Jan de Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859881/publications.pdf

Version: 2024-02-01

186265 214800 3,363 49 28 47 h-index citations g-index papers 55 55 55 3039 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crossroads in the evolution of plant specialized metabolism. Seminars in Cell and Developmental Biology, 2023, 134, 37-58.	5.0	39
2	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	8.7	138
3	Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. Quantitative Plant Biology, 2022, 3, .	2.0	37
4	Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nature Chemical Biology, 2022, 18, 368-375.	8.0	34
5	Punctuated ancestral gene gains in streptophyte evolution. Molecular Plant, 2022, , .	8.3	O
6	Submergence of the filamentous Zygnematophyceae Mougeotia induces differential gene expression patterns associated with core metabolism and photosynthesis. Protoplasma, 2022, 259, 1157-1174.	2.1	12
7	LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell, 2021, 33, 3076-3103.	6.6	31
8	The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant Journal, 2021, 107, 975-1002.	5.7	67
9	Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release. Plant Physiology, 2021, 187, 2110-2125.	4.8	7
10	Convergence of sphingolipid desaturation across over 500 million years of plant evolution. Nature Plants, 2021, 7, 219-232.	9.3	31
11	Underwater CAM photosynthesis elucidated by Isoetes genome. Nature Communications, 2021, 12, 6348.	12.8	56
12	Unexpected cryptic species among streptophyte algae most distant to land plants. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212168.	2.6	22
13	Gene gains paved the path to land. Nature Plants, 2020, 6, 7-8.	9.3	11
14	Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiology Ecology, 2020, 96, .	2.7	4
15	A Global Survey of Carbohydrate Esterase Families 1 and 10 in Oomycetes. Frontiers in Genetics, 2020, 11, 756.	2.3	10
16	Ties between Stress and Lipid Droplets Pre-date Seeds. Trends in Plant Science, 2020, 25, 1203-1214.	8.8	43
17	Plant Genome Evolution: Meat Lovers Expanded Gene Families for Carnivory and Dropped the Rest. Current Biology, 2020, 30, R700-R702.	3.9	3
18	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	9.3	225

#	Article	IF	Citations
19	Evo-physio: on stress responses and the earliest land plants. Journal of Experimental Botany, 2020, 71, 3254-3269.	4.8	107
20	Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. Plant Journal, 2020, 103, 1025-1048.	5.7	65
21	Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118.	3.9	47
22	The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant–Microbe Interactions. Genes, 2019, 10, 310.	2.4	13
23	A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24892-24899.	7.1	84
24	The monoplastidic bottleneck in algae and plant evolution. Journal of Cell Science, 2018, 131, .	2.0	33
25	Plastid Autonomy vs Nuclear Control Over Plastid Function. Advances in Botanical Research, 2018, 85, 1-28.	1.1	4
26	Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development (Cambridge), 2018, 145, .	2.5	75
27	Plant evolution: landmarks on the path to terrestrial life. New Phytologist, 2018, 217, 1428-1434.	7.3	236
28	Jasmonic and salicylic acid response in the fern <scp><i>Azolla filiculoides</i></scp> and its cyanobiont. Plant, Cell and Environment, 2018, 41, 2530-2548.	5.7	40
29	Plastid genomes. Current Biology, 2018, 28, R336-R337.	3.9	22
30	Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3471-E3480.	7.1	164
31	Azolla: A Model System for Symbiotic Nitrogen Fixation and Evolutionary Developmental Biology. , 2018, , 21-46.		8
32	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	9.3	391
33	On plant defense signaling networks and early land plant evolution. Communicative and Integrative Biology, 2018, 11, 1-14.	1.4	54
34	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
35	Photoprotection in a monophyletic branch of chlorophyte algae is independent of energyâ€dependent quenching (qE). New Phytologist, 2017, 214, 1132-1144.	7.3	44
36	Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?. Current Biology, 2017, 27, R103-R105.	3.9	56

#	Article	IF	CITATIONS
37	How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?. Plant and Cell Physiology, 2017, 58, 934-945.	3.1	102
38	Mitochondrial Genome Assemblies of Elysia timida and Elysia cornigera and the Response of Mitochondrion-Associated Metabolism during Starvation. Genome Biology and Evolution, 2017, 9, 1873-1879.	2.5	9
39	The Carboxy Terminus of YCF1 Contains a Motif Conserved throughout >500 Myr of Streptophyte Evolution. Genome Biology and Evolution, 2017, 9, 473-479.	2.5	14
40	Ulvophyceaen photophysiology and research opportunities. Perspectives in Phycology, 2017, 4, 83-92.	1.9	5
41	Cytokininâ€induced promotion of root meristem size in the fern <i>Azolla</i> supports a shootâ€like origin of euphyllophyte roots. New Phytologist, 2016, 209, 705-720.	7.3	59
42	Streptophyte Terrestrialization in Light of Plastid Evolution. Trends in Plant Science, 2016, 21, 467-476.	8.8	136
43	Comparison of sister species identifies factors underpinning plastid compatibility in green sea slugs. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142519.	2.6	44
44	YCF1: A Green TIC?. Plant Cell, 2015, 27, 1827-1833.	6.6	115
45	Why It Is Time to Look Beyond Algal Genes in Photosynthetic Slugs. Genome Biology and Evolution, 2015, 7, 2602-2607.	2.5	28
46	Switching off photosynthesis. Communicative and Integrative Biology, 2014, 7, e28029.	1.4	18
47	A sea slug's guide to plastid symbiosis. Acta Societatis Botanicorum Poloniae, 2014, 83, 415-421.	0.8	39
48	Plastid survival in the cytosol of animal cells. Trends in Plant Science, 2014, 19, 347-350.	8.8	72
49	Is ftsH the Key to Plastid Longevity in Sacoglossan Slugs?. Genome Biology and Evolution, 2013, 5, 2540-2548.	2.5	68