Miguel A F SanjuÃ ${ }^{n}$

List of Publications by Year in descending order

[^0]321
all docs
5,856
citations

321
docs citations
94433
37
h-index

321
times ranked

$$
2361
$$

citing authors
$1 \quad$ Fractal structures in nonlinear dynamics. Reviews of Modern Physics, 2009, 81, 333-386.
$3 \quad$ Wada basins and chaotic invariant sets in the HÃ@non-Heiles system. Physical Review E, 2001, 64, 066208.
19 Limit of small exits in open Hamiltonian systems. Physical Review E, 2003, 67, 056201.

$20 \quad$| Escape patterns, magnetic footprints, and homoclinic tangles due to ergodic magnetic limiters |
| :--- |
| Physics of Plasmas, 2002, 9, 4917-4928. |

2.159

Physics of Plasmas, 2002, 9, 4917-4928.
1.9

54

21 Symmetry-breaking analysis for the general Helmholtzâ€"Duffing oscillator. Chaos, Solitons and
5.1

Fractals, 2007, 34, 197-212.

Exponential decay and scaling laws in noisy chaotic scattering. Physics Letters, Section A: General,
Atomic and Solid State Physics, 2008, 372, 110-116.
2.1

52

23 Vibrational resonance in biological nonlinear maps. Communications in Nonlinear Science and
Numerical Simulation, 2012, 17, 3435-3445.
$3.3 \quad 52$

24 Fractal dimension in dissipative chaotic scattering. Physical Review E, 2007, 76, 016208.
2.1

51

$$
25 \text { Bursting regimes in map-based neuron models coupled through fast threshold modulation. Physical }
$$

Review E, 2008, 77, 051918.

A Validated Mathematical Model of Tumor Growth Including Tumorâ€"Host Interaction, Cell-Mediated Immune Response and Chemotherapy. Bulletin of Mathematical Biology, 2014, 76, 2884-2906.

VIBRATIONAL RESONANCE IN AN ASYMMETRIC DUFFING OSCILLATOR. International Journal of Bifurcation
VIBRATIONAL RESONANCE IN AN ASYMMETRIC DUFFING OSCILLATO
and Chaos in Applied Sciences and Engineering, 2011, 21, 275-286.

Fractal structures in nonlinear plasma physics. Philosophical Transactions Series A, Mathematical,
Physical, and Engineering Sciences, 2011, 369, 371-395.
ANALYTICAL ESTIMATES OF THE EFFECT OF NONLINEAR DAMPING IN SOME NONLINEAR OSCILLATORS.
29 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10,
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10,
1.7 2257-2267.

30 THE EFFECT OF NONLINEAR DAMPING ON THE UNIVERSAL ESCAPE OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 735-744.
1.7

48

21 Detecting the weak high-frequency character signal by vibrational resonance in the Duffing
31 oscillator. Nonlinear Dynamics, 2017, 89, 2621-2628.

Sparse repulsive coupling enhances synchronization in complex networks. Physical Review E, 2006, 74,
$32 \quad \begin{array}{ll}\text { Sparse rep } \\ 056112 .\end{array}$
2.1

45

Vibrational resonance in a time-delayed genetic toggle switch. Communications in Nonlinear Science
and Numerical Simulation, 2013, 18, 411-416.
3.3

45

Defining strategies to win in the Internet market. Physica A: Statistical Mechanics and Its Applications,
2001, 301, 512-534.
2.6

42

TO ESCAPE OR NOT TO ESCAPE, THAT IS THE QUESTION â€" PERTURBING THE HÃ\%oNONâ€"HEILES HAMILTONIAN.
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230010.

