List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large π-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1809-1818.	15.6	936
2	Donor-Linked Fullerenes: Photoinduced electron transfer and its potential application. Advanced Materials, 1997, 9, 537-546.	21.0	640
3	Modulating Charge Separation and Charge Recombination Dynamics in Porphyrinâ^Fullerene Linked Dyads and Triads:A Marcus-Normal versus Inverted Region. Journal of the American Chemical Society, 2001, 123, 2607-2617.	13.7	537
4	Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Transactions, 2015, 44, 448-463.	3.3	529
5	Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms. Journal of the American Chemical Society, 2001, 123, 6617-6628.	13.7	500
6	Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles. Journal of the American Chemical Society, 2005, 127, 1216-1228.	13.7	454
7	Porphyrin- and Fullerene-Based Molecular Photovoltaic Devices. Advanced Functional Materials, 2004, 14, 525-536.	14.9	448
8	Light-Harvesting and Photocurrent Generation by Gold Electrodes Modified with Mixed Self-Assembled Monolayers of Boronâ^'Dipyrrin and Ferroceneâ^'Porphyrinâ^'Fullerene Triad. Journal of the American Chemical Society, 2001, 123, 100-110.	13.7	426
9	Fullerenes as Novel Acceptors in Photosynthetic Electron Transfer. European Journal of Organic Chemistry, 1999, 1999, 2445-2457.	2.4	394
10	Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60Dyads. Journal of the American Chemical Society, 1996, 118, 11771-11782.	13.7	389
11	Nanostructured artificial photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 51-83.	11.6	383
12	Sequential Energy and Electron Transfer in an Artificial Reaction Center:Â Formation of a Long-Lived Charge-Separated State. Journal of the American Chemical Society, 2000, 122, 6535-6551.	13.7	352
13	Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas. Journal of Physical Chemistry B, 2004, 108, 6130-6143.	2.6	352
14	Porphyrin–fullerene linked systems as artificial photosynthetic mimics. Organic and Biomolecular Chemistry, 2004, 2, 1425-1433.	2.8	339
15	Design and synthesis of phosphole-based π systems for novel organic materials. Organic and Biomolecular Chemistry, 2009, 7, 1258.	2.8	279
16	An Extremely Small Reorganization Energy of Electron Transfer in Porphyrinâ^'Fullerene Dyad. Journal of Physical Chemistry A, 2001, 105, 1750-1756.	2.5	275
17	Photovoltaic Properties of Self-Assembled Monolayers of Porphyrins and Porphyrinâ^'Fullerene Dyads on ITO and Gold Surfaces. Journal of the American Chemical Society, 2003, 125, 9129-9139.	13.7	258
18	Electron-Donating Perylene Tetracarboxylic Acids for Dye-Sensitized Solar Cells. Organic Letters, 2007, 9, 1971-1974.	4.6	247

#	Article	IF	CITATIONS
19	Optical properties of fullerene and non-fullerene peapods. Applied Physics A: Materials Science and Processing, 2002, 74, 349-354.	2.3	230
20	Vectorial Multistep Electron Transfer at the Gold Electrodes Modified with Self-Assembled Monolayers of Ferroceneâ^'Porphyrinâ^'Fullerene Triads. Journal of Physical Chemistry B, 2000, 104, 2099-2108.	2.6	216
21	Stepwise Charge Separation and Charge Recombination in Ferrocene-meso,meso-Linked Porphyrin Dimerâ^'Fullerene Triad. Journal of the American Chemical Society, 2002, 124, 5165-5174.	13.7	215
22	Solvent Dependence of Charge Separation and Charge Recombination Rates in Porphyrinâ^'Fullerene Dyad. Journal of Physical Chemistry A, 2001, 105, 325-332.	2.5	212
23	Photoinduced Charge Carrier Dynamics of Znâ^Porphyrinâ^TiO ₂ Electrodes: The Key Role of Charge Recombination for Solar Cell Performance. Journal of Physical Chemistry A, 2011, 115, 3679-3690.	2.5	210
24	Production of an Ultra-Long-Lived Charge-Separated State in a Zinc Chlorin–C60 Dyad by One-Step Photoinduced Electron Transfer. Angewandte Chemie - International Edition, 2004, 43, 853-856.	13.8	206
25	Photochemical and Electrochemical Properties of Zinc Chlorinâ^ C60 Dyad as Compared to Corresponding Free-Base Chlorinâ^ C60, Free-Base Porphyrinâ^ C60, and Zinc Porphyrinâ^ C60 Dyads. Journal of the American Chemical Society, 2001, 123, 10676-10683.	13.7	201
26	Long-Lived Charge-Separated State Generated in a Ferrocene–meso,meso-Linked Porphyrin Trimer–Fullerene Pentad with a High Quantum Yield. Chemistry - A European Journal, 2004, 10, 3184-3196.	3.3	200
