Xin Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8861340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The spindle pole-body localization of activated cytoplasmic dynein is cell cycle-dependent in Aspergillus nidulans. Fungal Genetics and Biology, 2021, 148, 103519.	2.1	7
2	Dynein activation inÂvivo is regulated by the nucleotide states of its AAA3 domain. Current Biology, 2021, 31, 4486-4498.e6.	3.9	9
3	Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Frontiers in Cell and Developmental Biology, 2020, 8, 598952.	3.7	20
4	The splicing-factor Prp40 affects dynein–dynactin function in <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2020, 31, 1289-1301.	2.1	4
5	LIS1 regulates cargo-adapter–mediated activation of dynein by overcoming its autoinhibition in vivo. Journal of Cell Biology, 2019, 218, 3630-3646.	5.2	63
6	Insights into cytoplasmic dynein function and regulation from fungal genetics. , 2018, , 470-501.		1
7	Nuclear movement in fungi. Seminars in Cell and Developmental Biology, 2018, 82, 3-16.	5.0	39
8	p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation. Journal of Biological Chemistry, 2018, 293, 15606-15619.	3.4	21
9	The actin capping protein in Aspergillus nidulans enhances dynein function without significantly affecting Arp1 filament assembly. Scientific Reports, 2018, 8, 11419.	3.3	6
10	The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nature Communications, 2017, 8, 13999.	12.8	38
11	Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Molecular Biology of the Cell, 2017, 28, 947-961.	2.1	49
12	Cytoplasmic dynein and early endosome transport. Cellular and Molecular Life Sciences, 2015, 72, 3267-3280.	5.4	40
13	The Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors. Fungal Genetics and Biology, 2015, 82, 51-55.	2.1	9
14	Discovery of a vezatin-like protein for dynein-mediated early endosome transport. Molecular Biology of the Cell, 2015, 26, 3816-3827.	2.1	19
15	Maturation of late Golgi cisternae into RabE ^{RAB11} exocytic post-Golgi carriers visualized in vivo. Molecular Biology of the Cell, 2014, 25, 2428-2443.	2.1	86
16	HookA is a novel dynein–early endosome linker critical for cargo movement in vivo. Journal of Cell Biology, 2014, 204, 1009-1026.	5.2	115
17	FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in <i>Aspergillus</i> . Molecular Biology of the Cell, 2014, 25, 2181-2189.	2.1	54
18	Establishing a novel knockâ€in mouse line for studying neuronal cytoplasmic dynein under normal and pathologic conditions. Cytoskeleton, 2013, 70, 215-227.	2.0	15

XIN XIANG

#	Article	IF	CITATIONS
19	Identification of a Novel Site in the Tail of Dynein Heavy Chain Important for Dynein Function in Vivo. Journal of Biological Chemistry, 2013, 288, 2271-2280.	3.4	22
20	<i>In Vivo</i> Roles of the Basic Domain of Dynactin <scp>p</scp> 150 in Microtubule Plusâ€End Tracking and Dynein Function. Traffic, 2012, 13, 375-387.	2.7	31
21	Nuclear Positioning: Dynein Needed for Microtubule Shrinkage-Coupled Movement. Current Biology, 2012, 22, R496-R499.	3.9	7
22	The p25 subunit of the dynactin complex is required for dynein–early endosome interaction. Journal of Cell Biology, 2011, 193, 1245-1255.	5.2	75
23	The microtubule plus-end localization of <i>Aspergillus</i> dynein is important for dynein–early-endosome interaction but not for dynein ATPase activation. Journal of Cell Science, 2010, 123, 3596-3604.	2.0	71
24	Polymyxin B, in combination with fluconazole, exerts a potent fungicidal effect. Journal of Antimicrobial Chemotherapy, 2010, 65, 931-938.	3.0	75
25	Dynein Light Intermediate Chain in Aspergillus nidulans Is Essential for the Interaction between Heavy and Intermediate Chains. Journal of Biological Chemistry, 2009, 284, 34760-34768.	3.4	19
26	Arp11 Affects Dynein–Dynactin Interaction and is Essential for Dynein Function in <i>Aspergillus nidulans</i> . Traffic, 2008, 9, 1073-1087.	2.7	31
27	Point Mutations in the Stem Region and the Fourth AAA Domain of Cytoplasmic Dynein Heavy Chain Partially Suppress the Phenotype of NUDF/LIS1 Loss in Aspergillus nidulans. Genetics, 2007, 175, 1185-1196.	2.9	31
28	Motor proteins at the microtubule plus-end. Trends in Cell Biology, 2006, 16, 135-143.	7.9	96
29	A +TIP for a smooth trip. Journal of Cell Biology, 2006, 172, 651-654.	5.2	7
30	CLIP-170 Homologue and NUDE Play Overlapping Roles in NUDF Localization in Aspergillus nidulans. Molecular Biology of the Cell, 2006, 17, 2021-2034.	2.1	55
31	Cytoplasmic Dynein's Mitotic Spindle Pole Localization Requires a Functional Anaphase-promoting Complex, γ-Tubulin, and NUDF/LIS1 in Aspergillus nidulans. Molecular Biology of the Cell, 2005, 16, 3591-3605.	2.1	23
32	Nuclear migration and positioning in filamentous fungi. Fungal Genetics and Biology, 2004, 41, 411-419.	2.1	93
33	The requirement of the LC8 dynein light chain for nuclear migration and septum positioning is temperature dependent in Aspergillus nidulans. Molecular Microbiology, 2003, 47, 291-301.	2.5	42
34	Cytoskeleton and motor proteins in filamentous fungi. Current Opinion in Microbiology, 2003, 6, 628-633.	5.1	76
35	LIS1 at the microtubule plus end and its role in dynein-mediated nuclear migration. Journal of Cell Biology, 2003, 160, 289-290.	5.2	25
36	Accumulation of Cytoplasmic Dynein and Dynactin at Microtubule Plus Ends inAspergillus nidulansIs Kinesin Dependent. Molecular Biology of the Cell, 2003, 14, 1479-1488.	2.1	161

XIN XIANG

#	Article	IF	CITATIONS
37	The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Current Biology, 2001, 11, 719-724.	3.9	175
38	Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Current Biology, 2000, 10, 603-606.	3.9	101
39	Nuclear migration, nucleokinesis and lissencephaly. Trends in Cell Biology, 1998, 8, 467-470.	7.9	153
40	Nuclear migration advances in fungi. Trends in Cell Biology, 1995, 5, 278-282.	7.9	102
41	The Cytoskeleton in Filamentous Fungi. , 0, , 207-223.		2