40 A generalized perturbed pendulum. Chaos, Solitons and Fractals, 2003, 15, 911-924.
$5.1 \quad 35$

41	Integrability and symmetries for the Helmholtz oscillator with friction. Journal of Physics A, 2003, 36, 695-710.	1.6	35
42	Effect of multiple time-delay on vibrational resonance. Chaos, 2013, 23, 013136.	2.5	35
43	Chaotic dynamics and fractal structures in experiments with cold atoms. Physical Review A, 2017, 95,	2.5	34

Using nonharmonic forcing to switch the periodicity in nonlinear systems. Physical Review E, 1998, 58,
$4377-4382$.

45	Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleighâ€"Duffing oscillator. Chaos, Solitons and Fractals, 2009, 39, 1092-1099.	5.1	32
46	Vibrational subharmonic and superharmonic resonances. Communications in Nonlinear Science and Numerical Simulation, 2016, 30, 362-372.	3.3	32
47	Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dynamics, 2016, 83, 1803-1814.	5.2	31
48	Recovering an unknown signal completely submerged in strong noise by a new stochastic resonance method. Communications in Nonlinear Science and Numerical Simulation, 2019, 66, 156-166.	3.3	31
49	Indecomposable Continua and the Characterization of Strange Sets in Nonlinear Dynamics. Physical Review Letters, 1997, 78, 1892-1895.	7.8	30

Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders.
$50 \quad 2.5$
51 Relation between structure and size in social networks. Physical Review E, 2002, 65, 036107. 2.1 30

[^1]1.729
55 Isochronous synchronization in mutually coupled chaotic circuits. Chaos, 2007, 17,023128. 28

56 Role of depth and location of minima of a double-well potential on vibrational resonance. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 465101.
$2.1 \quad 28$
Pysics A: Mathematical and Theoretical 2010,43,465101.
28

EXPERIMENTAL EVIDENCE FOR VIBRATIONAL RESONANCE AND ENHANCED SIGNAL TRANSMISSION IN CHUA'S

$1.7 \quad 28$
2.8

27

Hierarchical social networks and information flow. Physica A: Statistical Mechanics and Its
Applications, 2002, 316, 695-708.
$2.6 \quad 27$

60 Avoiding escapes in open dynamical systems using phase control. Physical Review E, 2008, 78, 016205.
$2.1 \quad 27$

| 6SCAPING DYNAMICS IN THE PRESENCE OF DISSIPATION AND NOISE IN SCATTERING SYSTEMS. International | 1.7 | 27 |
| :--- | :--- | :--- | :--- |

62 Self-similarity and adaptive aperiodic stochastic resonance in a fractional-order system. Nonlinear Dynamics, 2018, 91, 1697-1711.

FRACTAL AND WADA EXIT BASIN BOUNDARIES IN TOKAMAKS. International Journal of Bifurcation and
Chaos in Applied Sciences and Engineering, 2007, 17, 4067-4079.

64 Patterns in inhibitory networks of simple map neurons. Physical Review E, 2007, 75, 041911.
2.1

26
On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well

potential. Chaos, Solitons and Fractals, 2009, 41, 772-782. \quad| 5.1 |
| :---: |

Bursting frequency versus phase synchronization in time-delayed neuron networks. Physical Review E,
$2013,87,052903$.
$2.1 \quad 26$

Vibrational resonance in a harmonically trapped potential system. Communications in Nonlinear
Science and Numerical Simulation, 2017, 47, 370-378.
$3.3 \quad 25$
6
$70 \quad$ Dynamics of partial control. Chaos, 2012, 22, 047507.

Wada Basins and Unpredictability in Hamiltonian and Dissipative Systems. International Journal of
Modern Physics B, 2003, 17, 4171-4175.
2.0

23

Physical Review E, 2005, 71, 016219.