27	Chain Length Effect on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrins on Gold Electrodes. Journal of Physical Chemistry B, 2000, 104, 1253-1260.	2.6	196
28	Comparison of Reorganization Energies for Intra- and Intermolecular Electron Transfer. Angewandte Chemie - International Edition, 2002, 41, 2344-2347.	13.8	193
29	Carbon nanotube-modified electrodes for solar energy conversion. Energy and Environmental Science, 2008, 1, 120.	30.8	176
30	Renaissance of Fused Porphyrins: Substituted Methylene-Bridged Thiophene-Fused Strategy for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2019, 141, 9910-9919.	13.7	176
31	DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials, 2017, 146, 136-145.	11.4	174
32	Quaternary Self-Organization of Porphyrin and Fullerene Units by Clusterization with Gold Nanoparticles on SnO2Electrodes for Organic Solar Cells. Journal of the American Chemical Society, 2003, 125, 14962-14963.	13.7	173
33	Self-assembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport. Chemical Communications, 2012, 48, 4032.	4.1	171
34	Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2cells. Chemical Communications, 2007, , 2069-2071.	4.1	170
35	Supramolecular Donorâ^'Acceptor Heterojunctions by Vectorial Stepwise Assembly of Porphyrins and Coordination-Bonded Fullerene Arrays for Photocurrent Generation. Journal of the American Chemical Society, 2009, 131, 3198-3200.	13.7	170
36	A Molecular Tetrad Allowing Efficient Energy Storage for 1.6 s at 163 K. Journal of Physical Chemistry A, 2004, 108, 541-548.	2.5	169

3

#	Article	IF	CITATIONS
37	Large Photocurrent Generation of Gold Electrodes Modified with [60]Fullerene-Linked Oligothiophenes Bearing a Tripodal Rigid Anchor. Journal of the American Chemical Society, 2002, 124, 532-533.	13.7	168
38	Quinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 4396-4405.	3.1	166
39	Photodynamic and Photothermal Effects of Semiconducting and Metallic-Enriched Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 17862-17865.	13.7	163
40	Ultrafast Photodynamics of Exciplex Formation and Photoinduced Electron Transfer in Porphyrinâ~Fullerene Dyads Linked at Close Proximity. Journal of Physical Chemistry A, 2003, 107, 8834-8844.	2.5	158
41	Photoactive Three-Dimensional Monolayers:  Porphyrinâ^'Alkanethiolate-Stabilized Gold Clusters. Journal of the American Chemical Society, 2001, 123, 335-336.	13.7	157
42	Driving Force Dependence of Intermolecular Electron-Transfer Reactions of Fullerenes. Chemistry - A European Journal, 2003, 9, 1585-1593.	3.3	156
43	Supramolecular Photovoltaic Cells Based on Composite Molecular Nanoclusters:Â Dendritic Porphyrin and C60, Porphyrin Dimer and C60, and Porphyrinâ^C60Dyad. Journal of Physical Chemistry B, 2004, 108, 12865-12872.	2.6	153
44	Supramolecular Photovoltaic Cells Using Porphyrin Dendrimers and Fullerene. Advanced Materials, 2004, 16, 975-979.	21.0	150
45	Creation of Fullerene-Based Artificial Photosynthetic Systems. Bulletin of the Chemical Society of Japan, 2007, 80, 621-636.	3.2	150
46	Naphthyl-Fused π-Elongated Porphyrins for Dye-Sensitized TiO ₂ Cells. Journal of Physical Chemistry C, 2008, 112, 15576-15585.	3.1	150
47	Exciplex Intermediates in Photoinduced Electron Transfer of Porphyrinâ `Fullerene Dyads. Journal of the American Chemical Society, 2002, 124, 8067-8077.	13.7	148
48	Effects of meso-Diarylamino Group of Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 10656-10665.	3.1	147
49	Catalytic Effects of Dioxygen on Intramolecular Electron Transfer in Radical Ion Pairs of Zinc Porphyrin-Linked Fullerenes. Journal of the American Chemical Society, 2001, 123, 2571-2575.	13.7	144
50	Light Energy Conversion Using Mixed Molecular Nanoclusters. Porphyrin and C60Cluster Films for Efficient Photocurrent Generation. Journal of Physical Chemistry B, 2003, 107, 12105-12112.	2.6	143
51	Effects of Porphyrin Substituents and Adsorption Conditions on Photovoltaic Properties of Porphyrin-Sensitized TiO ₂ Cells. Journal of Physical Chemistry C, 2009, 113, 18406-18413.	3.1	143
52	Creation of Pure Nanodrugs and Their Anticancer Properties. Angewandte Chemie - International Edition, 2012, 51, 10315-10318.	13.8	140
53	Charge-transfer emission of compact porphyrin–fullerene dyad analyzed by Marcus theory of electron-transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2229-2244.	3.9	138
