List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860445/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews, 2001, 101, 953-996.	47.7	1,311
2	The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, 1999, 176, 159-176.	4.3	738
3	Environmental catalysis. Applied Catalysis B: Environmental, 1992, 1, 221-256.	20.2	383
4	Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen. Applied Catalysis B: Environmental, 1992, 1, L31-L40.	20.2	365
5	Catalytic decomposition of nitrous oxide on metal exchanged zeolites. Applied Catalysis B: Environmental, 1992, 1, L21-L29.	20.2	303
6	Selective catalytic reduction of NOx with methane over metal exchange zeolites. Applied Catalysis B: Environmental, 1993, 2, 239-256.	20.2	275
7	Selective Reduction of NO by Methane on Co-Ferrierites. Journal of Catalysis, 1994, 150, 388-399.	6.2	244
8	Effect of Water Vapor on the Selective Reduction of NO by Methane over Cobalt-Exchanged ZSM-5. Journal of Catalysis, 1993, 142, 561-571.	6.2	235
9	Selective Reduction of NO by Methane on Co-Ferrierites. Journal of Catalysis, 1994, 150, 376-387.	6.2	222
10	Selective Catalytic Reduction of NO with Methane on Gallium Catalysts. Journal of Catalysis, 1994, 145, 1-9.	6.2	190
11	Selective NH3 oxidation to N2 in a wet stream. Applied Catalysis B: Environmental, 1997, 13, 131-139.	20.2	165
12	A history of industrial catalysis. Catalysis Today, 2011, 163, 3-9.	4.4	143
13	Temperature-programmed desorption of nitric oxide over Cu-ZSM-5. Applied Catalysis, 1991, 76, L1-L8.	0.8	132
14	Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams. Applied Catalysis B: Environmental, 1996, 7, 397-406.	20.2	128
15	Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane. Applied Catalysis B: Environmental, 1993, 3, L1-L11.	20.2	118
16	Membrane catalysis: Where is it now, what needs to be done?. Catalysis Today, 1995, 25, 199-207.	4.4	116
17	New catalytic technology commercialized in the USA during the 1980's. Applied Catalysis, 1991, 78, 141-173.	0.8	112
18	Catalytic combustion of methane over palladium exchanged zeolites. Applied Catalysis B: Environmental, 1994, 3, 275-282.	20.2	108

#	Article	IF	CITATIONS
19	Ammoxidation of Ethane to Acetonitrile over Metal–Zeolite Catalysts. Journal of Catalysis, 1998, 173, 511-518.	6.2	98
20	The effect of SO2 on the catalytic performance of Co-ZSM-5 and Co-ferrierite for the selective reduction of NO by CH4 in the presence of O2. Applied Catalysis B: Environmental, 1995, 5, L257-L270.	20.2	97
21	Linkage isomerization in nitrogen-labeled [Ru(NH3)5N2]Br2. Journal of the American Chemical Society, 1970, 92, 2560-2562.	13.7	91
22	Formation and reactions of [(NH3)5RuN2O2+]. Journal of the American Chemical Society, 1969, 91, 6874-6876.	13.7	86
23	Simultaneous, catalytic removal of nitric oxide and nitrous oxide. Applied Catalysis B: Environmental, 1993, 3, 55-60.	20.2	84
24	Emerging importance of shale gas to both the energy & chemicals landscape. Journal of Energy Chemistry, 2013, 22, 21-26.	12.9	75
25	The unusual hydrothermal stability of Co-ZSM-5. Applied Catalysis B: Environmental, 1994, 4, L11-L17.	20.2	70
26	A bimolecular mechanism for substitution. Journal of the American Chemical Society, 1968, 90, 5928-5929.	13.7	67
27	A Reaction Pathway for the Ammoxidation of Ethane and Ethylene over Co-ZSM-5 Catalyst. Journal of Catalysis, 1998, 176, 495-502.	6.2	65
28	New catalytic technology commercialized in the USA during the 1990s. Applied Catalysis A: General, 2001, 222, 407-426.	4.3	56
29	Ammoxidation of ethane to acetonitrile over Co-beta zeolite. Chemical Communications, 1997, , 2013.	4.1	53
30	Homogeneous dehydrogenation of amines by .mu(.eta.1:.eta.5-cyclopentadienyl)-tris(.etacyclopentadienyl)dititanium(Ti-Ti). Inorganic Chemistry, 1978, 17, 203-213.	4.0	52
31	Materials Needs for Catalysts To Improve our Environment. Chemistry of Materials, 1994, 6, 730-738.	6.7	45
32	Influence of pH and ionic strength upon solubility of nitric oxide in aqueous solution. Journal of Chemical & Engineering Data, 1974, 19, 82-84.	1.9	43
33	Preparation and characterization of a new series of cis nitrosylruthenium complexes. Inorganic Chemistry, 1973, 12, 873-877.	4.0	40
34	Reactivity of coordinated nitrosyls. IV. One-electron reactivity of ruthenium(III) nitrosylpentaammine ion in aqueous solution. Inorganic Chemistry, 1975, 14, 444-446.	4.0	40
35	Kinetics and mechanism for the production of a dinitrogen complex. Journal of the American Chemical Society, 1973, 95, 7625-7633.	13.7	39
36	Ammoximation: direct synthesis of oximes from ammonia, oxygen and ketones. Journal of the American Chemical Society, 1980, 102, 1453-1454.	13.7	31