73	Chaos-induced resonant effects and its control. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 428-432.	2.1	23
74	A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cognitive Processing, 2009, 10, 23-31.	1.4	23
75	Effect of noise on the reinjection probability density in intermittency. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3587-3596.	3.3	23
76	Characterization of the local instability in the HÃ@nonâ€"Heiles Hamiltonian. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 311, 26-38.	2.1	22
77	Phase control of excitable systems. New Journal of Physics, 2008, 10, 073030.	2.9	22
78	Partial control of chaotic systems. Physical Review E, 2008, 77, 055201.	2.1	22
79	Bifurcation and resonance in a fractional Mathieu-Duffing oscillator. European Physical Journal B, 2015, 88, 1 .	1.5	22

80 Avoiding healthy cells extinction in a cancer model. Journal of Theoretical Biology, 2014, 349, 74-81.
81 Chaos-Based Turbo Systems in Fading Channels. IEEE Transactions on Circuits and Systems I: Regular
Papers, 2014, 61, 530-541.Noise-induced resonance at the subharmonic frequency in bistable systems. Nonlinear Dynamics, 2017,3.321
Wada property in systems with delay. Communications in Nonlinear Science and Numerical Simulation, $83 \quad \begin{aligned} & \text { Wada property in sy } \\ & 2017,43,220-226 .\end{aligned}$
2.6 20
The network of scientific collaborations within the European framework programme. Physica A:
84 Statistical Mechanics and Its Applications, 2007, 384, 675-683.5.421Experimental demonstration of bidirectional chaotic communication by means of isochronalsynchronization. Europhysics Letters, 2008, 81, 40005.
2.0 20
86 Exploring partial control of chaotic systems. Physical Review E, 2009, 79, 026217. 2.1 20
$87 \quad$ Frequency dispersion in the time-delayed Kuramoto model. Physical Review E, 2014, 89, 032905. 2.1 20

91	Analysis of the noise-induced bursting-spiking transition in a pancreatic $\hat{1}^{2}$-cell model. Physical Review E, 2004, 69, 041910.	2.1	19
92	Controlling chaotic transients: Yorkeâ $€^{\text {TM }}$ s game of survival. Physical Review E, 2004, 69, 016203.	2.1	19
93	Turbo-like structures for chaos encoding and decoding. IEEE Transactions on Communications, 2009, 57, 597-601.	7.8	19
94	Synchronization of uncoupled excitable systems induced by white and coloured noise. New Journal of Physics, 2010, 12, 053040.	2.9	19
95	Delay-Induced Resonance in the Time-Delayed Duffing Oscillator. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030007.	1.7	19
96	Chaos-Coded Modulations Over Rician and Rayleigh Flat Fading Channels. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 581-585.	3.0	18
97	Partially controlling transient chaos in the Lorenz equations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160211.	3.4	18

98 Low-dimensional paradigms for high-dimensional hetero-chaos. Chaos, 2018, 28, 103110. 2.5
99 Opening a closed Hamiltonian map. Chaos, 2003, 13, 17-24. 2.5 17
100 Optimizing the Electrical Power in an Energy Harvesting System. International Journal of Bifurcationand Chaos in Applied Sciences and Engineering, 2015, 25, 1550171.
101 Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in 1.2 17
Fractional-Order Duffing Oscillators. Journal of Computational and Nonlinear Dynamics, 2017, 12, .
Nonlinear cancer chemotherapy: Modelling the Norton-Simon hypothesis. Communications in
Nonlinear Science and Numerical Simulation, 2019, 70, 307-317. 3.3 17
102
5.2 17
Wada index based on the weighted and truncated Shannon entropy. Nonlinear Dynamics, 2021, 104, $103 \quad$ Wada indSynchronization of electronic genetic networks. Chaos, 2006, 16, 013127.2.516
105 Phase control of intermittency in dynamical systems. Physical Review E, 2006, 74, 016202. 2.1 16
Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 3617-3630. 1.7 16
106Controlling unpredictability in the randomly driven HÃ@nonâ€"Heiles system. Communications inNonlinear Science and Numerical Simulation, 2013, 18, 3449-3457.3.316