54	Role of Adsorption Structures of Zn-Porphyrin on TiO ₂ in Dye-Sensitized Solar Cells Studied by Sum Frequency Generation Vibrational Spectroscopy and Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 6066-6080.	3.1	137

#	Article	IF	CITATIONS
55	Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. Journal of Physical Chemistry C, 2007, 111, 3528-3537.	3.1	131
56	Electron Transfer Cascade by Organic/Inorganic Ternary Composites of Porphyrin, Zinc Oxide Nanoparticles, and Reduced Graphene Oxide on a Tin Oxide Electrode that Exhibits Efficient Photocurrent Generation. Journal of the American Chemical Society, 2011, 133, 7684-7687.	13.7	130
57	Highly Asymmetrical Porphyrins with Enhanced Push–Pull Character for Dye‣ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 17075-17081.	3.3	129
58	Segregated Donor–Acceptor Columns in Liquid Crystals That Exhibit Highly Efficient Ambipolar Charge Transport. Journal of the American Chemical Society, 2011, 133, 10736-10739.	13.7	126
59	Isomer Effects of Fullerene Derivatives on Organic Photovoltaics and Perovskite Solar Cells. Accounts of Chemical Research, 2019, 52, 2046-2055.	15.6	126
60	A Sequential Photoinduced Electron Relay Accelerated by Fullerene in a Porphyrin-Pyromellitimide-C60 Triad. Angewandte Chemie International Edition in English, 1997, 36, 2626-2629.	4.4	120
61	Phosphole-Containing Calixpyrroles, Calixphyrins, and Porphyrins: Synthesis and Coordination Chemistry. Accounts of Chemical Research, 2009, 42, 1193-1204.	15.6	118
62	Photoconductivity in Metal–Organic Framework (MOF) Thin Films. Angewandte Chemie - International Edition, 2019, 58, 9590-9595.	13.8	118
63	Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge, Zr-Added TiO2Composite Electrodes. Langmuir, 2006, 22, 11405-11411.	3.5	115
64	Fusion of Phosphole and 1,1′â€Biacenaphthene: Phosphorus(V)â€Containing Extended Ï€â€Systems with High Electron Affinity and Electron Mobility. Angewandte Chemie - International Edition, 2011, 50, 8016-8020.	13.8	115
65	Porphyrin Monolayer-Modified Gold Clusters as Photoactive Materials. Advanced Materials, 2001, 13, 1197-1199.	21.0	113
66	Synthesis and Photophysical and Photovoltaic Properties of Porphyrinâ^'Furan and â^'Thiophene Alternating Copolymers. Journal of Physical Chemistry C, 2009, 113, 10798-10806.	3.1	113
67	Photofunctional Hybrid Nanocarbon Materials. Journal of Physical Chemistry C, 2013, 117, 3195-3209.	3.1	108
68	Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells. Dalton Transactions, 2008, , 5476.	3.3	106
69	Chain Length Effect on Photocurrent from Polymethylene-Linked Porphyrins in Self-Assembled Monolayers. Langmuir, 1998, 14, 5335-5338.	3.5	105
70	Photothermal ablation of tumor cells using a single-walled carbon nanotube–peptide composite. Journal of Controlled Release, 2014, 173, 59-66.	9.9	104
71	Visible light-driven water oxidation using a covalently-linked molecular catalyst–sensitizer dyad assembled on a TiO ₂ electrode. Chemical Science, 2016, 7, 1430-1439.	7.4	103
72	Effects of π-Elongation and the Fused Position of Quinoxaline-Fused Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 11293-11304.	3.1	102

#	Article	IF	CITATIONS
73	Donorâ^'Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion. Journal of Physical Chemistry C, 2009, 113, 9029-9039.	3.1	100
74	Synthesis and Photophysical Property of Porphyrin-Linked Fullerene. Chemistry Letters, 1995, 24, 265-266.	1.3	99
75	An Investigation of Photocurrent Generation by Gold Electrodes Modified with Self-Assembled Monolayers of C60. Journal of Physical Chemistry B, 1999, 103, 7233-7237.	2.6	99
76	Structure and Photophysical Properties of Porphyrin-Modified Metal Nanoclusters with Different Chain Lengths. Langmuir, 2004, 20, 73-81.	3.5	99
77	PHOTOINDUCED ELECTRON TRANSFER IN A CAROTENOBUCKMINSTERFULLERENE DYAD. Photochemistry and Photobiology, 1995, 62, 1009-1014.	2.5	99
78	Tropolone as a Highâ€Performance Robust Anchoring Group for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9052-9056.	13.8	99
79	Organic Photoelectrochemical Cell Mimicking Photoinduced Multistep Electron Transfer in Photosynthesis: Interfacial Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrin-Linked Fullerenes on Gold Electrodes. Bulletin of the Chemical Society of Japan 1999 72 485-502	3.2	97
80	Long-Lived Charge-Separated State Produced by Photoinduced Electron Transfer in a Zinc Imidazoporphyrin-C60Dyad. Organic Letters, 2003, 5, 2719-2721.	4.6	96
