Jennifer Louise A Wilkinson-Berka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8862186/publications.pdf

Version: 2024-02-01

Jennifer Louise A

#	Article	IF	CITATIONS
1	Tetraspanin CD82 restrains phagocyte migration but supports macrophage activation. IScience, 2022, 25, 104520.	4.1	5
2	Angiotensin II and aldosterone activate retinal microglia. Experimental Eye Research, 2020, 191, 107902.	2.6	19
3	Lung and Eye Disease Develop Concurrently in Supplemental Oxygen–Exposed Neonatal Mice. American Journal of Pathology, 2020, 190, 1801-1812.	3.8	9
4	Nox (NADPH Oxidase) 1, Nox4, and Nox5 Promote Vascular Permeability and Neovascularization in Retinopathy. Hypertension, 2020, 75, 1091-1101.	2.7	42
5	Angiotensin II and aldosterone: Co-conspirators in ocular physiology and disease. Experimental Eye Research, 2020, 194, 108005.	2.6	7
6	Angiotensin II and aldosterone in retinal vasculopathy and inflammation. Experimental Eye Research, 2019, 187, 107766.	2.6	34
7	Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. Journal of Neuroscience, 2019, 39, 5562-5580.	3.6	16
8	Effect of NADPH oxidase 1 and 4 blockade in activated human retinal endothelial cells. Clinical and Experimental Ophthalmology, 2018, 46, 652-660.	2.6	25
9	Endothelin-2 Injures the Blood–Retinal Barrier and Macroglial Müller Cells. American Journal of Pathology, 2018, 188, 805-817.	3.8	17
10	Intravitreal administration of endothelin type A receptor or endothelin type B receptor antagonists attenuates hypertensive and diabetic retinopathy in rats. Experimental Eye Research, 2018, 176, 1-9.	2.6	9
11	Nrf2 Activation Is a Potential Therapeutic Approach to Attenuate Diabetic Retinopathy. , 2018, 59, 815.		58
12	Foxp3+ Tregs are recruited to the retina to repair pathological angiogenesis. Nature Communications, 2017, 8, 748.	12.8	63
13	Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clinical Science, 2017, 131, 2865-2883.	4.3	122
14	The potential of anti-VEGF (Vasotide) by eye drops to treat proliferative retinopathies. Annals of Translational Medicine, 2016, 4, S41-S41.	1.7	2
15	Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 2016, 24, 1290-1301.	8.2	286
16	Inhibition of the Nuclear Receptor RORÎ ³ and Interleukin-17A Suppresses Neovascular Retinopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1186-1196.	2.4	41
17	A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy. Clinical Science, 2016, 130, 1375-1387.	4.3	27
18	VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. Journal of Pathology, 2016, 239, 152-161.	4.5	24