\#	Article	IF	
109	Wada structures in a binary black hole system. Physical Review D, 2018, 98,	4.7	16
110	Local predictability and nonhyperbolicity through finite Lyapunov exponent distributions in two-degrees-of-freedom Hamiltonian systems. Physical Review E, 2008, 78, 066204.	2.1	15
111	Improving the Performance of Chaos-Based Modulations Via Serial Concatenation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 448-459.	5.4	15
112	Energy Harvesting Enhancement by Vibrational Resonance. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430019.	1.7	15
113	The dose-dense principle in chemotherapy. Journal of Theoretical Biology, 2017, 430, 169-176.	1.7	15
114	Uncertainty dimension and basin entropy in relativistic chaotic scattering. Physical Review E, 2018, 97, 042214.	2.1	15
115	Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems. Nonlinear Dynamics, 2020, 99, 3029-3039.	5.2	15
116	Time-frequency analysis of a new aperiodic resonance. Communications in Nonlinear Science and Numerical Simulation, 2020, 85, 105258.	3.3	15
117	Remarks on transitions order-chaos induced by the shape of the periodic excitation in a parametric pendulum. Chaos, Solitons and Fractals, 1996, 7, 435-440.	5.1	14
118	The topology of fluid flow past a sequence of cylinders. Topology and Its Applications, 1999, 94, 207-242.	0.4	14
119	Complex networks and the WWW market. Physica A: Statistical Mechanics and Its Applications, 2003, 324, 754-758.	2.6	14
120	$\begin{aligned} & \text { Sensitivity versus resonance in two-dimensional spiking-bursting neuron models. Physical Review E, } \\ & 2007,75,041902 \text {. } \end{aligned}$	2.1	14
121	Permutation complexity of spatiotemporal dynamics. Europhysics Letters, 2010, 90, 10007.	2.0	14
122	Partial control of chaotic transients using escape times. New Journal of Physics, 2010, 12, 113038.	2.9	14
123	Weakly noisy chaotic scattering. Physical Review E, 2013, 88, 032914.	2.1	14
124	When less is more: Partial control to avoid extinction of predators in an ecological model. Ecological Complexity, 2014, 19, 1-8.	2.9	14
125	Predictability of Chaotic Dynamics. Springer Series in Synergetics, 2017,	0.4	14
126	On the LFM signal improvement by piecewise vibrational resonance using a new spectral amplification factor. IET Signal Processing, 2019, 13, 65-69.	1.5	14

127

WINNERLESS COMPETITION IN NETWORKS OF COUPLED MAP NEURONS. Modern Physics Letters B, 2004,
1.9
129 The interplay of universities and industry through the FP5 network. New Journal of Physics, 2007, 9,
183-183.
$130 \begin{aligned} & \text { Applicability of time-average moirÃ© techniques for chaotic oscillations. Physical Review E, 2007, 76, } \\ & 036208 .\end{aligned}$
133 Destruction of solid tumors by immune cells. Communications in Nonlinear Science and Numerical Simulation, 2017, 44, 390-403.
A test for fractal boundaries based on the basin entropy. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105588.
$135 \quad \begin{aligned} & \text { Vibrational Resonance in a Duffing Syste } \\ & \text { Nonlinear Dynamics, 2013, 2, 397-408. }\end{aligned}$$3.3 \quad 13$0.313
136 Intersections of stable and unstable manifolds: the skeleton of Lagrangian chaos. Chaos, Solitons and
Fractals, 2005, 24, 947-956.5.112
137 Non-smooth transitions in a simple city traffic model analyzed through supertracks. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 81-88.
3.3 12
Bifurcation Transition and Nonlinear Response in a Fractional-Order System. Journal of 1.2 12
138 Computational and Nonlinear Dynamics, 2015, 10, .
139 Decay Dynamics of Tumors. PLoS ONE, 2016, 11, e0157689. 2.5 12Effect of the phase on the dynamics of a perturbed bouncing ball system. Communications in
Nonlinear Science and Numerical Simulation, 2012, 17, 3279-3286.3.311
Nonlinear Science and Numerical Simulation, 2012, 17, 3279-3286. 140Saddle-Node Bifurcation and Vibrational Resonance in a Fractional System with an Asymmetric141 Bistable Potential. International Journal of Bifurcation and Chaos in Applied Sciences and1.711Engineering, 2015, 25, 1550023.Bifurcation Analysis and Nonlinear Decay of a Tumor in the Presence of an Immune Response.International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750223.1.711
143Stochastic resonance in dissipative drift motion. Communications in Nonlinear Science and NumericalSimulation, 2018, 54, 62-69.3.311

