Damijan Miklavcic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859614/publications.pdf

Version: 2024-02-01

407 papers

23,138 citations

81 h-index 133 g-index

443 all docs 443 docs citations

443 times ranked 8716 citing authors

#	Article	IF	CITATIONS
1	Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer, Supplement, 2006, 4, 3-13.	2.2	713
2	Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges. Annual Review of Biomedical Engineering, 2014, 16, 295-320.	12.3	655
3	Electroporation-based applications in biotechnology. Trends in Biotechnology, 2015, 33, 480-488.	9.3	445
4	Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annual Review of Biophysics, 2019, 48, 63-91.	10.0	417
5	Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. British Journal of Cancer, 1998, 77, 2336-2342.	6.4	414
6	Electrochemotherapy in treatment of tumours. European Journal of Surgical Oncology, 2008, 34, 232-240.	1.0	394
7	Cell membrane electroporation-Part 1: The phenomenon. IEEE Electrical Insulation Magazine, 2012, 28, 14-23.	0.8	375
8	Antitumor effectiveness of electrochemotherapy: A systematic review and meta-analysis. European Journal of Surgical Oncology, 2013, 39, 4-16.	1.0	309
9	A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica Et Biophysica Acta - General Subjects, 2000, 1523, 73-83.	2.4	307
10	Electrochemotherapy: from the drawing board into medical practice. BioMedical Engineering OnLine, 2014, 13, 29.	2.7	284
11	Mechanisms of in Vivo DNA Electrotransfer: Respective Contributions of Cell Electropermeabilization and DNA Electrophoresis. Molecular Therapy, 2002, 5, 133-140.	8.2	280
12	Theoretical Evaluation of Voltage Inducement on Internal Membranes of Biological Cells Exposed to Electric Fields. Biophysical Journal, 2006, 90, 480-491.	0.5	268
13	Effect of Cell Electroporation on the Conductivity of a Cell Suspension. Biophysical Journal, 2005, 88, 4378-4390.	0.5	248
14	The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues. Biophysical Journal, 1998, 74, 2152-2158.	0.5	236
15	Sequential Finite Element Model of Tissue Electropermeabilization. IEEE Transactions on Biomedical Engineering, 2005, 52, 816-827.	4.2	232
16	Electroporation in Food Processing and Biorefinery. Journal of Membrane Biology, 2014, 247, 1279-1304.	2.1	218
17	Analytical Description of Transmembrane Voltage Induced by Electric Fields on Spheroidal Cells. Biophysical Journal, 2000, 79, 670-679.	0.5	217
18	Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Research, 1995, 55, 3450-5.	0.9	214

#	Article	IF	CITATIONS
19	High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology, 2020, 295, 254-272.	7.3	208
20	Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. European Biophysics Journal, 2003, 32, 519-528.	2.2	197
21	Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innovative Food Science and Emerging Technologies, 2016, 37, 312-321.	5.6	194
22	Induced Transmembrane Voltage and Its Correlation with Electroporation-Mediated Molecular Transport. Journal of Membrane Biology, 2010, 236, 3-13.	2.1	188
23	Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Medical and Biological Engineering and Computing, 2012, 50, 1213-1225.	2.8	188
24	Time course of transmembrane voltage induced by time-varying electric fieldsâ€"a method for theoretical analysis and its application. Bioelectrochemistry, 1998, 45, 3-16.	1.0	187
25	Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. British Journal of Cancer, 2008, 98, 388-398.	6.4	187
26	Modeling of electric field distribution in tissues during electroporation. BioMedical Engineering OnLine, 2013, 12, 16.	2.7	183
27	Equivalent Pulse Parameters for Electroporation. IEEE Transactions on Biomedical Engineering, 2011, 58, 3279-3288.	4.2	179
28	Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 2016, 9, 94.	6.2	179
29	Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Review of Anticancer Therapy, 2010, 10, 729-746.	2.4	177
30	Numerical Determination of Transmembrane Voltage Induced on Irregularly Shaped Cells. Annals of Biomedical Engineering, 2006, 34, 642-652.	2.5	174
31	Cell death due to electroporation – A review. Bioelectrochemistry, 2021, 141, 107871.	4.6	174
32	Gene Electrotransfer: A Mechanistic Perspective. Current Gene Therapy, 2016, 16, 98-129.	2.0	168
33	Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. BioMedical Engineering OnLine, 2010, 9, 10.	2.7	165
34	Kinetics of Transmembrane Transport of Small Molecules into Electropermeabilized Cells. Biophysical Journal, 2008, 95, 2837-2848.	0.5	160
35	Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review. Bioelectrochemistry, 2016, 110, 1-12.	4.6	160
36	Electrochemotherapy: A New Technological Approach in Treatment of Metastases in the Liver. Technology in Cancer Research and Treatment, 2011, 10, 475-485.	1.9	159

#	Article	IF	CITATIONS
37	A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue. PLoS ONE, 2014, 9, e103083.	2.5	155
38	Intraoperative electrochemotherapy of colorectal liver metastases. Journal of Surgical Oncology, 2014, 110, 320-327.	1.7	155
39	Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Transactions on Biomedical Engineering, 2002, 49, 605-612.	4.2	150
40	Electrochemotherapy with cisplatin: potentiation of local cisplatin antitumour effectiveness by application of electric pulses in cancer patients. European Journal of Cancer, 1998, 34, 1213-1218.	2.8	146
41	Efficiency of High- and Low-Voltage Pulse Combinations for Gene Electrotransfer in Muscle, Liver, Tumor, and Skin. Human Gene Therapy, 2008, 19, 1261-1272.	2.7	145
42	Tutorial: Electroporation of cells in complex materials and tissue. Journal of Applied Physics, 2016, 119, .	2.5	145
43	A Time-Dependent Numerical Model of Transmembrane Voltage Inducement and Electroporation of Irregularly Shaped Cells. IEEE Transactions on Biomedical Engineering, 2009, 56, 1491-1501.	4.2	144
44	Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics, 2000, 21, 385-394.	1.6	140
45	Role of pulse shape in cell membrane electropermeabilization. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1614, 193-200.	2.6	140
46	Electrochemotherapy – Emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. European Journal of Surgical Oncology, 2019, 45, 92-102.	1.0	138
47	Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry, 2007, 70, 501-507.	4.6	137
48	Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunology, Immunotherapy, 2015, 64, 1315-1327.	4.2	134
49	The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry, 2001, 54, 107-115.	4.6	132
50	The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals. IEEE Transactions on Biomedical Engineering, 2005, 52, 1373-1381.	4.2	131
51	Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics, 2012, 33, 257-264.	1.6	131
52	In vitro electroporation detection methods – An overview. Bioelectrochemistry, 2018, 120, 166-182.	4.6	130
53	Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Bioelectrochemistry, 2001, 54, 83-90.	4.6	127
54	Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochemistry, 1995, 38, 203-207.	1.0	126

