for a model of tracer dynamics. Chaos, 2003, 13, 866-873.	2.5	2
258	Limit of small exits in open Hamiltonian systems. Physical Review E, 2003, 67, 056201.	2.1	59
259	Wada Basins and Unpredictability in Hamiltonian and Dissipative Systems. International Journal of Modern Physics B, 2003, 17, 4171-4175.	2.0	23
260	Integrability and symmetries for the Helmholtz oscillator with friction. Journal of Physics A, 2003, 36, 695-710.	1.6	35
261	Relation between structure and size in social networks. Physical Review E, 2002, 65, 036107.	2.1	30
262	Escape patterns, magnetic footprints, and homoclinic tangles due to ergodic magnetic limiters. Physics of Plasmas, 2002, 9, 4917-4928.	1.9	54
263	Vibrational resonance in a noise-induced structure. Physical Review E, 2002, 66, 011106.	2.1	98
264	Unpredictable behavior in the Duffing oscillator: Wada basins. Physica D: Nonlinear Phenomena, 2002, 171, 41-51.	2.8	78
265	Channel coding in communications using chaos. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 295, 185-191.	2.1	10
266	Noise-induced effects on the chaotic advection of fluid flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 297, 396-401.	2.1	3
267	Hierarchical social networks and information flow. Physica A: Statistical Mechanics and Its Applications, 2002, 316, 695-708.	2.6	27
268	Wada basins and chaotic invariant sets in the Hénon-Heiles system. Physical Review E, 2001, 64, 066208.	2.1	196
269	Energy dissipation in a nonlinearly damped Duffing oscillator. Physica D: Nonlinear Phenomena, 2001, 159, 22-34.	2.8	27
270	Defining strategies to win in the Internet market. Physica A: Statistical Mechanics and Its Applications, 2001, 301, 512-534.	2.6	42

#	Article	IF	CITATIONS
271	ANALYTICAL ESTIMATES OF THE EFFECT OF NONLINEAR DAMPING IN SOME NONLINEAR OSCILLATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 2257-2267.	1.7	49
272	Reply to "Comment on â€~Liénard systems, limit cycles, and Melnikov theory' ― Physical Review E, 199 2485-2486.	9,59, 2.1	4
273	The topology of fluid flow past a sequence of cylinders. Topology and Its Applications, 1999, 94, 207-242.	0.4	14
274	THE EFFECT OF NONLINEAR DAMPING ON THE UNIVERSAL ESCAPE OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 735-744.	1.7	48
275	Subharmonic bifurcations in a pendulum parametrically excited by a non-harmonic perturbation. Chaos, Solitons and Fractals, 1998, 9, 995-1003.	5.1	10
276	Liénard systems, limit cycles, and Melnikov theory. Physical Review E, 1998, 57, 340-344.	2.1	13
277	Using nonharmonic forcing to switch the periodicity in nonlinear systems. Physical Review E, 1998, 58, 4377-4382.	2.1	32
278	Indecomposable Continua and the Characterization of Strange Sets in Nonlinear Dynamics. Physical Review Letters, 1997, 78, 1892-1895.	7.8	30
279	Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders. Chaos, 1997, 7, 125-138.	2.5	30
280	Homoclinic bifurcation sets of driven nonlinear oscillators. International Journal of Theoretical Physics, 1996, 35, 1745-1752.	1.2	5
281	SYMMETRY-RESTORING CRISES, PERIOD-ADDING AND CHAOTIC TRANSITIONS IN THE CUBIC VAN DER POL OSCILLATOR. Journal of Sound and Vibration, 1996, 193, 863-875.	3.9	8
282	Remarks on transitions order-chaos induced by the shape of the periodic excitation in a parametric pendulum. Chaos, Solitons and Fractals, 1996, 7, 435-440.	5.1	14
283	Comments on the Hamiltonian formulation for linear and non-linear oscillators including dissipation. Journal of Sound and Vibration, 1995, 185, 734-735.	3.9	7
284	Dissipative hydrodynamic oscillators. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1991, 13, 913-918.	0.4	7
285	A novel channel coding scheme based on continuous-time chaotic dynamics. , 0, , .		3
286	ITERATIVELLY DECODING CHAOS ENCODED BINARY SIGNALS. , 0, , .		7
287	A modern approach to teaching classical mechanics. Contemporary Physics, 0, , 1-4.	1.8	O
288	Beyond partial control: controlling chaotic transients with the safety function. Nonlinear Dynamics, $0, 1$.	5. 2	4

#	Article	IF	CITATIONS
289	A random walk in physics. Beyond black holes and time-travels. Contemporary Physics, 0, , 1-1.	1.8	0