\#	Article	IF	Citations
145	Subharmonic bifurcations in a pendulum parametrically excited by a non-harmonic perturbation. Chaos, Solitons and Fractals, 1998, 9, 995-1003.	5.1	10
146	Channel coding in communications using chaos. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 295, 185-191.	2.1	10
147	Evaluation of channel coding and decoding algorithms using discrete chaotic maps. Chaos, 2006, 16, 013103.	2.5	10
148	The efficiency of a random and fast switch in complex dynamical systems. New Journal of Physics, 2012, 14, 083022.	2.9	10
149	PARTIAL CONTROL OF TRANSIENT CHAOS IN ELECTRONIC CIRCUITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250032.	1.7	10
150	NONLINEAR RESPONSE OF THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250006.	1.7	10
151	Electronic circuit implementation of the chaotic Rulkov neuron model. Journal of the Franklin Institute, 2013, 350, 2901-2910.	3.4	10
152	Effects of periodic forcing in chaotic scattering. Physical Review E, 2014, 89, 042909.	2.1	10
153	Parametric partial control of chaotic systems. Nonlinear Dynamics, 2016, 86, 869-876.	5.2	10
154	Stochastic resonance in overdamped systems with fractional power nonlinearity. European Physical Journal Plus, 2017, 132, 1.	2.6	10
155	Resonant behavior and unpredictability in forced chaotic scattering. Physical Review E, 2018, 98, .	2.1	10
156	Vibrational Resonance in an Overdamped System with a Fractional Order Potential Nonlinearity. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850082.	1.7	10
157	The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105167.	3.3	10
158	Classifying basins of attraction using the basin entropy. Chaos, Solitons and Fractals, 2022, 159, 112112.	5.1	10
159	Information flow in generalized hierarchical networks. Physica A: Statistical Mechanics and lts Applications, 2003, 324, 424-429.	2.6	9
160	Exploiting symbolic dynamics in chaos coded communications with maximum a posteriori algorithm. Electronics Letters, 2006, 42, 984.	1.0	9
161	Transport of particles by surface waves: a modification of the classical bouncer model. New Journal of Physics, 2008, 10, 083017.	2.9	9
162	Vibrational and Ghost-Vibrational Resonances in a Modified Chua's Circuit Model Equation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430031.	1.7	9

163	Global relativistic effects in chaotic scattering. Physical Review E, 2017, 95, 032205.	2.1
164	Adaptive denoising for strong noisy images by using positive effects of noise. European Physical Journal Plus, 2021, 136, 1.	2.6
165	Stochastic resetting in the Kramers problem: A Monte Carlo approach. Chaos, Solitons and Fractals, 2021, 152, 111342.	5.1
166	SYMMETRY-RESTORING CRISES, PERIOD-ADDING AND CHAOTIC TRANSITIONS IN THE CUBIC VAN DER POL OSCILLATOR. Journal of Sound and Vibration, 1996, 193, 863-875.	3.9
167	Coupling scheme for complete synchronization of periodically forced chaoticCO2lasers. Physical Review E, 2004, 70, 036208.	2.1
168	The role of dose density in combination cancer chemotherapy. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104918.	3.3
169	The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105693.	3.3
170	Dissipative hydrodynamic oscillators. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1991, 13, 913-918.	0.4

172 ITERATIVELLY DECODING CHAOS ENCODED BINARY SIGNALS. , 0, , . 7

173 Competitive decoders for turbo-like chaos-based systems. IET Communications, 2012, 6, 1278.

Impact of quantumâ€"classical correspondence on entanglement enhancement by single-mode squeezing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2603-2610.
2.1

7

From local uncertainty to global predictions: Making predictions on fractal basins. PLoS ONE, 2018, 13, e0194926.