#	Article	IF	CITATIONS
55	Electrophoretic Component of Electric Pulses Determines the Efficacy of In Vivo DNA Electrotransfer. Human Gene Therapy, 2005, 16, 1194-1201.	2.7	126
56	Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. European Journal of Cancer, Supplement, 2006, 4, 45-51.	2.2	126
57	Second-order model of membrane electric field induced by alternating external electric fields. IEEE Transactions on Biomedical Engineering, 2000, 47, 1074-1081.	4.2	124
58	Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry, 2003, 60, 1-10.	4.6	122
59	Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clinical Cancer Research, 2000, 6, 863-7.	7.0	121
60	Comparison of paper-based and electronic data collection process in clinical trials: Costs simulation study. Contemporary Clinical Trials, 2009, 30, 300-316.	1.8	113
61	The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry, 2002, 57, 167-172.	4.6	112
62	The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry, 2005, 65, 121-128.	4.6	112
63	Mechanisms involved in gene electrotransfer using high- and low-voltage pulses — An in vitro study. Bioelectrochemistry, 2009, 74, 265-271.	4.6	110
64	Cell membrane electroporation-Part 2: the applications. IEEE Electrical Insulation Magazine, 2013, 29, 29-37.	0.8	110
65	Cell electrofusion using nanosecond electric pulses. Scientific Reports, 2013, 3, 3382.	3.3	110
66	Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Bioelectrochemistry, 2001, 54, 91-95.	4.6	107
67	Electrochemotherapy in Veterinary Oncology. Journal of Veterinary Internal Medicine, 2008, 22, 826-831.	1.6	107
68	Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Physics in Medicine and Biology, 2012, 57, 5425-5440.	3.0	107
69	Techniques of signal generation required for electropermeabilization. Bioelectrochemistry, 2004, 64, 113-124.	4.6	105
70	Electric Field-Induced Transmembrane Potential Depends on Cell Density and Organizatio. Electromagnetic Biology and Medicine, 1998, 17, 391-399.	0.4	104
71	Electroâ€mediated gene transfer and expression are controlled by the lifeâ€time of DNA/membrane complex formation. Journal of Gene Medicine, 2010, 12, 117-125.	2.8	104
72	Numerical analysis and thermographic investigation of induction heating. International Journal of Heat and Mass Transfer, 2010, 53, 3585-3591.	4.8	104

#	Article	IF	CITATIONS
73	Recommendations for improving the quality of reporting clinical electrochemotherapy studies based on qualitative systematic review. Radiology and Oncology, 2016, 50, 1-13.	1.7	101
74	Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation — Relation between short-lived and long-lived pores. Bioelectrochemistry, 2008, 74, 38-46.	4.6	100
75	Effective Conductivity of a Suspension of Permeabilized Cells: A Theoretical Analysis. Biophysical Journal, 2003, 85, 719-729.	0.5	94
76	Electrochemotherapy with cisplatin: the systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases. Melanoma Research, 2000, 10, 381-385.	1.2	92
77	Electropermeabilization of dense cell suspensions. European Biophysics Journal, 2007, 36, 173-185.	2.2	92
78	Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation. Journal of Membrane Biology, 2010, 236, 117-125.	2.1	92
79	Tumor size and effectiveness of electrochemotherapy. Radiology and Oncology, 2013, 47, 32-41.	1.7	92
80	Cell membrane electroporation-Part 3: the equipment. IEEE Electrical Insulation Magazine, 2014, 30, 8-18.	0.8	91
81	Variation in dielectric properties due to pathological changes in human liver. Bioelectromagnetics, 2015, 36, 603-612.	1.6	87
82	Electroporation in dense cell suspensionâ€"Theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 12-23.	2.4	82
83	Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiology and Oncology, 2015, 49, 234-241.	1.7	82
84	The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Medical and Biological Engineering and Computing, 2010, 48, 637-648.	2.8	81
85	Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry, 2014, 100, 44-51.	4.6	81
86	Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2689-2698.	2.6	81
87	Electrochemotherapy of superficial tumors – Current status:. Seminars in Oncology, 2019, 46, 173-191.	2.2	80
88	Robustness of Treatment Planning for Electrochemotherapy of Deep-Seated Tumors. Journal of Membrane Biology, 2010, 236, 147-153.	2.1	79
89	Changing electrode orientation improves the efficacy of electrochemotherapy of solid tumors in mice. Bioelectrochemistry, 1996, 39, 61-66.	1.0	76
90	The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry, 2008, 74, 52-57.	4.6	75

#	Article	IF	CITATIONS
91	EFFICIENCY OF HIGH AND LOW VOLTAGE PULSE COMBINATIONS FOR GENE ELECTROTRANSFER IN MUSCLE, LIVER, TUMOR AND SKIN. Human Gene Therapy, 2008, 19, 081015093227032.	2.7	74
92	Skin electroporation for transdermal drug delivery: The influence of the order of different square wave electric pulses. International Journal of Pharmaceutics, 2013, 457, 214-223.	5 . 2	73
93	Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Research, 1999, 19, 4017-22.	1.1	73
94	Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 1338-1347.	2.9	72
95	Parameters of Postocclusive Reactive Hyperemia Measured by Near Infrared Spectroscopy in Patients with Peripheral Vascular Disease and in Healthy Volunteers. Annals of Biomedical Engineering, 2001, 29, 311-320.	2.5	71
96	Electrochemotherapy as treatment option for hepatocellular carcinoma, a prospective pilot study. European Journal of Surgical Oncology, 2018, 44, 651-657.	1.0	71
97	The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study. Bioelectrochemistry, 2019, 125, 46-57.	4.6	71
98	Advantages and Disadvantages of Different Concepts of Electroporation Pulse Generation. Automatika, 2011, 52, 12-19.	2.0	70
99	The effect of electroporation pulses on functioning of the heart. Medical and Biological Engineering and Computing, 2008, 46, 745-57.	2.8	69
100	Increased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatin. British Journal of Cancer, 1999, 79, 1386-1391.	6.4	68
101	Cell membrane fluidity related to electroporation and resealing. European Biophysics Journal, 2006, 35, 196-204.	2.2	68
102	Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. BioMedical Engineering OnLine, 2007, 6, 37.	2.7	68
103	Numerical Modeling and Optimization of Electric Field Distribution in Subcutaneous Tumor Treated With Electrochemotherapy Using Needle Electrodes. IEEE Transactions on Plasma Science, 2008, 36, 1665-1672.	1.3	68
104	A reliable method of determining wound healing rate. Medical and Biological Engineering and Computing, 2001, 39, 263-271.	2.8	67
105	Patient-specific treatment planning of electrochemotherapy: Procedure design and possible pitfalls. Bioelectrochemistry, 2012, 87, 265-273.	4.6	63
106	In Situ Monitoring of Electric Field Distribution in Mouse Tumor during Electroporation. Radiology, 2015, 274, 115-123.	7.3	63
107	Electrochemotherapy: variable anti-tumor effect on different tumor models. Bioelectrochemistry, 1994, 35, 23-27.	1.0	62
108	A Numerical Model of Skin Electropermeabilization Based on InÂVivo Experiments. Annals of Biomedical Engineering, 2007, 35, 2138-2144.	2.5	62

