Hyung Chun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8860238/publications.pdf

Version: 2024-02-01

		101543	98798
71	7,482	36	67
papers	citations	h-index	g-index
79	79	79	11979
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Severe breakthrough COVID-19 cases in the SARS-CoV-2 delta (B.1.617.2) variant era. Lancet Microbe, The, 2022, 3, e4-e5.	7.3	45
2	Macrophage IL- $1\hat{l}^2$ promotes arteriogenesis by autocrine STAT3- and NF- \hat{l}^2 B-mediated transcription of pro-angiogenic VEGF-A. Cell Reports, 2022, 38, 110309.	6.4	33
3	Association of renalase with clinical outcomes in hospitalized patients with COVID-19. PLoS ONE, 2022, 17, e0264178.	2.5	4
4	Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nature Reviews Cardiology, 2021, 18, 194-209.	13.7	304
5	The emerging role of Janus kinase inhibitors in the treatment of autoimmune and inflammatory diseases. Journal of Allergy and Clinical Immunology, 2021, 147, 814-826.	2.9	70
6	A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Advances, 2021, 5, 1164-1177.	5.2	241
7	Refining drug-eluting stent technologies: from engineering to basic science. European Heart Journal, 2021, 42, 1770-1772.	2.2	2
8	Intermediateâ€dose anticoagulation, aspirin, and inâ€hospital mortality in <scp>COVID</scp> â€19: A propensity scoreâ€matched analysis. American Journal of Hematology, 2021, 96, 471-479.	4.1	129
9	Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Science Immunology, 2021, 6, .	11.9	153
10	Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine, 2021, 27, 1178-1186.	30.7	183
11	Ischemic Stroke, Inflammation, and Endotheliopathy in COVID-19 Patients. Stroke, 2021, 52, e233-e238.	2.0	31
12	Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection. JCI Insight, 2021, 6, .	5.0	49
13	Interleukin-1- Receptor Kinase 4 Inhibition: Achieving Immunomodulatory Synergy to Mitigate the Impact of COVID-19. Frontiers in Immunology, 2021, 12, 693085.	4.8	3
14	Association of obesity with venous thromboembolism and myocardial injury in COVID-19. Obesity Research and Clinical Practice, 2021, 15, 512-514.	1.8	7
15	Challenges in interpreting cytokine data in COVID-19 affect patient care and management. PLoS Biology, 2021, 19, e3001373.	5.6	7
16	Chronic Thromboembolic Pulmonary Hypertension: the Bench. Current Cardiology Reports, 2021, 23, 141.	2.9	4
17	Chronic Thromboembolic Pulmonary Hypertension: the Bedside. Current Cardiology Reports, 2021, 23, 147.	2.9	6
18	Hospitalisation among vaccine breakthrough COVID-19 infections. Lancet Infectious Diseases, The, 2021, 21, 1485-1486.	9.1	125

#	Article	IF	CITATIONS
19	Liver injury in COVID-19 and IL-6 trans-signaling-induced endotheliopathy. Journal of Hepatology, 2021, 75, 647-658.	3.7	67
20	Collateral Damage. JACC: Case Reports, 2021, 3, 20-25.	0.6	0
21	Proteomic Profiles in Patients with Thrombosis Due to COVID-19 Are Distinct from Non-COVID-19 Thrombosis. Blood, 2021, 138, 777-777.	1.4	0
22	Circulating markers of angiogenesis and endotheliopathy in COVIDâ€19. Pulmonary Circulation, 2020, 10, 1-4.	1.7	103
23	Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematology,the, 2020, 7, e575-e582.	4.6	848
24	Aortic valve calcification predicts all-cause mortality independent of coronary calcification and severe stenosis. Atherosclerosis, 2020, 307, 16-20.	0.8	18
25	VWF/ADAMTS13 Ratios Are Potential Markers of Immunothrombotic Complications in Patients with COVID-19: A Cross-Sectional Study. Blood, 2020, 136, 34-35.	1.4	2
26	Admission Rothman Index, Aspirin, and Intermediate Dose Anticoagulation Effects on Outcomes in COVID-19: A Multi-Site Propensity Matched Analysis. Blood, 2020, 136, 23-24.	1.4	3
27	The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Annals of the New York Academy of Sciences, 2019, 1455, 12-33.	3.8	46
28	MEF2 and the Right Ventricle: From Development to Disease. Frontiers in Cardiovascular Medicine, 2019, 6, 29.	2.4	17
29	Therapeutic Engagement of the Histone Deacetylase IIA–Myocyte Enhancer Factor 2 Axis Improves Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1345-1348.	5.6	14
30	Enhancing Insights into Pulmonary Vascular Disease through a Precision Medicine Approach. A Joint NHLBi–Cardiovascular Medical Research and Education Fund Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1661-1670.	5.6	59
31	A PPARÎ ³ -dependent miR-424/503-CD40 axis regulates inflammation mediated angiogenesis. Scientific Reports, 2017, 7, 2528.	3.3	44
32	FGF Signaling in Pulmonary Hypertension. , 2017, , 153-168.		0
33	Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension. Circulation, 2017, 135, 2288-2298.	1.6	36
34	A Tale of Two Elabela Null Mice. Trends in Endocrinology and Metabolism, 2017, 28, 759-760.	7.1	2
35	Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Science Translational Medicine, 2017, 9, .	12.4	61
36	Reply: Transforming Growth Factor β1– and Bone Morphogenetic Protein 2/PPARγ–regulated MicroRNAs in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1228-1229.	5.6	0