Fractional damping enhances chaos in the nonlinear Helmholtz oscillator. Nonlinear Dynamics, 2020, 102, 2323-2337.
$5.2 \quad 7$

$$
\begin{aligned}
& 181 \text { Controlling crissis-induced intermittency using its relation with a boundary crisis. New Journal of } \\
& \text { Physics, 2009, 11, 023025. }
\end{aligned}
$$

STRONG SENSITIVITY OF THE VIBRATIONAL RESONANCE INDUCED BY FRACTAL STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350129.
1.7

6

The forecast of predictability for computed orbits in galactic models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3797-3811.

185 Bogdanovâ€"Takens resonance in time-delayed systems. Nonlinear Dynamics, 2018, 91, 1939-1947.
5.2

Amplification of the LFM signal by using piecewise vibrational methods. JVC/Journal of Vibration and Control, 2019, 25, 141-150.

191 \begin{tabular}{l}
Stochastic resonance induced by an unknown linear frequency modulated signal in a strong noise

background. Chaos, 2020, 30, 043128.

\quad

Artificial Intelligence, Chaos, Prediction and Understanding in Science. International Journal of

Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150173.
\end{tabular}

194 A novel adaptive moving average method for signal denoising in strong noise background. European Physical Journal Plus, 2022, 137, 1.
2.6

6

$195 \quad$| Stochastic resonance in image denoising as an alternative to traditional methods and deep learning. |
| :--- |
| Nonlinear Dynamics, 2022, 109, 2163-2183. |

Homoclinic bifurcation sets of driven nonlinear oscillators. International Journal of Theoretical Physics, 1996, 35, 1745-1752.
How to minimize the control frequency to sustain transient chaos using partial control.
Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 726-737.

200 Mutation-selection equilibrium in finite populations playing a Hawkấe"Dove game. Communications in Nonlinear Science and Numerical Simulation, 2015, 25, 66-73.
3.3

5

201 Transient chaotic transport in dissipative drift motion. Physics Letters, Section A: General, Atomic and
Solid State Physics, 2016, 380, 1621-1626.

A new approach of the partial control method in chaotic systems. Nonlinear Dynamics, 2019, 98,
202 873-887.
5.2
$5.2-5$

203 Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem.
Physical Review E, 2020, 102, 042204.
$2.1 \quad 5$

204 Basin Entropy, a Measure of Final State Unpredictability and Its Application to the Chaotic Scattering
0.65 of Cold Atoms. Understanding Complex Systems, 2018, , 9-34.
. 6
205 Analysis of Chaos-Based Coded Modulations under Intersymbol Interference. Journal of Computers, 2010, 5, .
$0.4 \quad 5$

206 Effect of Static Bifurcation on Logical Stochastic Resonance in a Symmetric Bistable System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .
$1.7 \quad 5$
Reply to â€œComment on â€ LiÃ ©nard systems, limit cycles, and Melnikov theoryâ€ ${ }^{T M}$ â€: Physical Review E, 1999. 5 . 19 , 2485-2486.