81	Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surfaceâ€Engineered Plasmonic Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 11725-11729.	13.8	96
82	Optical, Electrochemical, and Photovoltaic Effects of an Electron-Withdrawing Tetrafluorophenylene Bridge in a Push–Pull Porphyrin Sensitizer Used for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 14415-14424.	3.1	94
83	Remarkable Dependence of the Final Charge Separation Efficiency on the Donor–Acceptor Interaction in Photoinduced Electron Transfer. Angewandte Chemie - International Edition, 2016, 55, 629-633.	13.8	94
84	Near infra-red emission of charge-transfer complexes of porphyrin–fullerene films. Chemical Physics Letters, 2000, 326, 344-350.	2.6	87
85	Small Reorganization Energy of Intramolecular Electron Transfer in Fullerene-Based Dyads with Short Linkage. Journal of Physical Chemistry A, 2002, 106, 10991-10998.	2.5	87
86	Effects of Hydrogen Bonding on Metal Ion-Promoted Intramolecular Electron Transfer and Photoinduced Electron Transfer in a Ferrocene-Quinone Dyad with a Rigid Amide Spacer. Journal of the American Chemical Society, 2003, 125, 1007-1013.	13.7	87
87	Primary charge-recombination in an artificial photosynthetic reaction center. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10017-10022.	7.1	85
88	Syntheses, Structures, and Coordination Chemistry of Phosphole-Containing Hybrid Calixphyrins:Â Promising Macrocyclic P,N2,X-Mixed Donor Ligands for Designing Reactive Transition-Metal Complexes. Journal of the American Chemical Society, 2008, 130, 990-1002.	13.7	85
89	Ultrafast Photoinduced Electron Transfer in Directly Linked Porphyrinâ^'Ferrocene Dyads. Journal of Physical Chemistry A, 2007, 111, 5136-5143.	2.5	80
90	Vectorial Electron Relay at ITO Electrodes Modified with Self-Assembled Monolayers of Ferrocene–Porphyrin–Fullerene Triads and Porphyrin–Fullerene Dyads for Molecular Photovoltaic Devices. Chemistry - A European Journal, 2004, 10, 5111-5122.	3.3	79

#	Article	IF	CITATIONS
91	Enhancement of Photocurrent Generation by ITO Electrodes Modified Chemically with Self-Assembled Monolayers of Porphyrin–Fullerene Dyads. Advanced Materials, 2002, 14, 892.	21.0	77
92	Photosynthetic electron transfer using fullerenes as novel acceptors. Carbon, 2000, 38, 1599-1605.	10.3	76
93	Regioselective β-Metalation of <i>meso</i> -Phosphanylporphyrins. Structure and Optical Properties of Porphyrin Dimers Linked by Peripherally Fused Phosphametallacycles. Journal of the American Chemical Society, 2008, 130, 4588-4589.	13.7	76
94	An efficient electron transport material of tin oxide for planar structure perovskite solar cells. Journal of Power Sources, 2016, 307, 891-897.	7.8	76
95	Long-Lived Charge Separation with High Quantum Yield in a Ferrocene-Porphyrin-Fullerene Triad. Chemistry Letters, 1999, 28, 721-722.	1.3	75
96	Comparative Study on the Structural, Optical, and Electrochemical Properties of Bithiopheneâ€Fused Benzo[<i>c</i>]phospholes. Chemistry - A European Journal, 2008, 14, 8102-8115.	3.3	75
97	A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. Journal of Materials Chemistry A, 2016, 4, 12739-12747.	10.3	75
98	Synthesis and Self-Assembly of Porphyrin-linked Fullerene on Gold Surface Using S-Au Linkage. Chemistry Letters, 1996, 25, 907-908.	1.3	73
99	Synthesis and photoelectrochemical properties of a self-assembled monolayer of a ferrocene–porphyrin–fullerene triad on a gold electrode. Chemical Communications, 1999, , 1165-1166.	4.1	72
100	A Negative Temperature Dependence of the Electron Self-Exchange Rates of Zinc Porphyrin π Radical Cations. Journal of the American Chemical Society, 2002, 124, 10974-10975.	13.7	72
101	Phosphorus-Containing Hybrid Calixphyrins:Â Promising Mixed-Donor Ligands for Visible and Efficient Palladium Catalysts. Journal of the American Chemical Society, 2006, 128, 11760-11761.	13.7	71
102	Electrophoretic deposition of donor–acceptor nanostructures on electrodes for molecular photovoltaics. Journal of Materials Chemistry, 2007, 17, 31-41.	6.7	71
103	Synthesis, Structures, and Properties ofmeso-Phosphorylporphyrins: Self-Organization through P–Oxo–Zinc Coordination. Chemistry - A European Journal, 2007, 13, 891-901.	3.3	71
104	Effects of dihydronaphthyl-based [60]fullerene bisadduct regioisomers on polymer solar cell performance. Chemical Communications, 2012, 48, 8550.	4.1	71