#	Article	IF	CITATIONS
19	Inhibition of NOX1/4 with GKT137831: a potential novel treatment to attenuate neuroglial cell inflammation in the retina. Journal of Neuroinflammation, 2015, 12, 136.	7.2	65
20	Deleting the BAFF receptor TACI protects against systemic lupus erythematosus without extensive reduction of B cell numbers. Journal of Autoimmunity, 2015, 61, 9-16.	6.5	41
21	Are reactive oxygen species still the basis for diabetic complications?. Clinical Science, 2015, 129, 199-216.	4.3	74
22	Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina. Experimental Eye Research, 2015, 136, 1-8.	2.6	38
23	Prorenin stimulates a proâ€angiogenic and proâ€inflammatory response in retinal endothelial cells and an M1 phenotype in retinal microglia. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 537-548.	1.9	22
24	FT011, a Novel Cardiorenal Protective Drug, Reduces Inflammation, Gliosis and Vascular Injury in Rats with Diabetic Retinopathy. PLoS ONE, 2015, 10, e0134392.	2.5	14
25	Retinal Vasculopathy Is Reduced by Dietary Salt Restriction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2033-2041.	2.4	22
26	The Vasoneuronal Effects of AT ₁ Receptor Blockade in a Rat Model of Retinopathy of Prematurity. , 2014, 55, 3957.		15
27	NADPH Oxidase, NOX1, Mediates Vascular Injury in Ischemic Retinopathy. Antioxidants and Redox Signaling, 2014, 20, 2726-2740.	5.4	104
28	Brain and retinal microglia in health and disease: An unrecognized target of the renin–angiotensin system. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 571-579.	1.9	32
29	Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clinical Science, 2013, 124, 597-615.	4.3	120
30	Lack of the Antioxidant Glutathione Peroxidase-1 (GPx1) Exacerbates Retinopathy of Prematurity in Mice. , 2013, 54, 555.		40
31	The Renin-Angiotensin System and Advanced Glycation End-Products in Diabetic Retinopathy: Impacts and Synergies Current Clinical Pharmacology, 2013, 8, 285-296.	0.6	15
32	Neovascularization Is Attenuated With Aldosterone Synthase Inhibition in Rats With Retinopathy. Hypertension, 2012, 59, 607-613.	2.7	61
33	1030 ACTIVATION OF RETINAL MICROGLIA IS ATTENUATED WITH ANGIOTENSIN II AND ALDOSTERONE BLOCKADE. Journal of Hypertension, 2012, 30, e300.	0.5	0
34	The retinal renin–angiotensin system: Roles of angiotensin II and aldosterone. Peptides, 2012, 36, 142-150.	2.4	72
35	Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies. Journal of Cardiovascular Translational Research, 2012, 5, 509-518.	2.4	104
36	Prorenin and the (pro)renin receptor: recent advances and implications for retinal development and disease. Current Opinion in Nephrology and Hypertension, 2011, 20, 69-76.	2.0	13

#	Article	IF	CITATIONS
37	Aliskiren reduces vascular pathology in diabetic retinopathy and oxygen-induced retinopathy in the transgenic (mRen-2)27 rat. Diabetologia, 2011, 54, 2724-2735.	6.3	31
38	Characterization of retinal function and glial cell response in a mouse model of oxygenâ€induced retinopathy. Journal of Comparative Neurology, 2011, 519, 506-527.	1.6	99
39	The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Documenta Ophthalmologica, 2010, 120, 67-86.	2.2	53
40	The renin–angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Progress in Retinal and Eye Research, 2010, 29, 284-311.	15.5	123
41	Angiotensin type†receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. Journal of Comparative Neurology, 2010, 518, 41-63.	1.6	44
42	Prorenin and the pro renin receptor do they have a pathogenic role in the retina. Frontiers in Bioscience - Elite, 2010, E2, 1054-1064.	1.8	13
43	Candesartan Attenuates Diabetic Retinal Vascular Pathology by Restoring Glyoxalase-I Function. Diabetes, 2010, 59, 3208-3215.	0.6	95
44	RILLKKMPSV Influences the Vasculature, Neurons and Glia, and (Pro)Renin Receptor Expression in the Retina. Hypertension, 2010, 55, 1454-1460.	2.7	61
45	Identification of a Retinal Aldosterone System and the Protective Effects of Mineralocorticoid Receptor Antagonism on Retinal Vascular Pathology. Circulation Research, 2009, 104, 124-133.	4.5	147
46	(Pro)renin Receptor: A Treatment Target for Diabetic Retinopathy?. Diabetes, 2009, 58, 1485-1487.	0.6	10
47	Neuronal and glial cell expression of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the rat retina. Neuroscience, 2009, 161, 195-213.	2.3	56
48	Prorenin and the (Pro)renin Receptor in Retinal Pathology. Current Hypertension Reviews, 2009, 5, 245-250.	0.9	0
49	AT ₁ receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygenâ€induced retinopathy. Glia, 2008, 56, 1076-1090.	4.9	88
50	Omega-3 polyunsaturated fatty acid supplementation reduces hypertension in TGR(mRen-2)27 rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 78, 67-72.	2.2	24
51	Prorenin and the (Pro)renin Receptor in Ocular Pathology. American Journal of Pathology, 2008, 173, 1591-1594.	3.8	15
52	Update on the Treatment of Diabetic Retinopathy. Scientific World Journal, The, 2008, 8, 98-120.	2.1	32
53	Neuronal and Glial Cell Abnormality as Predictors of Progression of Diabetic Retinopathy. Current Pharmaceutical Design, 2007, 13, 2699-2712.	1.9	182
54	Editorial [Hot Topic: Pathogenesis and Treatment of Diabetic Complications,Retinopathy, Nephropathy and Cardiomyopathy (Executive Editor: J.L. Wilkinson-Berka)]. Current Pharmaceutical Design, 2007, 13, 2698-2698.	1.9	0