Controlling chaos in a fluid flow past a movable cylinder. Chaos, Solitons and Fractals, 2003, 15,

Modulation of synchronization dynamics in a network of self-sustained systems. Communications in
$211 \begin{aligned} & \text { Modulation of synchronization dynamics in a network of self-sust. } \\ & \text { Nonlinear Science and Numerical Simulation, 2014, 19, 656-672. }\end{aligned}$
$\begin{array}{ll}3.3 & 4\end{array}$

Transient chaos in time-delayed systems subjected to parameter drift. Journal of Physics Complexity,
212 2021,2,025001.
2.2

4

Transient Dynamics of the Lorenz System with a Parameter Drift. International Journal of Bifurcation
and Chaos in Applied Sciences and Engineering, 2021, 31, 2150029.
1.7

Ergodic decay laws in Newtonian and relativistic chaotic scattering. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 105987.
3.3

4
2

[^2]0.9

4

Plus, 2021, 136, 1.

217 Beyond partial control: controlling chaotic transients with the safety function. Nonlinear Dynamics, $0,1$.

218 A novel channel coding scheme based on continuous-time chaotic dynamics. , 0, , .
3
219 Noise-induced effects on the chaotic advection of fluid flow. Physics Letters, Section A: General,
Atomic and Solid State Physics, 2002, 297, 396-401. $2.1 \quad 3$
Congestion schemes and Nash equilibrium in complex networks. Physica A: Statistical Mechanics and
220 Its Applications, 2005, 355, 602-618.2.63
221 Entraining synthetic genetic oscillators. Chaos, 2009, 19, 033139.2.53
Role of asymmetries in the chaotic dynamics of the double-well Duffing oscillator. Pramana - Journal of Physics, 2009, 72, 927-937. 1.8PREDICTING THE SYNCHRONIZATION OF A NETWORK OF ELECTRONIC REPRESSILATORS. InternationalJournal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1751-1760.$1.7 \quad 3$
PHASE CONTROL IN NONLINEAR SYSTEMS. Series on Stability, Vibration and Control of Systems - Series B, 2010, , 147-187.
Cyclic motifs as the governing topological factor in time-delayed oscillator networks. Physical $225 \quad \begin{aligned} & \text { Cyclic motifs as the governing } \\ & \text { Review E, 2014, 90, 052920. }\end{aligned}$
3.43
Effect of geometry on the classical entanglement in a chaotic optical fiber. Optics Express, 2015, 23,32191.
Role of dark matter haloes on the predictability of computed orbits. Astronomy and Astrophysics,
227 2016, 595, A68.
5.1 3
228 A new method to reduce the number of time delays in a network. Scientific Reports, 2017, 7, 2744.3.33
229 Partial control of delay-coordinate maps. Nonlinear Dynamics, 2018, 92, 1419-1429. 5.2 3Supply based on demand dynamical model. Communications in Nonlinear Science and NumericalSimulation, 2018, 57, 402-414.$3.3 \quad 3$
Transient chaos under coordinate transformations in relativistic systems. Physical Review E, 2020, 101, 062212. 2.1 3
231Forcing the escape: Partial control of escaping orbits from a transient chaotic region. NonlinearDynamics, 2021, 104, 1603-1612.

Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering. Communications in
Nonlinear Science and Numerical Simulation, 2021, 102, 105905.

236 Control of Transient Chaos Using Safe Sets in Simple Dynamical Systems. , 2007, , 425-435.
3
237 Modelling Cancer Dynamics Using Cellular Automata. STEAM-H: Science, Technology, Engineering,
Agriculture, Mathematics \& Health, 2019, , 159-205.
$0.0 \quad 3$
Modelling Cancer Dynamics Using Cellular Automata. STEAM-H: Science, Technology, Engineering,
Agriculture, Mathematics \& Health, 2019, , 159-205.

Noise activates escapes in closed Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation, 2022, 105, 106074.