#	Article	IF	CITATIONS
37	Studying carbon formation at elevated pressure. Applied Catalysis A: General, 2001, 206, 231-236.	4.3	31
38	A diazotization leading to the formation of a dinitrogen complex. Journal of the American Chemical Society, 1968, 90, 3263-3264.	13.7	30
39	Reactivity of coordinated nitrosyls. V. Generation and characterization of a ruthenium(II) alkylnitroso complex. Journal of the American Chemical Society, 1975, 97, 1737-1742.	13.7	21
40	Interaction between isothiocyanatopentaaquochromium(III) and mercury(II). Equilibrium and kinetics. Journal of the American Chemical Society, 1971, 93, 867-873.	13.7	20
41	Production of a dinitrogen complex via the attack of nitric oxide upon a metal-ammine complex. Journal of the American Chemical Society, 1972, 94, 686-687.	13.7	20
42	Reactions of imidohydridobis(dicyclopentadienyltitanium) with molecular nitrogen, carbon monoxide, and carbon dioxide and olefins. Inorganic Chemistry, 1978, 17, 213-218.	4.0	19
43	Nonaqueous Spray-Drying as a Route to Ultrafine Ceramic Powders. Journal of the American Ceramic Society, 1988, 71, 938-942.	3.8	18
44	Addressing the CO2 dilemma. Catalysis Letters, 2007, 114, 115-121.	2.6	17
45	Key questions, approaches, and challenges to energy today. Catalysis Today, 2014, 236, 171-181.	4.4	15
46	Moving from discovery to real applications for your catalyst. Applied Catalysis A: General, 2016, 527, 182-189.	4.3	15
47	So you think you may have a better process: How can you define the value?. Catalysis Today, 2011, 178, 8-11.	4.4	11
48	Equilibria and rates in the formation of [Ru(NH3)5N2]2+ and [(Ru(NH3)5)2N2]4+. Journal of the American Chemical Society, 1970, 92, 6170-6174.	13.7	8
49	Reduction of coordinated nitrosyls. III. Alternative routes to chromium(III) dimers and evidence for coordinated hydroxylamine. Inorganic Chemistry, 1974, 13, 2990-2996.	4.0	6
50	On the uniqueness of yellow, alkaline solutions of Ru(NH3)63+. Journal of Inorganic and Nuclear Chemistry, 1973, 35, 2067-2068.	0.5	5
51	Short-wavelength, ultraviolet photolysis of metal complexes. Substantial photoreduction of ruthenium complexes. Journal of the American Chemical Society, 1974, 96, 4102-4109.	13.7	5
52	Dinitrogen complex formation with the breakage of the C–N bond on a co-ordinated ethylenediamine. Journal of the Chemical Society Chemical Communications, 1974, .	2.0	5
53	NOχ Removal: An Overview. ACS Symposium Series, 1994, , 2-6.	0.5	5
54	Volatile Organic Compounds: An Overview. ACS Symposium Series, 1994, , 298-300.	0.5	2

#	Article	IF	CITATIONS
55	Mobile Engine Emission Control: An Overview. ACS Symposium Series, 1994, , 90-93.	0.5	2
56	Simultaneous exchange and extrusion of metal exchanged zeolites. Applied Catalysis A: General, 1994, 114, L187-L190.	4.3	2
57	Pd-MCM-41/Al2O3 Catalyst for Hydrogenation of aromatics. Applied Catalysis A: General, 1994, 112, N21.	4.3	1
58	Ammoxidation of ethane to acetonitrile over co-beta zeolite. Studies in Surface Science and Catalysis, 1999, , 75-78.	1.5	1
59	Ammoximation: A New, Catalytic Process Applicable to the Direct Synthesis of Caprolactam. Studies in Surface Science and Catalysis, 1981, 7, 1454-1455.	1.5	0
60	Future Fuels: An Overview. ACS Symposium Series, 1994, , 270-272.	0.5	0
61	Routes to maleic anhydride. Applied Catalysis A: General, 1994, 112, N21.	4.3	0
62	New titanium beta zeolite for selective oxidation. Applied Catalysis A: General, 1994, 118, N14.	4.3	0
63	Use of positron-emitting13N in studies on the NO/NH3 reaction. Applied Catalysis A: General, 1994, 111, N20.	4.3	Ο
64	Novel catalysis for FCC. Applied Catalysis A: General, 1994, 111, N20-N21.	4.3	0
65	Monoliths made of titania. Applied Catalysis A: General, 1994, 111, N21.	4.3	0
66	Simultaneous exchange and extrusion of metal exchanged zeolites. Studies in Surface Science and Catalysis, 1995, , 140-141.	1.5	0