105	Nature-Inspired Tree-Like TiO ₂ Architecture: A 3D Platform for the Assembly of CdS and Reduced Graphene Oxide for Photoelectrochemical Processes. Journal of Physical Chemistry C, 2015, 119, 7543-7553.	3.1	71
106	Effects of Porphyrin Substituents on Film Structure and Photoelectrochemical Properties of Porphyrin/Fullerene Composite Clusters Electrophoretically Deposited on Nanostructured SnO ₂ Electrodes. Chemistry - A European Journal, 2007, 13, 10182-10193.	3.3	70
107	Triarylamine‣ubstituted Imidazole―and Quinoxalineâ€Fused Push–Pull Porphyrins for Dye‣ensitized Solar Cells. ChemSusChem, 2013, 6, 508-517	6.8	70
108	Photoinduced Electron Transfer in Langmuirâ^'Blodgett Monolayers of Porphyrinâ^'Fullerene Dyads. Langmuir, 2005, 21, 5383-5390.	3.5	69

#	Article	IF	CITATIONS
109	One-Dimensional Nanostructured Semiconducting Materials for Organic Photovoltaics. Journal of Physical Chemistry Letters, 2010, 1, 1020-1025.	4.6	69
110	Tunable, strongly-donating perylene photosensitizers for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 7166.	6.7	69
111	Resonance Raman and FTIR Spectra of Isotope-Labeled Reduced 1,4-Benzoquinone and Its Protonated Forms in Solutions. Journal of Physical Chemistry A, 1997, 101, 622-631.	2.5	67
112	Nanostructured assembly of porphyrin clusters for light energy conversion. Journal of Materials Chemistry, 2003, 13, 2515.	6.7	67
113	Electrophoretic Deposition of Single-Walled Carbon Nanotubes Covalently Modified with Bulky Porphyrins on Nanostructured SnO2Electrodes for Photoelectrochemical Devices. Journal of Physical Chemistry C, 2007, 111, 11484-11493.	3.1	67
114	Fabrication of dye-sensitized solar cells using natural dye for food pigment: Monascus yellow. Energy and Environmental Science, 2010, 3, 905.	30.8	67
115	Design and control of organic semiconductors and their nanostructures for polymer–fullerene-based photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 11545-11560.	10.3	67
116	Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Convergence, 2017, 4, 26.	12.1	67
117	Control of electron transfer and its utilization. Pure and Applied Chemistry, 1997, 69, 1951-1956.	1.9	66
118	Host–Guest Interactions in the Supramolecular Incorporation of Fullerenes into Tailored Holes on Porphyrin-Modified Gold Nanoparticles in Molecular Photovoltaics. Chemistry - A European Journal, 2005, 11, 7265-7275.	3.3	66
119	Retention of Intrinsic Electronic Properties of Soluble Single-Walled Carbon Nanotubes after a Significant Degree of Sidewall Functionalization by the Bingel Reaction. Journal of Physical Chemistry C, 2007, 111, 9734-9741.	3.1	66
120	Fused Five-membered Porphyrin for Dye-sensitized Solar Cells. Chemistry Letters, 2008, 37, 846-847.	1.3	65
121	Substituent Effects of Porphyrins on Structures and Photophysical Properties of Amphiphilic Porphyrin Aggregates. Journal of Physical Chemistry B, 2008, 112, 16517-16524.	2.6	64
122	Metal Ion-Promoted Intramolecular Electron Transfer in a Ferrocene-Naphthoquinone Linked Dyad. Continuous Change in Driving Force and Reorganization Energy with Metal Ion Concentration. Journal of the American Chemical Society, 2003, 125, 7014-7021.	13.7	63
123	Redox-Coupled Complexation of 23-Phospha-21-thiaporphyrin with Group 10 Metals: A Convenient Access to Stable Core-Modified Isophlorinâ ^{~3} Metal Complexes. Journal of the American Chemical Society, 2008, 130, 16446-16447.	13.7	63
124	Free Base and Metal Complexes of 5,15-Diaza-10,20-dimesitylporphyrins: Synthesis, Structures, Optical and Electrochemical Properties, and Aromaticities. Inorganic Chemistry, 2012, 51, 12879-12890.	4.0	63
125	Nickel(II) and Copper(II) Complexes of βâ€Unsubstituted 5,15â€Diazaporphyrins and Pyridazineâ€Fused Diazacorrinoids: Metal–Template Syntheses and Peripheral Functionalizations. Chemistry - A European Journal, 2012, 18, 6208-6216.	3.3	63
126	Acenaphtho[1, 2â€ <i>c</i>]phosphole <i>P</i> â€Oxide: A Phosphole–Naphthalene Ï€â€Conjugated Syste High Electron Mobility. Chemistry - A European Journal, 2009, 15, 10000-10004.	m with	62

HIROSHI IMAHORI

#	Article	IF	CITATIONS
127	Uphill Photooxidation of NADH Analogues by Hexyl Viologen Catalyzed by Zinc Porphyrin-Linked Fullerenesâ€. Journal of Physical Chemistry A, 2002, 106, 1903-1908.	2.5	61
128	Effects of Metal Ions on Photoinduced Electron Transfer in Zinc Porphyrin?Naphthalenediimide Linked Systems. Chemistry - A European Journal, 2004, 10, 474-483.	3.3	61