Controlling Infectious Diseases: The Decisive Phase Effect on a Seasonal Vaccination Strategy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31 , .
1.7

Complex bio rhythms. European Physical Journal: Special Topics, 2022, 231, 815-818.243 Publisher's Note: Partial control of chaotic systems [Phys. Rev. E77, 055201 (2008)]. Physical Review E,
2008, 77, .$2.1 \quad 2$
244 Basin boundary metamorphoses and phase control. Europhysics Letters, 2010, 90, 30002.2.02
245 EFFECT OF STEP SIZE ON BIFURCATIONS AND CHAOS OF A MAP-BASED BVP OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1789-1795.
1.72
PHASE CONTROL IN THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS AND EXTERNAL EXCITATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330042. 246
$1.7 \quad 2$
247 Entanglement Entropy in a Triangular Billiard. Entropy, 2016, 18, 79. 2.2 2Reducing the number of time delays in coupled dynamical systems. European Physical Journal: Special2.62Topics, 2018, 227, 1281-1289.PARTIAL CONTROL OF CHAOTIC SYSTEMS. Series on Stability, Vibration and Control of Systems - Series B,0.2

```
267 Kink solitary solutions to a hepatitis C evolution model. Discrete and Continuous Dynamical Systems -
```

Series B, 2017, 22, 0-0.
265 Lyapunov Exponents. Springer Series in Synergetics, 2017, , 25-59.
$5.1 \quad 1$
Solitons and Fractals, 2022, 156, 111891.
5.1

1
269 A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering.
Nonlinear Dynamics, 2022, 109, 1123-1133.
5.2

Chaotic pattern of unsmoothed isochromatics around the regions of concentrated stresses.
Computers and Graphics, 2008, 32, 116-119.

$$
\begin{aligned}
& 271 \quad \text { Corrections to "Chaos-Coded Modulation Over Rician and Rayleigh Flat Fading Channels". IEEE } \\
& \text { Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 1314-1314. }
\end{aligned}
$$

A New Mechanical Model for Particle Transport by Surface Waves and Applications. Mathematical Problems in Engineering, 2009, 2009, 1-17.
Infinite horseshoes and complex dynamics in physical systems. Communications in Nonlinear Science
273 Infinite horseshoes and complex dynamics in phys.
3.3

274 Coherence and Chaotic Resonances. Springer Series in Synergetics, 2016, , 333-350.
0.4

Physics of cancer: the new adventure of physicists against cancer. Contemporary Physics, 2017, 58, 176-178.

Escaping from a chaotic saddle in the presence of noise. International Journal of Nonlinear Dynamics and Control, 2017, 1, 78.

Corrigendum to â€œThe saddle-straddle method to test for Wada basinsâ $€ \cdot[C o m m u n$. Nonlinear Sci.
277 Numer. Simulat. 84 (2020) 105167]. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105334.

278 A modern approach to teaching classical mechanics. Contemporary Physics, 0, , 1-4.
1.8

279 Dynamical Regimes and Time Scales. Springer Series in Synergetics, 2017, , 61-89.
0.4

0

280 Forecasting and Chaos. Springer Series in Synergetics, 2017, , 1-24.

When the firm prevents the crash: Avoiding market collapse with partial control. PLoS ONE, 2017, 12,
281 e0181925.

Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 3237-3274.

283 Predictability. Springer Series in Synergetics, 2019, , 101-129.
0.4

0

284 Lyapunov Exponents. Springer Series in Synergetics, 2019, , 33-69.
0.4

0

285 A Detailed Example: Galactic Dynamics. Springer Series in Synergetics, 2019, , 151-188.
$0.4 \quad 0$

286 Dynamical Regimes and Timescales. Springer Series in Synergetics, 2019, , 71-99.
0.4
o

287 Forecasting and Chaos. Springer Series in Synergetics, 2019, , 1-31.
0.4

[^0]: Source: https:/|exaly.com/author-pdf/8863473/publications.pdf
 Version: 2024-02-01

[^1]: 53DETECTING DETERMINISM IN TIME SERIES WITH ORDINAL PATTERNS: A COMPARATIVE STUDY. International
 Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2915-2924.

[^2]: 215 A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - Series B,
 2007, 7, 275-284.