#	Article	IF	Citations
109	Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Medical and Biological Engineering and Computing, 2010, 48, 407-413.	2.8	62
110	Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics, 2012, 31, 5867-5874.	2.3	62
111	Non invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. Journal of Controlled Release, 2009, 134, 125-131.	9.9	61
112	Electroporation of Intracellular Liposomes Using Nanosecond Electric Pulsesâ€"A Theoretical Study. IEEE Transactions on Biomedical Engineering, 2013, 60, 2624-2635.	4.2	61
113	Effect of Electric-Field Intensity on Electropermeabilization and Electrosensitmty of Various Tumor-Cell Lines <i>In Vitro</i> . Electromagnetic Biology and Medicine, 1998, 17, 263-272.	0.4	60
114	Tumor treatment by direct electric current-tumor temperature and pH, electrode material and configuration. Bioelectrochemistry, 1993, 30, 209-220.	1.0	59
115	Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells. Radiology and Oncology, 2010, 44, 34-41.	1.7	59
116	Electrochemotherapy (ECT) and irreversible electroporation (IRE) -advanced techniques for treating deep-seated tumors based on electroporation. BioMedical Engineering OnLine, 2015, 14, I1.	2.7	59
117	Effective conductivity of cell suspensions. IEEE Transactions on Biomedical Engineering, 2002, 49, 77-80.	4.2	56
118	Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry, 2014, 100, 18-26.	4.6	56
119	Evaluation of Cell Membrane Electropermeabilization by Means of a Nonpermeant Cytotoxic Agent. BioTechniques, 2000, 28, 921-926.	1.8	55
120	Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. BioMedical Engineering OnLine, 2007, 6, 25.	2.7	55
121	Feasibility of Employing Model-Based Optimization of Pulse Amplitude and Electrode Distance for Effective Tumor Electropermeabilization. IEEE Transactions on Biomedical Engineering, 2007, 54, 773-781.	4.2	55
122	In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. Journal of Controlled Release, 2013, 172, 862-871.	9.9	55
123	Coupling treatment planning with navigation system: a new technological approach in treatment of head and neck tumors by electrochemotherapy. BioMedical Engineering OnLine, 2015, 14, S2.	2.7	55
124	Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Scientific Reports, 2016, 6, 26409.	3.3	55
125	On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations. Journal of Membrane Biology, 2013, 246, 843-850.	2.1	54
126	Safety and chronic lesion characterization of pulsed field ablation in a Porcine model. Journal of Cardiovascular Electrophysiology, 2021, 32, 958-969.	1.7	54

#	Article	IF	Citations
127	Reproducibility of Parameters of Postocclusive Reactive Hyperemia Measured by Near Infrared Spectroscopy and Transcutaneous Oximetry. Annals of Biomedical Engineering, 2000, 28, 168-173.	2.5	53
128	Numerical modeling in electroporation-based biomedical applications. Radiology and Oncology, 2008, 42, .	1.7	53
129	Blumlein Configuration for High-Repetition-Rate Pulse Generation of Variable Duration and Polarity Using Synchronized Switch Control. IEEE Transactions on Biomedical Engineering, 2009, 56, 2642-2648.	4.2	53
130	Anti-tumor effectiveness of electrochemotherapy with bleomycin is increased by TNF- \hat{l}_{\pm} on SA-1 tumors in mice. Cancer Letters, 1997, 116, 85-92.	7.2	52
131	Intratumoral cisplatin administration in electrochemotherapy. Anti-Cancer Drugs, 1998, 9, 525-530.	1.4	52
132	Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma, 2007, 54, 246-50.	1.6	52
133	Variability of the Minimal Transmembrane Voltage Resulting in Detectable Membrane Electroporation. Electromagnetic Biology and Medicine, 2008, 27, 372-385.	1.4	51
134	Electrochemotherapy in non-melanoma head and neck cancers: a retrospective analysis of the treated cases. British Journal of Oral and Maxillofacial Surgery, 2014, 52, 957-964.	0.8	50
135	Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Medical Physics, 2017, 44, 4968-4980.	3.0	50
136	Determination of the lipid bilayer breakdown voltage by means of linear rising signal. Bioelectrochemistry, 2007, 70, 23-27.	4.6	49
137	Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. Journal of Membrane Biology, 2010, 236, 107-116.	2.1	49
138	Reduction in Pulmonary Vein Stenosis and Collateral Damage With Pulsed Field Ablation Compared With Radiofrequency Ablation in a Canine Model. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008337.	4.8	49
139	Electric current density imaging of mice tumors. Magnetic Resonance in Medicine, 1997, 37, 404-409.	3.0	48
140	Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 <i>in vivo</i> . Radiology and Oncology, 2016, 50, 39-48.	1.7	48
141	Intrinsic Sensitivity of Tumor Cells to Bleomycin as an Indicator of Tumor Response to Electrochemotherapy. Japanese Journal of Cancer Research, 1998, 89, 328-333.	1.7	47
142	Feasibility study for cell electroporation detection and separation by means of dielectrophoresis. Bioelectrochemistry, 2007, 71, 164-171.	4.6	47
143	Magnetic Resonance Electrical Impedance Tomography for Monitoring Electric Field Distribution During Tissue Electroporation. IEEE Transactions on Medical Imaging, 2011, 30, 1771-1778.	8.9	47
144	Effect of different parameters used for <i>in vitro</i> gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. Journal of Gene Medicine, 2013, 15, 169-181.	2.8	46

#	Article	IF	CITATIONS
145	Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience. Journal of Interventional Cardiac Electrophysiology, 2019, 55, 251-265.	1.3	46
146	Cancellation effect is present in high-frequency reversible and irreversible electroporation. Bioelectrochemistry, 2020, 132, 107442.	4.6	46
147	Numerical Models of Skin Electropermeabilization Taking Into Account Conductivity Changes and the Presence of Local Transport Regions. IEEE Transactions on Plasma Science, 2008, 36, 1650-1658.	1.3	45
148	Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiology and Oncology, 2012, 46, 119-25.	1.7	45
149	In Vivo Muscle Electroporation Threshold Determination: Realistic Numerical Models and In Vivo Experiments. Journal of Membrane Biology, 2012, 245, 509-520.	2.1	45
150	Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry, 2018, 122, 69-76.	4.6	45
151	Calculation of the electrical parameters in electrochemotherapy of solid tumours in mice. Computers in Biology and Medicine, 1998, 28, 439-448.	7.0	44
152	Electrochemotherapy of tumours resistant to cisplatin. European Journal of Cancer, 2001, 37, 1166-1172.	2.8	44
153	Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes. Behavior Research Methods, 2008, , 165-226.	4.0	44
154	A numerical analysis of multicellular environment for modeling tissue electroporation. Applied Physics Letters, 2012, 100, .	3.3	44
155	Optimization of electrode position and electric pulse amplitude in electrochemotherapy. Radiology and Oncology, 2008, 42, .	1.7	43
156	Electrochemotherapy of colorectal liver metastases - an observational study of its effects on the electrocardiogram. BioMedical Engineering OnLine, 2015, 14, S5.	2.7	43
157	Cell Electrosensitization Exists Only in Certain Electroporation Buffers. PLoS ONE, 2016, 11, e0159434.	2.5	43
158	Tumor Bioelectric Potential and its Possible Exploitation for Tumor Growth Retardation. Journal of Bioelectricity, 1990, 9, 133-149.	0.7	42
159	Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro. Radiology and Oncology, 2020, 54, 317-328.	1.7	42
160	Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation. IEEE Transactions on Biomedical Engineering, 2003, 50, 1221-1232.	4.2	41
161	Pre- and post-natal exposure of children to EMF generated by domestic induction cookers. Physics in Medicine and Biology, 2011, 56, 6149-6160.	3.0	40
162	Ex Vivo and In Silico Feasibility Study of Monitoring Electric Field Distribution in Tissue during Electroporation Based Treatments. PLoS ONE, 2012, 7, e45737.	2.5	40