129	Analysis of Sputtering Damage on <i>I</i> – <i>V</i> Curves for Perovskite Solar Cells and Simulation with Reversed Diode Model. Journal of Physical Chemistry C, 2016, 120, 28441-28447.	3.1	61
130	Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst. Chemical Communications, 2016, 52, 13702-13705.	4.1	61
131	Effects of Bulky Substituents of Push–Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15379-15390.	8.0	61
132	Synthesis of a Phosphorus-Containing Hybrid Porphyrin. Organic Letters, 2006, 8, 5713-5716.	4.6	60
133	Photophysics and photoelectrochemical properties of nanohybrids consisting of fullerene-encapsulated single-walled carbon nanotubes and poly(3-hexylthiophene). Energy and Environmental Science, 2011, 4, 741-750.	30.8	60
134	Photoinduced Electron Transfer in Self-Assembled Monolayers of Porphyrinâ^'Fullerene Dyads on ITO. Langmuir, 2005, 21, 6385-6391.	3.5	59
135	Concentration Effects of Porphyrin Monolayers on the Structure and Photoelectrochemical Properties of Mixed Self-Assembled Monolayers of Porphyrin and Alkanethiol on Gold Electrodes. Langmuir, 2001, 17, 4925-4931.	3.5	58
136	Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications. Japanese Journal of Applied Physics, 2015, 54, 08KF08.	1.5	58
137	Enhancement of Light Harvesting and Photocurrent Generation by ITO Electrodes Modified with meso,meso-Linked Porphyrin Oligomers. Nano Letters, 2003, 3, 409-412.	9.1	57
138	Molecular Photoelectrochemical Devices: Supramolecular Incorporation of C60 Molecules into Tailored Holes on Porphyrin-Modified Gold Nanoclusters. Advanced Materials, 2005, 17, 1727-1730.	21.0	57
139	Scandium Ion-Promoted Photoinduced Electron-Transfer Oxidation of Fullerenes and Derivatives by p-Chloranil and p-Benzoquinone. Journal of the American Chemical Society, 2001, 123, 12458-12465.	13.7	56
140	Preparation and Photophysical and Photoelectrochemical Properties of a Covalently Fixed Porphyrin–Chemically Converted Graphene Composite. Chemistry - A European Journal, 2012, 18, 4250-4257.	3.3	55
141	Synthesis and Photophysical Properties of Electron-Rich Perylenediimide-Fullerene Dyad. Organic Letters, 2006, 8, 4425-4428.	4.6	54
142	Clusterization, Electrophoretic Deposition, and Photoelectrochemical Properties of Fullereneâ€Functionalized Carbon Nanotube Composites. Chemistry - A European Journal, 2008, 14, 4875-4885.	3.3	54
143	Ordered Supramolecular Assembly of Porphyrin–Fullerene Composites on Nanostructured SnO2 Electrodes. Advanced Materials, 2006, 18, 2549-2552.	21.0	53
144	α,α′â€Diarylacenaphtho[1,2â€ <i>c</i>]phosphole <i>P</i> â€Oxides: Divergent Synthesis and Application to Cathode Buffer Layers in Organic Photovoltaics. Chemistry - an Asian Journal, 2012, 7, 2305-2312.	3.3	53

#	Article	IF	CITATIONS
145	Effect of Fluorine Substitution on Photovoltaic Properties of Benzothiadiazole–Carbazole Alternating Copolymers. Journal of Physical Chemistry C, 2013, 117, 21148-21157.	3.1	53
146	Hydrogen-Bonding Dynamics in Photoinduced Electron Transfer in a Ferroceneâ^'Quinone Linked Dyad with a Rigid Amide Spacer. Journal of the American Chemical Society, 2002, 124, 6794-6795.	13.7	52
147	Photocurrent generation using gold electrodes modified with self-assembled monolayers of a fullerene–porphyrin dyad. Journal of Materials Chemistry, 2002, 12, 2034-2040.	6.7	52
148	A Photoelectrochemical Device with a Nanostructured SnO2Electrode Modified with Composite Clusters of Porphyrin-Modified Silica Nanoparticle and Fullerene. Journal of Physical Chemistry B, 2006, 110, 11399-11405.	2.6	52
149	Hydrogen-Bonding Effects on Film Structure and Photoelectrochemical Properties of Porphyrin and Fullerene Composites on Nanostructured TiO2Electrodes. Journal of Physical Chemistry C, 2007, 111, 13618-13626.	3.1	52
150	Synthesis and Structure–Property Relationships of 2,2′â€Bis(benzo[<i>b</i>]phosphole) and 2,2′â€Benzo[<i>b</i>]phosphole–Benzo[<i>b</i>]heterole Hybrid Ï€ Systems. Chemistry - A European Journal, 2012, 18, 15972-15983.	3.3	52
151	Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting. APL Materials, 2014, 2, .	5.1	52
152	Regioisomer effects of [70]fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chemical Science, 2017, 8, 181-188.	7.4	52