#	Article	IF	CITATIONS
55	Progressive diabetic nephropathy in the Ren-2 rat. American Journal of Physiology - Renal Physiology, 2007, 292, F1662-F1662.	2.7	4
56	Retinal Dysfunction in Diabetic Ren-2 Rats Is Ameliorated by Treatment with Valsartan but Not Atenolol. , 2007, 48, 927.		57
57	Valsartan but not Atenolol Improves Vascular Pathology in Diabetic Ren-2 Rat Retina. American Journal of Hypertension, 2007, 20, 423-430.	2.0	52
58	Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. Journal of Comparative Neurology, 2007, 504, 404-417.	1.6	57
59	An antisense oligonucleotide targeting the growth hormone receptor inhibits neovascularization in a mouse model of retinopathy. Molecular Vision, 2007, 13, 1529-38.	1.1	15
60	Angiotensin and diabetic retinopathy. International Journal of Biochemistry and Cell Biology, 2006, 38, 752-765.	2.8	136
61	The Role of Growth Hormone, Insulin-Like Growth Factor and Somatostatin in Diabetic Retinopathy. Current Medicinal Chemistry, 2006, 13, 3307-3317.	2.4	87
62	SB-267268, a Nonpeptidic Antagonist of αvβ3and αvβ5Integrins, Reduces Angiogenesis and VEGF Expression in a Mouse Model of Retinopathy of Prematurity. , 2006, 47, 1600.		53
63	Dysfunction of retinal neurons and glia during diabetes. Australasian journal of optometry, The, 2005, 88, 132-145.	1.3	100
64	Expression of the IGF System in Normal and Diabetic Transgenic (mRen-2)27 Rat Eye. , 2005, 46, 2708.		18
65	Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-?. Cardiovascular Research, 2005, 65, 694-701.	3.8	102
66	Renin Inhibition. Hypertension, 2005, 46, 471-472.	2.7	5
67	Sandford Lloyd Skinner (1933–2005). Hypertension, 2005, 46, 452-453.	2.7	Ο
68	The Renin-Angiotensin System and the Developing Retinal Vasculature. , 2005, 46, 1069.		65
69	Angiotensin and Bradykinin: Targets for the Treatment of Vascular and Neuro-Glial Pathology in Diabetic Retinopathy. Current Pharmaceutical Design, 2004, 10, 3313-3330.	1.9	44
70	Cardiorenal Protective Effects of Vasopeptidase Inhibition with Omapatrilat in Hypertensive Transgenic (mRENâ $\in 2$)27 Rats. Clinical and Experimental Hypertension, 2004, 26, 69-80.	1.3	12
71	Diabetes and retinal vascular disorders: role of the renin–angiotensin system. Expert Reviews in Molecular Medicine, 2004, 6, 1-18.	3.9	34
72	Angiotensin II influences ovarian follicle development in the transgenic (mRen-2)27 and Sprague-Dawley rat. Journal of Endocrinology, 2004, 180, 311-324.	2.6	16

