Nicolas Dumaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8861638/publications.pdf

Version: 2024-02-01

218677 149698 3,193 63 26 56 h-index citations g-index papers 65 65 65 4089 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Novel treatment strategy for NRAS-mutated melanoma through a selective inhibitor of CD147/VEGFR-2 interaction. Oncogene, 2022, 41, 2254-2264.	5.9	5
2	New perspectives on targeting RAF, MEK and ERK in melanoma. Current Opinion in Oncology, 2021, 33, 120-126.	2.4	9
3	RICTOR Affects Melanoma Tumorigenesis and Its Resistance to Targeted Therapy. Biomedicines, 2021, 9, 1498.	3.2	10
4	Mitogen-activated protein kinase blockade in melanoma: intermittent versus continuous therapy, from preclinical to clinical data. Current Opinion in Oncology, 2021, 33, 127-132.	2.4	4
5	Targeted therapies in melanoma beyond BRAF: targeting NRAS-mutated and KIT-mutated melanoma. Current Opinion in Oncology, 2020, 32, 79-84.	2.4	25
6	Mechanisms of resistance and predictive biomarkers of response to targeted therapies and immunotherapies in metastatic melanoma. Current Opinion in Oncology, 2020, 32, 91-97.	2.4	7
7	A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping. Targeted Oncology, 2020, 15, 759-771.	3.6	2
8	FGF2 Induces Resistance to Nilotinib through MAPK Pathway Activation in KIT Mutated Melanoma. Cancers, 2020, 12, 1062.	3.7	7
9	Atypical BRAF and NRAS Mutations in Mucosal Melanoma. Cancers, 2019, 11, 1133.	3.7	47
10	Vismodegib resistant mutations are not selected in multifocal relapses of locally advanced basal cell carcinoma after vismodegib discontinuation. Journal of the European Academy of Dermatology and Venereology, 2019, 33, e422-e424.	2.4	1
11	Baseline Genomic Features in BRAFV600-Mutated Metastatic Melanoma Patients Treated with BRAF Inhibitor + MEK Inhibitor in Routine Care. Cancers, 2019, 11, 1203.	3.7	10
12	490 The role of PDE4D in resistance to targeted therapy in melanoma. Journal of Investigative Dermatology, 2019, 139, S299.	0.7	0
13	RASA1 loss in a BRAF-mutated Langerhans cell sarcoma: a mechanism of resistance to BRAF inhibitor. Annals of Oncology, 2019, 30, 1170-1172.	1.2	12
14	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
15	A targeted genomic alteration analysis predicts survival of melanoma patients under BRAF inhibitors. Oncotarget, 2019, 10, 1669-1687.	1.8	12
16	The role of RICTOR downstream of receptor tyrosine kinase in cancers. Molecular Cancer, 2018, 17, 39.	19.2	42
17	STAT3 Mediates Nilotinib Response in KIT-Altered Melanoma: A Phase II Multicenter Trial of the French Skin Cancer Network. Journal of Investigative Dermatology, 2018, 138, 58-67.	0.7	47
18	A targeted genomic analysis uncovered a large spectrum of acquired resistance mechanisms to BRAF inhibitor therapy in metastatic melanoma patients. Annals of Oncology, 2018, 29, iii25-iii26.	1.2	0

#	Article	IF	Citations
19	SMO mutations do not seem to drive multifocal relapse of locally advanced basal cell carcinoma after vismodegib discontinuation Journal of Clinical Oncology, 2018, 36, e21559-e21559.	1.6	o
20	Modulation of signaling through GPCR-cAMP-PKA pathways by PDE4 depends on stimulus intensity: Possible implications for the pathogenesis of acrodysostosis without hormone resistance. Molecular and Cellular Endocrinology, 2017, 442, 1-11.	3.2	13
21	PDE4D promotes FAK-mediated cell invasion in BRAF-mutated melanoma. Oncogene, 2017, 36, 3252-3262.	5.9	25
22	533 PDE4D is a therapeutic target in melanoma. Journal of Investigative Dermatology, 2017, 137, S283.	0.7	1
23	Mutations causing acrodysostosis-2 facilitate activation of phosphodiesterase 4D3. Human Molecular Genetics, 2017, 26, 3883-3894.	2.9	17
24	Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget, 2016, 7, 26628-26652.	1.8	25
25	TERT promoter mutations in melanoma render TERT expression dependent on MAPK pathway activation. Oncotarget, 2016, 7, 53127-53136.	1.8	54
26	Association of Vemurafenib and Pipobroman Enhances BRAF-CRAF Dimerization in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2016, 136, 1302-1305.	0.7	1
27	Hypoxia and MITF regulate KIT oncogenic properties in melanocytes. Oncogene, 2016, 35, 5070-5077.	5.9	5
28	<i>PARKIN</i> Inactivation Links Parkinson's Disease to Melanoma. Journal of the National Cancer Institute, 2016, 108, djv340.	6.3	56
29	Validation of a preclinical model for assessment of drug efficacy in melanoma. Oncotarget, 2016, 7, 13069-13081.	1.8	12
30	RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma. Oncotarget, 2015, 6, 28120-28131.	1.8	26
31	Driver KIT mutations in melanoma cluster in four hotspots. Melanoma Research, 2015, 25, 88-90.	1.2	11
32	Phase II multicentric uncontrolled national trial assessing the efficacy of nilotinib in the treatment of advanced melanomas with c-KIT mutation or amplification: Results of the pharmacodynamic study Journal of Clinical Oncology, 2015, 33, e20062-e20062.	1.6	1
33	A New KIT Mutation (N505I) in Acral Melanoma Confers Constitutive Signaling, Favors Tumorigenic Properties, and Is Sensitive to Imatinib. Journal of Investigative Dermatology, 2014, 134, 1473-1476.	0.7	4
34	A Large French Case-Control Study Emphasizes the Role of Rare <i>Mc1R</i> Variants in Melanoma Risk. BioMed Research International, 2014, 2014, 1-10.	1.9	19
35	Phase II multicentric uncontrolled national trial assessing the efficacy of nilotinib in the treatment of advanced melanomas with c-KIT mutation or amplification Journal of Clinical Oncology, 2014, 32, 9032-9032.	1.6	4
36	Oncogene abnormalities in a series of primary melanomas of the sinonasal tract: NRAS mutations and cyclin D1 amplification are more frequent than KIT or BRAF mutations. Human Pathology, 2013, 44, 1902-1911.	2.0	54