153	Dendritic Effects on Structure and Photophysical and Photoelectrochemical Properties of Fullerene Dendrimers and Their Nanoclusters. Journal of Physical Chemistry C, 2007, 111, 2777-2786.	3.1	51
154	A Ruthenium Complex–Porphyrin–Fullerene‣inked Molecular Pentad as an Integrative Photosynthetic Model. Angewandte Chemie - International Edition, 2017, 56, 3329-3333.	13.8	51
155	Large Acceleration Effect of Photoinduced Electron Transfer in Porphyrinâ^'Quinone Dyads with a Rigid Spacer Involving a Dihalosubstituted Three-Membered Ring. Journal of the American Chemical Society, 2000, 122, 2279-2288.	13.7	50
156	Thermal Intramolecular Electron Transfer in a Ferrocene-Naphthoquinone Linked Dyad Promoted by Metal Ions. Angewandte Chemie - International Edition, 2002, 41, 620-622.	13.8	50
157	Monophosphaporphyrins:  Oxidative π-Extension at the Peripherally Fused Carbocycle of the Phosphaporphyrin Ring. Organic Letters, 2008, 10, 553-556.	4.6	50
158	Dispersion of carbon nanotubes by photo- and thermal-responsive polymers containing azobenzene unit in the backbone. Chemical Communications, 2010, 46, 5969.	4.1	50
159	Synthesis of α,α′-Linked Oligophospholes and Polyphospholes by Using Pdâ^'Cul-Promoted Stille-Type Coupling. Organic Letters, 2010, 12, 2675-2677.	4.6	50
160	Effects of Carbon–Metal–Carbon Linkages on the Optical, Photophysical, and Electrochemical Properties of Phosphametallacycle-Linked Coplanar Porphyrin Dimers. Journal of the American Chemical Society, 2012, 134, 1825-1839.	13.7	50
161	A Convenient Method for the Synthesis of αâ€Ethynylphospholes and Modulation of Their Ï€â€Conjugated Systems. Angewandte Chemie - International Edition, 2009, 48, 4002-4005.	13.8	49
162	Formation of superoxide–metal ion complexes and the electron transfer catalysis. Coordination Chemistry Reviews, 2002, 226, 71-80.	18.8	48

#	Article	IF	CITATIONS
163	Synthesis of 2-Aryl-5-styrylphospholes:Â Promising Candidates for the Phosphole-Based NLO Chromophores. Journal of Organic Chemistry, 2007, 72, 6200-6205.	3.2	48
164	Substituent Effects of Porphyrin Monolayers on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrin on Indiumâ^'Tin Oxide Electrode. Journal of Physical Chemistry B, 2004, 108, 5018-5025.	2.6	47
165	A Convenient Method for the Synthesis of 2,5-Difunctionalized Phospholes Bearing Ester Groups. Journal of Organic Chemistry, 2006, 71, 5792-5795.	3.2	47
166	C70vs. C60in zinc porphyrin–fullerene dyads: prolonged charge separation and ultrafast energy transfer from the second excited singlet state of porphyrin. Photochemical and Photobiological Sciences, 2003, 2, 251-258.	2.9	46
167	Geometries, Electronic Couplings, and Hole Dissociation Dynamics of Photoinduced Electron–Hole Pairs in Polyhexylthiophene–Fullerene Dyads Rigidly Linked by Oligophenylenes. Journal of the American Chemical Society, 2016, 138, 5879-5885.	13.7	46
168	Preparation and Photoelectrochemical Properties of Gold Electrodes Modified with [60]Fullerene-Linked Oligothiophenes. Chemistry Letters, 2000, 29, 570-571.	1.3	45
169	Remarkable enhancement of photocurrent generation by ITO electrodes modified with a self-assembled monolayer of porphyrin. Chemical Communications, 2000, , 1921-1922.	4.1	45
170	Synthesis and Reactions of Phosphaporphyrins: Reconstruction of ï€-Skeleton Triggered by Oxygenation of a Core Phosphorus Atom. Journal of Organic Chemistry, 2010, 75, 375-389.	3.2	45
171	Utilization of Photoinduced Charge-Separated State of Donor–Acceptor-Linked Molecules for Regulation of Cell Membrane Potential and Ion Transport. Journal of the American Chemical Society, 2012, 134, 6092-6095.	13.7	45
172	Effects of Alkyl Chain Length and Substituent Pattern of Fullerene Bis-Adducts on Film Structures and Photovoltaic Properties of Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17313-17322.	8.0	45
173	Synthesis and photophysical properties of a diporphyrin–fullerene triad. Chemical Communications, 1999, , 625-626.	4.1	44
174	Selective Formation and Efficient Photocurrent Generation of [70]Fullerene–Singleâ€Walled Carbon Nanotube Composites. Advanced Materials, 2010, 22, 1767-1770.	21.0	44
175	Synthesis and Charge-Carrier Transport Properties of Poly(phosphole <i>P</i> -alkanesulfonylimide)s. Organic Letters, 2013, 15, 932-935.	4.6	44
176	Linkage Dependent Charge Separation and Charge Recombination in Porphyrin-Pyromellitimide-Fullerene Triads. Journal of Physical Chemistry A, 2002, 106, 2803-2814.	2.5	43