#	Article	IF	CITATIONS
163	Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments. BioMedical Engineering OnLine, 2015, 14, S4.	2.7	40
164	Cryopreservation of Human Adipose-Derived Stem Cells in Combination with Trehalose and Reversible Electroporation. Journal of Membrane Biology, 2017, 250, 1-9.	2.1	40
165	Nanosecond Electric Pulse Effects on Gene Expression. Journal of Membrane Biology, 2013, 246, 851-859.	2.1	39
166	Ultrasound and electric pulses for transdermal drug delivery enhancement: Ex vivo assessment of methods with in vivo oriented experimental protocols. International Journal of Pharmaceutics, 2015, 490, 65-73.	5.2	39
167	Large Liver Blood Vessels and Bile Ducts Are Not Damaged by Electrochemotherapy with Bleomycin in Pigs. Scientific Reports, 2019, 9, 3649.	3.3	39
168	Modelling of chronic wound healing dynamics. Medical and Biological Engineering and Computing, 2000, 38, 339-347.	2.8	38
169	Evidence of Conducting Hydrophobic Nanopores Across Membranes in Response to an Electric Field. Journal of Physical Chemistry C, 2014, 118, 6752-6757.	3.1	38
170	Modified cell proliferation due to electrical currents. Medical and Biological Engineering and Computing, 1992, 30, CE21-CE28.	2.8	36
171	Importance of Contact Surface between Electrodes and Treated Tissue in Electrochemotherapy. Technology in Cancer Research and Treatment, 2008, 7, 393-399.	1.9	36
172	Molecular-Level Characterization of Lipid Membrane Electroporation using Linearly Rising Current. Journal of Membrane Biology, 2012, 245, 651-659.	2.1	36
173	Planning of Electroporation-Based Treatments Using Web-Based Treatment-Planning Software. Journal of Membrane Biology, 2013, 246, 833-842.	2.1	36
174	Mathematical Models Describing Chinese Hamster Ovary Cell Death Due to Electroporation In Vitro. Journal of Membrane Biology, 2015, 248, 865-881.	2.1	36
175	Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study. Scientific Reports, 2016, 6, 33537.	3.3	36
176	Electroporation in Biological Cell and Tissue: An Overview. Food Engineering Series, 2009, , 1-37.	0.7	35
177	A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption. Radiology and Oncology, 2016, 50, 28-38.	1.7	35
178	Dual-porosity model of solute diffusion in biological tissue modified by electroporation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1950-1966.	2.6	34
179	Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses. PeerJ, 2017, 5, e3267.	2.0	34
180	Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 205-217.	4.7	33

#	Article	IF	Citations
181	Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization. Radiology and Oncology, 2009, 43, .	1.7	33
182	Transdermal transport pathway creation: Electroporation pulse order. Mathematical Biosciences, 2014, 257, 60-68.	1.9	33
183	Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension. Bioelectrochemistry, 2015, 106, 249-257.	4.6	33
184	Assessing the electro-deformation and electro-poration of biological cells using a three-dimensional finite element model. Applied Physics Letters, 2019, 114, .	3.3	33
185	Electroporation with nanosecond pulses and bleomycin or cisplatin results in efficient cell kill and low metal release from electrodes. Bioelectrochemistry, 2021, 140, 107798.	4.6	33
186	Prognostic factors in the prediction of chronic wound healing by electrical stimulation. Medical and Biological Engineering and Computing, 2001, 39, 542-550.	2.8	32
187	Optimization of bulk cell electrofusion in vitro for production of human–mouse heterohybridoma cells. Bioelectrochemistry, 2008, 74, 124-129.	4.6	32
188	Cell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast images. Journal of Microscopy, 2011, 241, 303-314.	1.8	32
189	Segmentation of hepatic vessels from MRI images for planning of electroporation-based treatments in the liver. Radiology and Oncology, 2014, 48, 267-281.	1.7	32
190	Protein Extraction by Means of Electroporation from E. coli with Preserved Viability. Journal of Membrane Biology, 2015, 248, 893-901.	2.1	31
191	Measuring the Induced Membrane Voltage with Di-8-ANEPPS. Journal of Visualized Experiments, 2009, , .	0.3	30
192	Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization. Bioelectrochemistry, 2010, 79, 265-271.	4.6	30
193	Network for Development of Electroporation-Based Technologies and Treatments: COST TD1104. Journal of Membrane Biology, 2012, 245, 591-598.	2.1	30
194	Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation. Physiological Measurement, 2014, 35, 985-996.	2.1	30
195	Matlab-based tool for ECG and HRV analysis. Biomedical Signal Processing and Control, 2014, 10, 108-116.	5.7	30
196	Mechanistic view of skin electroporation – models and dosimetry for successful applications: an expert review. Expert Opinion on Drug Delivery, 2020, 17, 689-704.	5.0	30
197	Effect of interphase and interpulse delay in high-frequency irreversible electroporation pulses on cell survival, membrane permeabilization and electrode material release. Bioelectrochemistry, 2020, 134, 107523.	4.6	30
198	Intraoperative electrochemotherapy of colorectal liver metastases: A prospective phase II study. European Journal of Surgical Oncology, 2020, 46, 1628-1633.	1.0	30

#	Article	IF	CITATIONS
199	Electrochemotherapy with bleomycin in SA-1 tumor-bearing mice—natural resistance and immune responsiveness. Anti-Cancer Drugs, 1996, 7, 785-791.	1.4	29
200	Resistive heating and electropermeabilization of skin tissue during in vivo electroporation: A coupled nonlinear finite element model. International Journal of Heat and Mass Transfer, 2011, 54, 2294-2302.	4.8	29
201	The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro. Radiology and Oncology, 2019, 53, 194-205.	1.7	29
202	Web-Based Electronic Data Collection System to Support Electrochemotherapy Clinical Trial. IEEE Transactions on Information Technology in Biomedicine, 2007, 11, 222-230.	3.2	28
203	Electrochemotherapy of Tumours. Journal of Visualized Experiments, 2008, , .	0.3	28
204	Numerical optimization of gene electrotransfer into muscle tissue. BioMedical Engineering OnLine, 2010, 9, 66.	2.7	28
205	Comparison of Alkaline Lysis with Electroextraction and Optimization of Electric Pulses to Extract Plasmid DNA from Escherichia coli. Journal of Membrane Biology, 2013, 246, 861-867.	2.1	28
206	Optimisation of pulse parameters in vitro for in vivo electrochemotherapy. Anticancer Research, 2002, 22, 1731-6.	1.1	28
207	Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C12E8. Chemistry and Physics of Lipids, 2003, 125, 123-138.	3.2	27
208	The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochemistry, 2004, 63, 311-315.	4.6	27
209	A Numerical Model of Permeabilized Skin With Local Transport Regions. IEEE Transactions on Biomedical Engineering, 2008, 55, 1927-1930.	4.2	26
210	Assessing how electroporation affects the effective conductivity tensor of biological tissues. Applied Physics Letters, 2012, 101, 213702.	3.3	26
211	Electric field distribution in relation to cell membrane electroporation in potato tuber tissue studied by magnetic resonance techniques. Innovative Food Science and Emerging Technologies, 2016, 37, 384-390.	5.6	26
212	Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry, 2018, 122, 103-114.	4.6	26
213	Scratching the electrode surface: Insights into a high-voltage pulsed-field application from in vitro & amp; in silico studies in indifferent fluid. Electrochimica Acta, 2020, 363, 137187.	5.2	26
214	Contrast Enhanced MRI Assessment of Tumor Blood Volume After Application of Electric Pulses. Electromagnetic Biology and Medicine, 1998, 17, 299-306.	0.4	25
215	Electrochemical treatment of tumors using a one-probe two-electrode device. Electrochimica Acta, 2010, 55, 6010-6014.	5.2	25
216	Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. Bioelectrochemistry, 2016, 112, 112-124.	4.6	25