3

#	Article	IF	CITATIONS
37	Genetic variation at <scp><i>KIT</i></scp> locus may predispose to melanoma. Pigment Cell and Melanoma Research, 2013, 26, 88-96.	3.3	5
38	Skin Tumors Induced by Sorafenib; Paradoxic RAS–RAF Pathway Activation and Oncogenic Mutations of <i>HRAS</i> , <i>TP53</i> , and <i>TGFBR1</i> . Clinical Cancer Research, 2012, 18, 263-272.	7.0	119
39	130 INVITED TKI's, BRAF Inhibitors and the Problem of New Toxicities Such as Keratoacanthoma and Induction of Invasive SCC. European Journal of Cancer, 2011, 47, S32.	2.8	0
40	ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nature Structural and Molecular Biology, 2011, 18, 584-591.	8.2	81
41	Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases, 2011, 2, 289-292.	1.6	30
42	c-Kit mutants require hypoxia-inducible factor $1\hat{l}_{\pm}$ to transform melanocytes. Oncogene, 2010, 29, 227-236.	5.9	70
43	Inhibition of the Proprotein Convertases Represses the Invasiveness of Human Primary Melanoma Cells with Altered p53, CDKN2A and N-Ras Genes. PLoS ONE, 2010, 5, e9992.	2.5	16
44	Abstract 2341: The Subtilisin-like proprotein convertases blockade inhibits the invasiveness of human primary melanoma with alteredP53,CDKN2AandN-Rasgenes., 2010,,.		0
45	Recent discoveries in the genetics of melanoma and their therapeutic implications. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 363-372.	2.3	19
46	In Melanoma, RAS Mutations Are Accompanied by Switching Signaling from BRAF to CRAF and Disrupted Cyclic AMP Signaling. Cancer Research, 2006, 66, 9483-9491.	0.9	271
47	Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on The Anniversary Prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS Journal, 2005, 272, 3491-3504.	4.7	274
48	Raf Phosphorylation. Molecular Cell, 2005, 17, 164-166.	9.7	17
49	Protein Kinase A Blocks Raf-1 Activity by Stimulating 14-3-3 Binding and Blocking Raf-1 Interaction with Ras. Journal of Biological Chemistry, 2003, 278, 29819-29823.	3.4	224
50	Cyclic AMP Blocks Cell Growth through Raf-1-Dependent and Raf-1-Independent Mechanisms. Molecular and Cellular Biology, 2002, 22, 3717-3728.	2.3	71
51	Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochemical Journal, 2001, 355, 347-356.	3.7	37
52	Critical roles for the serine 20, but not the serine 15, phosphorylation site and for the polyproline domain in regulating p53 turnover. Biochemical Journal, 2001, 359, 459-464.	3.7	60
53	Critical roles for the serine 20, but not the serine 15, phosphorylation site and for the polyproline domain in regulating p53 turnover. Biochemical Journal, 2001, 359, 459.	3.7	53
54	Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochemical Journal, 2001, 355, 347.	3.7	27

#	Article	IF	CITATION
55	Phosphorylation of murine p53, but not human p53, by MAP kinase in vitro and in cultured cells highlights species-dependent variation in post-translational modification. Oncogene, 1999, 18, 7602-7607.	5.9	11
56	Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Letters, 1999, 463, 312-316.	2.8	119
57	Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO Journal, 1999, 18, 7002-7010.	7.8	390
58	Recovery of the normal p53 response after UV treatment in DNA repair- deficient fibroblasts by retroviral-mediated correction with the XPD gene. Carcinogenesis, 1998, 19, 1701-1704.	2.8	23
59	The role of UV-B light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinomas of hairless mice. Carcinogenesis, 1997, 18, 897-904.	2.8	139
60	Prolonged p53 protein accumulation in trichothiodystrophy fibroblasts dependent on unrepaired pyrimidine dimers on the transcribed strands of cellular genes. Molecular Carcinogenesis, 1997, 20, 340-347.	2.7	59
61	The specificity of p53 mutation spectra in sunlight induced human cancers. Journal of Photochemistry and Photobiology B: Biology, 1995, 28, 115-124.	3.8	137
62	Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 307, 375-386.	1.0	92
63	Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10529-10533.	7.1	263