#	Article	IF	Citations
37	Rac2 Modulates Atherosclerotic Calcification by Regulating Macrophage Interleukin- $\hat{1}^2$ Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 328-340.	2.4	91
38	T <scp>ranslational</scp> A <scp>dvances</scp> <scp>in</scp> <scp>the</scp> F <scp>ield</scp> <scp>of</scp> P <scp>ulmonary</scp> H <scp>ypertension</scp> .Translating MicroRNA Biology in Pulmonary Hypertension. It Will Take More Than "miR―Words. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 167-178.	5.6	70
39	Relative predictive value of lung cancer screening CT versus myocardial perfusion attenuation correction CT in the evaluation of coronary calcium. PLoS ONE, 2017, 12, e0175678.	2.5	5
40	miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart. Scientific Reports, 2016, 6, 21228.	3.3	34
41	MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation. Nature Communications, 2016, 7, 11268.	12.8	37
42	Elafin in Pulmonary Arterial Hypertension. Beyond Targeting Elastases. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1217-1219.	5 . 6	5
43	Letter by Papangeli et al Regarding Article, "The ERG–APLNR Axis Controls Pulmonary Venule Endothelial Proliferation in Pulmonary Veno-Occlusive Disease― Circulation, 2015, 132, e16.	1.6	1
44	Restoration of Impaired Endothelial Myocyte Enhancer Factor 2 Function Rescues Pulmonary Arterial Hypertension. Circulation, 2015, 131, 190-199.	1.6	104
45	Essential Role of Apelin Signaling During Lymphatic Development in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 338-345.	2.4	40
46	Endothelium as a gatekeeper of fatty acid transport. Trends in Endocrinology and Metabolism, 2014, 25, 99-106.	7.1	50
47	Severe obstructive sleep apnea increases mortality in patients with ischemic heart disease and myocardial injury. Sleep and Breathing, 2013, 17, 85-91.	1.7	29
48	Evaluation of the in vitro and in vivo angiogenic effects of exendin-4. Biochemical and Biophysical Research Communications, 2013, 434, 150-154.	2.1	29
49	An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nature Medicine, 2013, 19, 74-82.	30.7	321
50	Apelin-APJ Signaling Is a Critical Regulator of Endothelial MEF2 Activation in Cardiovascular Development. Circulation Research, 2013, 113, 22-31.	4. 5	133
51	Mechanisms of Dysfunction in Senescent Pulmonary Endothelium. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 236-241.	3 . 6	30
52	Apelin/APJ Signaling Is a Critical Regulator of Statin Effects in Vascular Endothelial Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2640-2643.	2.4	23
53	MicroRNAâ€26a is a novel regulator of vascular smooth muscle cell function. Journal of Cellular Physiology, 2011, 226, 1035-1043.	4.1	248
54	Disruption of the Apelin-APJ System Worsens Hypoxia-Induced Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 814-820.	2.4	148

#	Article	IF	Citations
55	Upregulation of the apelin–APJ pathway promotes neointima formation in the carotid ligation model in mouse. Cardiovascular Research, 2010, 87, 156-165.	3.8	34
56	Endogenous regulation of cardiovascular function by apelin-APJ. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1904-H1913.	3.2	169
57	Imaging Survival and Function of Transplanted Cardiac Resident Stem Cells. Journal of the American College of Cardiology, 2009, 53, 1229-1240.	2.8	170
58	Pacemaker alternans terminated by telemetry wand: What is the mechanism?. Heart Rhythm, 2008, 5, 1080-1082.	0.7	1
59	In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H88-H98.	3.2	128
60	Intracellular and extracellular targets of molecular imaging in the myocardium. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, S33-S41.	3.3	8
61	Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. Journal of Clinical Investigation, 2008, 118, 3343-54.	8.2	253
62	HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1590-E1596.	3.5	93
63	Integration of genomics, proteomics, and imaging for cardiac stem cell therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 20-26.	6.4	60
64	Opposing cardiovascular roles for the angiotensin and apelin signaling pathways. Journal of Molecular and Cellular Cardiology, 2006, 41, 778-781.	1.9	42
65	Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature, 2002, 419, 395-399.	27.8	648
66	Caspase-10 is an initiator caspase in death receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13884-13888.	7.1	343
67	Autoimmune Lymphoproliferative Syndrome: Types I, II and Beyond. Advances in Experimental Medicine and Biology, 2001, 490, 49-57.	1.6	16
68	The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunology, 2000, 1 , 469-474.	14.5	394
69	A Domain in TNF Receptors That Mediates Ligand-Independent Receptor Assembly and Signaling. Science, 2000, 288, 2351-2354.	12.6	769
70	Noninvasive graft flow and patency assessment following minimally invasive direct coronary artery bypass (MIDCAB) grafting. Heart Surgery Forum, 1999, 2, 230-4.	0.5	0
71	NF-AT-Driven Interleukin-4 Transcription Potentiated by NIP45. Science, 1996, 274, 1903-1905.	12.6	134