#	Article	IF	CITATIONS
217	Percutaneous image guided electrochemotherapy of hepatocellular carcinoma: technological advancement. Radiology and Oncology, 2020, 54, 347-352.	1.7	25
218	Potentiation of bleomycin antitumor effectiveness by electrotherapy. Cancer Letters, 1993, 69, 81-84.	7.2	24
219	Tumour treatment by direct electric current: Electrode material deposition. Bioelectrochemistry, 1994, 35, 93-97.	1.0	24
220	Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency. Journal of Membrane Biology, 2014, 247, 1259-1267.	2.1	24
221	Structural Properties of Archaeal Lipid Bilayers: Small-Angle X-ray Scattering and Molecular Dynamics Simulation Study. Langmuir, 2014, 30, 8308-8315.	3.5	24
222	The effect of temperature and bacterial growth phase on protein extraction by means of electroporation. Bioelectrochemistry, 2016, 112, 77-82.	4.6	24
223	Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography. Scientific Reports, 2017, 7, 10323.	3.3	24
224	Peri-tumoral Metallic Implants Reduce the Efficacy of Irreversible Electroporation for the Ablation of Colorectal Liver Metastases. CardioVascular and Interventional Radiology, 2020, 43, 84-93.	2.0	24
225	Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry, 2020, 132, 107440.	4.6	24
226	Electroporation as a Solvent-Free Green Technique for Non-Destructive Extraction of Proteins and Lipids From Chlorella vulgaris. Frontiers in Bioengineering and Biotechnology, 2020, 8, 443.	4.1	24
227	Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Scientific Reports, 2020, 10, 9149.	3.3	24
228	Anti-tumor effect of electrotherapy alone or in combination with interleukin-2 in mice with sarcoma and melanoma tumors. Anti-Cancer Drugs, 1992, 3, 253-260.	1.4	23
229	Electroporation-Based Technologies and Treatments. Journal of Membrane Biology, 2010, 236, 1-2.	2.1	23
230	Implementation of a Multidisciplinary Professional Skills Course at an Electrical Engineering School. IEEE Transactions on Education, 2012, 55, 332-340.	2.4	23
231	Modeling electroporation of the non-treated and vacuum impregnated heterogeneous tissue of spinach leaves. Innovative Food Science and Emerging Technologies, 2015, 29, 55-64.	5.6	23
232	Effect of Blood Vessel Segmentation on the Outcome of Electroporation-Based Treatments of Liver Tumors. PLoS ONE, 2015, 10, e0125591.	2.5	23
233	A System for the Determination of Planar Lipid Bilayer Breakdown Voltage and Its Applications. IEEE Transactions on Nanobioscience, 2009, 8, 132-138.	3.3	22
234	Analysis and Comparison of Electrical Pulse Parameters for Gene Electrotransfer of Two Different Cell Lines. Journal of Membrane Biology, 2010, 236, 97-105.	2.1	22

#	Article	IF	Citations
235	From Cell to Tissue Properties—Modeling Skin Electroporation With Pore and Local Transport Region Formation. IEEE Transactions on Biomedical Engineering, 2018, 65, 458-468.	4.2	22
236	A Prospective Phase II Study Evaluating Intraoperative Electrochemotherapy of Hepatocellular Carcinoma. Cancers, 2020, 12, 3778.	3.7	22
237	Postocclusive Reactive Hyperemia in Healthy Volunteers and Patients With Peripheral Vascular Disease Measured by Three Noninvasive Methods. Advances in Experimental Medicine and Biology, 2003, 530, 661-669.	1.6	22
238	Muscle contractions and pain sensation accompanying high-frequency electroporation pulses. Scientific Reports, 2022, 12, 8019.	3.3	22
239	Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers. IEEE Transactions on Nanobioscience, 2002, 1, 116-120.	3.3	21
240	Electrofusion of B16-F1 and CHO cells: The comparison of the pulse first and contact first protocols. Bioelectrochemistry, 2013, 89, 34-41.	4.6	21
241	Electroporation-Based Treatment Planning for Deep-Seated Tumors Based on Automatic Liver Segmentation of MRI Images. PLoS ONE, 2013, 8, e69068.	2.5	21
242	Effect of electroporation and recovery medium pH on cell membrane permeabilization, cell survival and gene transfer efficiency in vitro. Bioelectrochemistry, 2019, 130, 107342.	4.6	21
243	Nanosecond Pulse Electroporator With Silicon Carbide mosfets: Development and Evaluation. IEEE Transactions on Biomedical Engineering, 2019, 66, 3526-3533.	4.2	21
244	Me2SO- and serum-free cryopreservation of human umbilical cord mesenchymal stem cells using electroporation-assisted delivery of sugars. Cryobiology, 2019, 91, 104-114.	0.7	21
245	Ultrasonographic changes in the liver tumors as indicators of adequate tumor coverage with electric field for effective electrochemotherapy. Radiology and Oncology, 2018, 52, 383-391.	1.7	21
246	Mathematical modelling of tumor growth in mice following electrotherapy and bleomycin treatment. Mathematics and Computers in Simulation, 1995, 39, 597-602.	4.4	20
247	Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination. Bioelectrochemistry, 2014, 100, 52-61.	4.6	20
248	The effect of pulse duration, power and energy of fractional Er:YAG laser for transdermal delivery of differently sized FITC dextrans. International Journal of Pharmaceutics, 2017, 516, 204-213.	5.2	20
249	Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry, 2022, 144, 107994.	4.6	20
250	Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics, 2000, 21, 385-94.	1.6	20
251	Oxygenation and blood flow in tumors treated with hydralazine: Evaluation with a novel luminescence-based fiber-optic sensor. Technology and Health Care, 2002, 10, 363-380.	1.2	19
252	Cell membrane electropermeabilization with arbitrary pulse waveforms. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 77-81.	0.8	19

#	Article	IF	CITATIONS
253	Nonlinear Dispersive Model of Electroporation for Irregular Nucleated Cells. Bioelectromagnetics, 2019, 40, 331-342.	1.6	19
254	Dual-porosity model of mass transport in electroporated biological tissue: Simulations and experimental work for model validation. Innovative Food Science and Emerging Technologies, 2015, 29, 41-54.	5.6	18
255	Electric Field Distribution and Electroporation Threshold. , 2017, , 1043-1058.		18
256	Connecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model. Journal of Controlled Release, 2018, 286, 33-45.	9.9	18
257	Educational application for visualization and analysis of electric field strength in multiple electrode electroporation. BMC Medical Education, 2012, 12, 102.	2.4	17
258	Electroporation Threshold of POPC Lipid Bilayers with Incorporated Polyoxyethylene Glycol (C ₁₂ E ₈). Journal of Physical Chemistry B, 2015, 119, 192-200.	2.6	17
259	Experimental and Numerical Study of Electroporation Induced by Long Monopolar and Short Bipolar Pulses on Realistic 3D Irregularly Shaped Cells. IEEE Transactions on Biomedical Engineering, 2020, 67, 2781-2788.	4.2	17
260	Local Treatment of Murine Tumors by Electric Direct Current. Electromagnetic Biology and Medicine, 1992, 11, 109-125.	0.4	16
261	Sequential Finite Element Model of Tissue Electropermeabilisation. , 2004, 2004, 3551-4.		16
262	Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers. Bioelectrochemistry, 2016, 112, 132-137.	4.6	16
263	PEF-treated plant and animal tissues: Insights by approaching with different electroporation assessment methods. Innovative Food Science and Emerging Technologies, 2021, 74, 102872.	5.6	16
264	High voltage pulse generation. Electronics Letters, 2002, 38, 680.	1.0	15
265	Combined therapy of the antimetastatic compound NAMI-A and electroporation on B16F1 tumour cells in vitro. Bioelectrochemistry, 2007, 71, 113-117.	4.6	15
266	Electroporation-Induced Stress Response and Its Effect on Gene Electrotransfer Efficacy: <i>In Vivo</i> Imaging and Numerical Modeling. IEEE Transactions on Biomedical Engineering, 2019, 66, 2671-2683.	4.2	15
267	Gene transfer by electroporation with high frequency bipolar pulses in vitro. Bioelectrochemistry, 2021, 140, 107803.	4.6	15
268	Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA). PeerJ, 2016, 4, e2309.	2.0	15
269	Modeling of interstitial fluid pressure in solid tumor. Simulation Modelling Practice and Theory, 2000, 8, 17-24.	0.3	14
270	Electrode commutation sequence for honeycomb arrangement of electrodes in electrochemotherapy and corresponding electric field distribution. Bioelectrochemistry, 2008, 74, 26-31.	4.6	14