3

#	Article	IF	CITATIONS
73	Fas-induced apoptosis is a feature of progressive diabetic nephropathy in transgenic (mRen-2)27 rats: Attenuation with renin-angiotensin blockade. Nephrology, 2004, 9, 7-13.	1.6	24
74	Inhibition of Platelet-Derived Growth Factor Promotes Pericyte Loss and Angiogenesis in Ischemic Retinopathy. American Journal of Pathology, 2004, 164, 1263-1273.	3.8	108
75	Vasoactive Factors and Diabetic Retinopathy: Vascular Endothelial Growth Factor, Cycoloxygenase-2 and Nitric Oxide. Current Pharmaceutical Design, 2004, 10, 3331-3348.	1.9	124
76	Preface [HotTopic: Cytokine Therapies for Diabetic Microvascular Complications (Executive Editor: J.L.) Tj ETQq0	0 0 rgBT /0 1.9	Overlock 10 T
77	The renin–angiotensin system and the longâ€ŧerm complications of diabetes: pathophysiological and therapeutic considerations. Diabetic Medicine, 2003, 20, 607-621.	2.3	75
78	Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin. American Journal of Pathology, 2003, 163, 879-887.	3.8	130
79	The Renin-Angiotensin System Influences Ocular Endothelial Cell Proliferation in Diabetes. American Journal of Pathology, 2003, 162, 151-160.	3.8	100
80	Regulation of angiotensin II receptors in the prostate of the transgenic (mRen-2)27 rat: effect of angiotensin-converting enzyme inhibition. International Journal of Biochemistry and Cell Biology, 2003, 35, 973-983.	2.8	12
81	COX-2 Inhibition and Retinal Angiogenesis in a Mouse Model of Retinopathy of Prematurity. , 2003, 44, 974.		98
82	Intervention with Tranilast Attenuates Renal Pathology and Albuminuria in Advanced Experimental Diabetic Nephropathy. Nephron Physiology, 2003, 95, p83-p91.	1.2	52
83	Protein Kinase C β Inhibition Attenuates the Progression of Experimental Diabetic Nephropathy in the Presence of Continued Hypertension. Diabetes, 2003, 52, 512-518.	0.6	173
84	Progression of tubulointerstitial injury by osteopontin-induced macrophage recruitment in advanced diabetic nephropathy of transgenic (mRen-2)27 rats. Nephrology Dialysis Transplantation, 2002, 17, 985-991.	0.7	57
85	Characterisation of a thymic renin–angiotensin system in the transgenic m(Ren-2)27 rat. Molecular and Cellular Endocrinology, 2002, 194, 201-209.	3.2	20
86	Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney International, 2002, 61, 31-39.	5.2	76
87	Effects of Low-Dose and Early versus Late Perindopril Treatment on the Progression of Severe Diabetic Nephropathy in (mREN-2)27 Rats. Journal of the American Society of Nephrology: JASN, 2002, 13, 684-692.	6.1	17
88	ALT-946 and Aminoguanidine, Inhibitors of Advanced Glycation, Improve Severe Nephropathy in the Diabetic Transgenic (mREN-2)27 Rat. Diabetes, 2002, 51, 3283-3289.	0.6	95
89	Control of renin secretion from adrenal gland in transgenic Ren-2 and normal rats. Molecular and Cellular Endocrinology, 2001, 173, 203-212.	3.2	18