#	Article	IF	CITATIONS
271	An e-learning application on electrochemotherapy. BioMedical Engineering OnLine, 2009, 8, 26.	2.7	14
272	Voltage- and Current-Clamp Methods for Determination of Planar Lipid Bilayer Properties. Behavior Research Methods, 2010, , 29-69.	4.0	14
273	The Cell in the Electric Field., 2011,, 19-29.		14
274	Radiological findings of porcine liver after electrochemotherapy with bleomycin. Radiology and Oncology, 2019, 53, 415-426.	1.7	14
275	Host's immune response in electrotherapy of murine tumors by direct current. European Cytokine Network, 1997, 8, 275-9.	2.0	14
276	The influence of electroporation on cytotoxicity of anticancer ruthenium(III) complex KP1339 in vitro and in vivo. Anticancer Research, 2010, 30, 2055-63.	1.1	14
277	Perturbation of blood flow as a mechanism of anti-tumour action of direct current electrotherapy. Physiological Measurement, 2003, 24, 75-90.	2.1	13
278	An algorithm for synchronization ofin vivoelectroporation with ECG. Journal of Medical Engineering and Technology, 2005, 29, 288-296.	1.4	13
279	Time-Dependent Finite Element Analysis of <i>In Vivo</i> Electrochemotherapy Treatment. Technology in Cancer Research and Treatment, 2018, 17, 153303381879051.	1.9	13
280	Electrochemotherapy of Spinal Metastases Using Transpedicular Approachâ€"A Numerical Feasibility Study. Technology in Cancer Research and Treatment, 2018, 17, 153303461877025.	1.9	13
281	Towards standardization of electroporation devices and protocols. IEEE Instrumentation and Measurement Magazine, 2020, 23, 74-81.	1.6	13
282	Pulsed Electric Field (PEF) Enhances Iron Uptake by the Yeast Saccharomyces cerevisiae. Biomolecules, 2021, 11, 850.	4.0	13
283	Optimization and Numerical Modeling in Irreversible Electroporation Treatment Planning. Series in Biomedical Engineering, 2010, , 203-222.	0.5	12
284	Modulation of Activity of Known Cytotoxic Ruthenium(III) Compound (KP418) with Hampered Transmembrane Transport in Electrochemotherapy In Vitro and In Vivo. Journal of Membrane Biology, 2014, 247, 1239-1251.	2.1	12
285	Electrotransfer of siRNA to Silence Enhanced Green Fluorescent Protein in Tumor Mediated by a High Intensity Pulsed Electromagnetic Field. Vaccines, 2020, 8, 49.	4.4	12
286	Effects of Time Delay Between Unipolar Pulses in High Frequency Nano-Electrochemotherapy. IEEE Transactions on Biomedical Engineering, 2022, 69, 1726-1732.	4.2	12
287	Numerical Modeling for In Vivo Electroporation. , 2000, 37, 63-81.		11
288	Measurement protocol for planar lipid bilayer viscoelastic properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 1236-1242.	2.9	11

#	Article	IF	Citations
289	Optimization of induction heating using numerical modeling and genetic algorithm., 2009,,.		11
290	Retrospective Study for Validation and Improvement of Numerical Treatment Planning of Irreversible Electroporation Ablation for Treatment of Liver Tumors. IEEE Transactions on Biomedical Engineering, 2021, 68, 3513-3524.	4.2	11
291	Tumor Treatment by Direct Electric Current: Computation of Electric Current and Power Density Distribution. Electromagnetic Biology and Medicine, 1997, 16, 119-128.	0.4	10
292	The Effective Conductivity and the Induced Transmembrane Potential in Dense Cell System Exposed to DC and AC Electric Fields. IEEE Transactions on Plasma Science, 2009, 37, 99-106.	1.3	10
293	Numerical study of gene electrotransfer efficiency based on electroporation volume and electrophoretic movement of plasmid DNA. BioMedical Engineering OnLine, 2018, 17, 80.	2.7	10
294	High-Frequency and High-Voltage Asymmetric Bipolar Pulse Generator for Electroporation Based Technologies and Therapies. Electronics (Switzerland), 2021, 10, 1203.	3.1	10
295	Pulsed electric field treatment of Lacticaseibacillus rhamnosus and Lacticaseibacillus paracasei, bacteria with probiotic potential. LWT - Food Science and Technology, 2021, 152, 112304.	5.2	10
296	Anti-tumor effect of tumor necrosis factor combined with electrotherapy on mouse sarcoma. Anti-Cancer Drugs, 1994, 5, 69-74.	1.4	9
297	Promoting harmonization of BME education in Europe: The CRH-BME Tempus project., 2011, 2011, 6522-5.		9
298	Low-Frequency Sonoporation in vitro: Experimental System Evaluation. Strojniski Vestnik/Journal of Mechanical Engineering, 2012, 58, 319-326.	1.1	9
299	Cytotoxicity and uptake of archaeosomes prepared from <i>Aeropyrum pernix</i> lipids. Human and Experimental Toxicology, 2013, 32, 950-959.	2.2	8
300	Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation. BioMedical Engineering OnLine, 2015, 14, S6.	2.7	8
301	Experimental Factors to Be Considered in Electroporation-Mediated Transdermal Diffusion Experiments. Journal of Biomechanical Engineering, 2015, 137, 124501.	1.3	8
302	Computational Feasibility Analysis of Electrochemotherapy With Novel Needle-Electrode Arrays for the Treatment of Invasive Breast Ductal Carcinoma. Technology in Cancer Research and Treatment, 2018, 17, 153303381879493.	1.9	8
303	High-Pulsed Electromagnetic Field Generator for Contactless Permeabilization of Cells <i>In Vitro</i> . IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	8
304	Calculations of Cell Transmembrane Voltage Induced by Time-Varying Magnetic Fields. IEEE Transactions on Plasma Science, 2020, 48, 1088-1095.	1.3	8
305	Blood Perfusion of Subcutaneous Tumours in Mice Following the Application of Low-Level Direct Electric Current. Advances in Experimental Medicine and Biology, 1999, 471, 497-506.	1.6	8
306	Significance of Treatment Energy in Cell Electropermeabilization. Electromagnetic Biology and Medicine, 1998, 17, 255-262.	0.4	7

#	Article	IF	CITATIONS
307	Cardiac Ablation byÂElectroporation. JACC: Clinical Electrophysiology, 2018, 4, 1481-1482.	3.2	7
308	Investigation of safety for electrochemotherapy and irreversible electroporation ablation therapies in patients with cardiac pacemakers. BioMedical Engineering OnLine, 2020, 19, 85.	2.7	7
309	Water Pores in Planar Lipid Bilayers at Fast and Slow Rise of Transmembrane Voltage. Membranes, 2021, 11, 263.	3.0	7
310	Effect of the cholesterol on electroporation of planar lipid bilayer. Bioelectrochemistry, 2022, 144, 108004.	4.6	7
311	Low level direct current â€" cell culture fibroblast model. Bioelectrochemistry, 1994, 35, 99-101.	1.0	6
312	In vivo electroporation threshold determination. , 0, , .		6
313	Current density in a model of a human body with a conductive implant exposed to ELF electric and magnetic fields. Bioelectromagnetics, 2009, 30, 591-599.	1.6	6
314	Early Cost-effectiveness Analysis of Electrochemotherapy as a Prospect Treatment Modality for Skin Melanoma. Clinical Therapeutics, 2020, 42, 1535-1548.e2.	2.5	6
315	Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry, 2021, 141, 107847.	4.6	6
316	Analysis of Tissue Heating During Electroporation Based Therapy: A 3D FEM Model for a Pair of Needle Electrodes., 2007,, 631-634.		6
317	An experimental and numerical study of the induced transmembrane voltage and electroporation on clusters of irregularly shaped cells., 2007,, 639-642.		6
318	Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells. Radiology and Oncology, 2011, 45, 204-8.	1.7	6
319	ELECTROCHEMOTHERAPY COMBINED WITH STANDARD AND CO2 LASER SURGERIES IN CANINE ORAL MELANOMA. Slovenian Veterinary Research, 2017, 54, .	0.2	6
320	Oxygenation and blood flow in tumors treated with hydralazine: evaluation with a novel luminescence-based fiber-optic sensor. Technology and Health Care, 2002, 10, 363-80.	1.2	6
321	A Theoretical Approach to Perturbation of Biological Systems by Electrical Currents. Electromagnetic Biology and Medicine, 1995, 14, 51-62.	0.4	5
322	Blood Perfusion in a Murine Fibrosarcoma Tumor Model After Direct Current Electrotherapy a Study with ⁸⁶ Rb Extraction Technique. Electromagnetic Biology and Medicine, 1998, 17, 273-282.	0.4	5
323	Numerical simulations aided development of nanosecond pulse electroporators., 2012,,.		5
324	Modeling Cell Electroporation and Its Measurable Effects in Tissue. , 2013, , 493-520.		5

#	Article	IF	CITATIONS
325	Electroporation-Enhanced Transdermal Delivery of Patent Blue Using Green Skin Pore Device. IFMBE Proceedings, 2016, , 1030-1033.	0.3	5
326	Inactivation of spores by electric arcs. BMC Microbiology, 2016, 16, 148.	3.3	5
327	Investigation of numerical models for planning of electrochemotherapy treatments of invasive ductal carcinoma., 2017,,.		5
328	Evaluation and Optimization of Protein Extraction From E. coli by Electroporation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 543187.	4.1	5
329	Ultrathin glass fiber microprobe for electroporation of arbitrary selected cell groups. Bioelectrochemistry, 2020, 135, 107545.	4.6	5
330	Monte-Carlo Simulation of Light Transport for NIRS Measurements in Tumors of Elliptic Geometry. Advances in Experimental Medicine and Biology, 2003, 530, 41-49.	1.6	5
331	Effect of Hydralazine on Blood Flow, Oxygenation, and Interstitial Fluid Pressure in Subcutaneous Tumors. Advances in Experimental Medicine and Biology, 2003, , 25-29.	1.6	5
332	A Multiphysics Model for Studying the Influence of Pulse Repetition Frequency on Tissue Heating During Electrochemotherapy. IFMBE Proceedings, 2009, , 2609-2613.	0.3	5
333	The Phenomenon of Electroporation. Food Engineering Series, 2022, , 107-141.	0.7	5
334	Numerical mesoscale tissue model of electrochemotherapy in liver based on histological findings. Scientific Reports, 2022, 12, 6476.	3.3	5
335	Cell Electrofusion Visualized with Fluorescence Microscopy. Journal of Visualized Experiments, 2010,	0.3	4
336	Synthesis and Characterization of Novel Ruthenium(III) Complexes with Histamine. Bioinorganic Chemistry and Applications, 2010, 2010, 1-6.	4.1	4
337	Generator and Setup for Emulating Exposures of Biological Samples to Lightning Strokes. IEEE Transactions on Biomedical Engineering, 2015, 62, 2535-2543.	4.2	4
338	Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach. BioMedical Engineering OnLine, 2016, 15, 36.	2.7	4
339	A comprehensive theoretical study of thermal relations in plant tissue following electroporation. International Journal of Heat and Mass Transfer, 2017, 111, 150-162.	4.8	4
340	Development of adaptive resistance to electric pulsed field treatment in CHO cell line in vitro. Scientific Reports, 2020, 10, 9988.	3.3	4
341	Intracellular delivery of trehalose renders mesenchymal stromal cells viable and immunomodulatory competent after cryopreservation. Cytotechnology, 2021, 73, 391-411.	1.6	4
342	Introduction to Third Special Electroporation-Based Technologies and Treatments Issue. Journal of Membrane Biology, 2013, 246, 723-724.	2.1	3

#	Article	IF	Citations
343	Cryopreservation of Human Umbilical Stem Cells in Combination with Trehalose and Reversible Electroporation. IFMBE Proceedings, 2016, , 307-310.	0.3	3
344	Biological Responses., 2017,, 155-274.		3
345	Electronic Emulator of Biological Tissue as an Electrical Load during Electroporation. Applied Sciences (Switzerland), 2020, 10, 3103.	2.5	3
346	Finite Element Modeling of in Vivo Electroporation. Series in Biomedical Engineering, 2010, , 183-202.	0.5	3
347	Measures of wound healing rate., 0,,.		2
348	Electric Field Distribution and Electroporation Threshold. , 2016, , 1-17.		2
349	Mathematical Models Describing Cell Death Due to Electroporation. , 2017, , 1199-1218.		2
350	The Effect of Nanosecond, High-Voltage Electric Pulses on the Shape and Permeability of Polymersome GUVs. Journal of Membrane Biology, 2017, 250, 441-453.	2.1	2
351	Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy. Medical and Biological Engineering and Computing, 2017, 55, 1085-1096.	2.8	2
352	Editorial: Pulsed Electric Fields in Biotechnology. Frontiers in Bioengineering and Biotechnology, 2021, 9, 639150.	4.1	2
353	Time-dependent Model of Induced Transmembrane Voltage and Electroporation on Clusters of Cells. IFMBE Proceedings, 2008, , 623-627.	0.3	2
354	A Numerical Approach to Investigate Electrofusion of Cells of Different Sizes. IFMBE Proceedings, 2011, , 1326-1329.	0.3	2
355	Mathematical Modeling of Chronic Wound Healing. Electromagnetic Biology and Medicine, 1998, 17, 237-242.	1.4	2
356	A numerical model of skin electroporation as a method to enhance gene transfection in skin. , 2007, , 597-601.		2
357	Electrodes and Electric Field Distribution in Clinical Practice. , 2021, , 21-59.		2
358	Conflicting Data on Biological Systems Treated with Electrical Direct Current. Electromagnetic Biology and Medicine, 1992, 11, 67-69.	0.4	1
359	Electronic design of electrode communication control for multiple electrodes in electrochemotherapy and corresponding electric field distribution. , 0, , .		1
360	The Web-based medical record system to support clinical trials. , 0, , .		1