90 Angiotensin and Renal Fibrosis. , 2001, 135, 171-186.

#	Article	IF	CITATIONS
91	Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade. Diabetologia, 2001, 44, 878-882.	6.3	137
92	The Interaction between the Renin-Angiotensin System and Vascular Endothelial Growth Factor in the Pathogenesis of Retinal Neovascularization in Diabetes. Journal of Vascular Research, 2001, 38, 527-535.	1.4	26
93	Renoprotective and antiâ€hypertensive effects of combined valsartan and perindopril in progressive diabetic nephropathy in the transgenic (mRenâ€2)27 rat. Nephrology Dialysis Transplantation, 2001, 16, 1343-1349.	0.7	40
94	Effects of endothelin or angiotensin II receptor blockade on diabetes in the transgenic (mRen-2)27 rat. Kidney International, 2000, 57, 1882-1894.	5.2	96
95	Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes. Diabetologia, 2000, 43, 1360-1367.	6.3	173
96	Retinal Neovascularization Is Prevented by Blockade of the Renin-Angiotensin System. Hypertension, 2000, 36, 1099-1104.	2.7	216
97	Protective role for Epidermal Growth Factor in Advanced Diabetic Nephropathy of Transgenic (mRenâ€2)27 rats. Nephrology, 2000, 5, A102-A102.	1.6	Ο
98	Protective role for Epidermal Growth Factor in Advanced Diabetic Nephropathy of Transgenic (mRenâ€2)27 rats. Nephrology, 2000, 5, A102-A102.	1.6	0
99	Potassium control of extrarenal renin secretion in transgenic (mRen-2)27 and normal rats. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E631-E638.	3.5	2
100	Renin in thymus, gut, hindlimb, and adrenal of (mRen-2)27 and normal rats: secretion and content studies. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E639-E646.	3.5	8
101	Localization of Secreted Protein Acidic and Rich in Cysteine (SPARC) Expression in the Rat Eye. Connective Tissue Research, 1999, 40, 295-303.	2.3	37
102	Increased bradykinin and "normal―angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney International, 1999, 56, 211-221.	5.2	52
103	Pathological Expression of Renin and Angiotensin II in the Renal Tubule after Subtotal Nephrectomy. American Journal of Pathology, 1999, 155, 429-440.	3.8	132
104	A new model of diabetic nephropathy with progressive renal impairment in the transgenic (mRen-2)27 rat (TGR). Kidney International, 1998, 54, 343-352.	5.2	153
105	Renal expression of transforming growth factor-β inducible gene-h3 (βig-h3) in normal and diabetic rats. Kidney International, 1998, 54, 1052-1062.	5.2	79
106	Diabetic renal failure and associated pathology are ameliorated by Perindopril treatment in transgenic Ren-2 rats. Experimental and Clinical Endocrinology and Diabetes, 1997, 105, 64-64.	1.2	0
107	Cell-specific regulation of mRNAs for IGF-I and IGF-binding proteins-4 and -5 in streptozotocin-diabetic rat kidney. Journal of Molecular Endocrinology, 1997, 18, 5-14.	2.5	16
108	Localization studies of IGFBP-2 and IGFBP-5 in the anterior compartment of the eye. Current Eye Research, 1997, 16, 256-262.	1.5	10

#	Article	IF	CITATIONS
109	Adrenaline cells of the rat adrenal cortex and medulla contain renin and prorenin. Molecular and Cellular Endocrinology, 1996, 119, 175-184.	3.2	25
110	Light-microscopic immunolocalization of fibroblast growth factor-1 and -2 in adult rat kidney. Cell and Tissue Research, 1996, 285, 179-187.	2.9	19
111	Localization of mRNAs for insulin-like growth factor binding proteins 1 to 6 in rat kidney. Kidney International, 1995, 48, 402-411.	5.2	32
112	Luteinizing Hormone/Chorionic Gonadotropin Bioactivity in the Common Marmoset (Callithrixjacchus) is Due to a Chorionic Gonadotropin Molecule with a Structure Intermediate between Human Chorionic Gonadotropin and Human Luteinizing Hormone. Biology of Reproduction, 1995, 53, 380-389.	2.7	34
113	Differential distribution of mRNA for the α- and β-subunits of chorionic gonadotrophin in the implantation stage blastocyst of the marmoset monkey. Placenta, 1995, 16, 335-346.	1.5	7
114	Renin processing and secretion in adrenal and retina of transgenic (mREN-2)27 rats. Kidney International, 1994, 46, 1583-1587.	5.2	23
115	Renin processing in cultured juxtaglomerular cells of the hydronephrotic mouse kidney Journal of Histochemistry and Cytochemistry, 1993, 41, 365-373.	2.5	11
116	Renin processing studied by immunogold localization of prorenin and renin in granular juxtaglomerular cells in mice treated with enalapril. Cell and Tissue Research, 1992, 268, 141-148.	2.9	25
117	Production of rat renin fusion protein in Escherichia coli and the preparation of renin-specific antisera. Molecular and Cellular Endocrinology, 1990, 73, 83-91.	3.2	5