#	Article	IF	CITATIONS
361	Numerical Modeling and Optimization of Local Electric Field Distribution in Anisotropic Tissue for in vivo Electrochemotherapy and Electrogene Transfer. , 2008, , .		1
362	Changing the Direction and Orientation of Electric Field During Electric Pulses Application Improves Plasmid Gene Transfer & lt;em>in vitro. Journal of Visualized Experiments, 2011, , .	0.3	1
363	Bio-Electroporation 2013 — New biotechnological and clinical applications. Bioelectrochemistry, 2014, 100, 1-2.	4.6	1
364	Editorial (Thematic Issue: Gene Transfer by Electric Fields). Current Gene Therapy, 2016, 16, 73-74.	2.0	1
365	Foreword to Sixth Special Issue on Electroporation-Based Technologies and Treatments. Journal of Membrane Biology, 2016, 249, 591-592.	2.1	1
366	Cell membrane permeabilization and cell survival after electroporation in acidic media in vitro. , 2018, , .		1
367	Selective extraction of proteins from bacterial cells by electroporation, sonoporation or glass bead homogenization. New Biotechnology, 2018, 44, S81.	4.4	1
368	Introduction of Phage Genome into Escherichia coli by Electroporation. Methods in Molecular Biology, 2019, 1898, 51-56.	0.9	1
369	Cardiac Pacemaker Exposed to Electroporation Pulses – An Ex Vivo Study. IFMBE Proceedings, 2020, , 439-446.	0.3	1
370	Cell membrane fluidity at different temperatures in relation to electroporation effectiveness of cell line V79. , 2007, , 570-573.		1
371	Changes in Electrocardiogram during Intra-Abdominal Electrochemotherapy: A Preliminary Report. IFMBE Proceedings, 2010, , 616-619.	0.3	1
372	Electrophoretic Component of Electric Pulses Determines the Efficacy of In Vivo DNA Electrotransfer. Human Gene Therapy, 2005, .	2.7	1
373	Numerical Models of Skin Conductivity Changes during Electroporation. IFMBE Proceedings, 2008, , 307-310.	0.3	1
374	Pulse Duration Dependent Asymmetry in Molecular Transmembrane Transport Due to Electroporation in H9c2 Rat Cardiac Myoblast Cells In Vitro. Molecules, 2021, 26, 6571.	3.8	1
375	Functional Requirements and Quality Assurance Necessary for Successful Incorporation of Electroporation-Based Therapies Into Clinical Practice. Journal of Medical Devices, Transactions of the ASME, 2020, 14, .	0.7	1
376	Separation of electroporated and non-electroporated cells by means of dielectrophoresis., 2007,, 178-181.		1
377	Electromagnetic influences on cellular processes. , 1992, , .		0
378	Electrical neuroimmunomodulation-a possible mechanism for wound and cancer treatment. , 0, , .		0

#	Article	lF	CITATIONS
379	Response to Comment on Valiĕet al., 2009. Bioelectromagnetics, 2009, 30, 600-600.	1.6	О
380	Planar lipid bilayers: Observing pore creation and extinction., 2011, 2011, 746-9.		O
381	Temperature Control System for Measuring Planar Lipid Bilayer Properties. Procedia Engineering, 2012, 44, 910-914.	1.2	0
382	Introduction for the special issue on electroporation. Journal of Membrane Biology, 2012, 245, 507-508.	2.1	0
383	Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation. Journal of Physics: Conference Series, 2013, 434, 012086.	0.4	0
384	Introduction to Fourth Special Issue on Electroporation-Based Technologies and Treatments. Journal of Membrane Biology, 2014, 247, 1207-1208.	2.1	0
385	CHO cell viability in CO <inf>2</inf> saturated media. , 2014, , .		0
386	First experience with a new biomedical engineering program in slovenia established following the TEMPUS IV CRH-BME joint project guidelines., 2014, 2014, 5156-9.		0
387	Protein extraction by means of electroporation and bacterial viability of E. coli. New Biotechnology, 2014, 31, S186.	4.4	0
388	Molecular Insights into Electroporation and Electrotransfer through Model Cell Membranes. Biophysical Journal, 2014, 106, 291a.	0.5	0
389	Introduction to Fifth Special Issue on Electroporation-Based Technologies and Treatments. Journal of Membrane Biology, 2015, 248, 825-826.	2.1	0
390	Proper Patient and Treatment Parameters Selection for Electrochemotherapy of Deep Seated Head and Neck Tumors. IFMBE Proceedings, 2016, , 275-279.	0.3	0
391	Modeling and optimization of Blumlein nanosecond pulse generator for experiments on planar lipid bilayers. , 2017, , .		0
392	Numerical Modelling for Prediction and Evaluation of Treatment Outcome., 2018,, 67-80.		0
393	Special issue on bacterial inactivation. Bioelectrochemistry, 2018, 123, 260.	4.6	0
394	Effect of electroporation in a continuous flow system on bioaccumulation of magnesium, zinc and calcium ions in Lactobacillus rhamnosus B 442 cells. Bioelectrochemistry, 2021, 140, 107769.	4.6	0
395	Summary of Session H: Applications of Dosimetry in Biology & Samp; Medicine., 2000,, 449-450.		0
396	Increased pulse repetition frequency for effective and less painful electrochemotherapy. WIT Transactions on Biomedicine and Health, 2003, , .	0.0	0

#	Article	IF	CITATIONS
397	Time course of electrical and diffusional parameters during and after electroporation. IFMBE Proceedings, 2009, , 2659-2663.	0.3	0
398	The influence of intracellular connections on the electric field induced membrane voltage and electroporation of cells in clusters. IFMBE Proceedings, 2009, , 74-77.	0.3	0
399	Numerical models of microneedle electrodes for gene electrotransfer in skin. IFMBE Proceedings, 2009, , 84-87.	0.3	O
400	Analysis of Mechanisms Involved in Gene Electrotransfer - Theoretical and an in Vitro Study. IFMBE Proceedings, 2009, , 158-161.	0.3	0
401	Method for treatment planning of tissue ablation by irreversible electroporation. IFMBE Proceedings, 2009, , 150-153.	0.3	O
402	The Influence of Intracellular Vesicle Size and Position on the Transmembrane Voltage Induced by Nanosecond Electric Fields. IFMBE Proceedings, 2011, , 255-258.	0.3	0
403	Integrated Software for Electrochemotherapy Treatment Planning of Deep-Seated Tumors. IFMBE Proceedings, 2011, , 614-617.	0.3	O
404	Mathematical Models Describing Cell Death Due to Electroporation. , 2016, , 1-20.		0
405	Numerical Assessment of Induced Current Densities for Pregnant Women Exposed to 50 Hz Electromagnetic Field., 2007,, 226-229.		O
406	Electroporation of Cell-Seeded Electrospun Fiber Mats for Cryopreservation. IFMBE Proceedings, 2021, , 485-494.	0.3	0
407	A Personal Computer as a Universal Controller for Medical-Focused Appliances. , 2007, , 381-384.		0