177	Metal and size effects on structures and photophysical properties of porphyrin-modified metal nanoclusters. Journal of Materials Chemistry, 2003, 13, 2890.	6.7	43
178	Photoelectrochemical Properties of Supramolecular Composite of Fullerene Nanoclusters and 9-Mesityl-10-carboxymethylacridinium Ion on SnO2. Organic Letters, 2004, 6, 3103-3106.	4.6	43
179	Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells. Inorganic Chemistry, 2020, 59, 452-459.	4.0	43
180	Synthesis of Closely Spaced Porphyrin-Fullerene. Chemistry Letters, 1996, 25, 199-200.	1.3	42

#	Article	IF	CITATIONS
181	Novel Photocatalytic Function of Porphyrin-Modified Gold Nanoclusters in Comparison with the Reference Porphyrin Compound. Journal of Physical Chemistry B, 2003, 107, 11979-11986.	2.6	42
182	Manipulation of Charge-Transfer States by Molecular Design: Perspective from "Dynamic Exciton― Accounts of Materials Research, 2021, 2, 501-514.	11.7	42
183	Strong Inhibition of Singlet Oxygen Sensitization in Pyridylferroceneâ^'Fluorinated Zinc Porphyrin Supramolecular Complexes. Journal of Physical Chemistry A, 2003, 107, 5515-5522.	2.5	41
184	Oligothiophene Bearing 1-Hydroxy-1-oxodithieno[2,3- <i>b</i> :3′,2′- <i>d</i>]phosphole as a Novel Anchoring Group for Dye-sensitized Solar Cells. Chemistry Letters, 2010, 39, 448-450.	1.3	41
185	Acceleration of Photoinduced Charge Separation in Porphyrin-C60Dyad with an Acetylene Spacer. Chemistry Letters, 1999, 28, 895-896.	1.3	40
186	Large Reorganization Energy of Pyrrolidine-Substituted Perylenediimide in Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 6133-6142.	3.1	40
187	Gold Nanoparticle Enhanced Charge Transfer in Thin Film Assemblies of Porphyrinâ^'Fullerene Dyads. Langmuir, 2007, 23, 13117-13125.	3.5	40
188	Phosphole―and Benzodithiopheneâ€Based Copolymers: Synthesis and Application in Organic Photovoltaics. European Journal of Inorganic Chemistry, 2014, 2014, 1620-1624.	2.0	40
189	Effect of Silicon Surface for Perovskite/Silicon Tandem Solar Cells: Flat or Textured?. ACS Applied Materials & Interfaces, 2018, 10, 35016-35024.	8.0	40
190	Spectroscopy and Photocurrent Generation in Nanostructured Thin Films of Porphyrin–Fullerene Dyad Clusters. Chemistry Letters, 2001, 30, 784-785.	1.3	39
191	Light Harvesting and Energy Transfer in Multiporphyrinâ€Modified CdSe Nanoparticles. ChemSusChem, 2008, 1, 254-261.	6.8	39
192	Boosting of the Performance of Perovskite Solar Cells through Systematic Introduction of Reduced Graphene Oxide in TiO2 Layers. Chemistry Letters, 2015, 44, 1410-1412.	1.3	39
193	<i>meso</i> â€3,5â€Bis(trifluoromethyl)phenyl‣ubstituted Expanded Porphyrins: Synthesis, Characterization, and Optical, Electrochemical, and Photophysical Properties. Chemistry - an Asian Journal, 2008, 3, 2065-2074.	3.3	37
194	Self-Assembled Porphyrins on Modified Zinc Oxide Nanorods: Development of Model Systems for Inorganic–Organic Semiconductor Interface Studies. Journal of Physical Chemistry C, 2012, 116, 2336-2343.	3.1	37
195	Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. Journal of Materials Chemistry A, 2017, 5, 4686-4694.	10.3	37
196	Preparation of Molecular Assemblies of Porphyrin-Linked Alkanethiol on Gold Surface and Their Redox Properties. Chemistry Letters, 1994, 23, 1447-1450.	1.3	36
197	Photoinduced electron transfer at a gold electrode modified with a self-assembled monolayer of fullerene. Chemical Communications, 1999, , 557-558.	4.1	36
198	Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides. Organometallics, 2004, 23, 5471-5480.	2.3	36

#	Article	IF	CITATIONS
199	Bisquinoxalineâ€Fused Porphyrins for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2011, 4, 797-805.	6.8	36
200	A single cis-2 regioisomer of ethylene-tethered indene dimer–fullerene adduct as an electron-acceptor in polymer solar cells. Chemical Communications, 2015, 51, 8233-8236.	4.1	36
201	Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon. ACS Applied Materials & amp; Interfaces, 2016, 8, 33553-33561.	8.0	36
202	Photoinduced Electron Transfer in Langmuirâ^'Blodgett Monolayers of Double-Linked Phthalocyanineâ^'Fullerene Dyads. Journal of Physical Chemistry C, 2008, 112, 9896-9902.	3.1	35
203	Organic Thin-Film Solar Cells Using Electron-Donating Perylene Tetracarboxylic Acid Derivatives. Journal of Physical Chemistry C, 2009, 113, 15454-15466.	3.1	35
204	Phosphole-Triazole Hybrids: A Facile Synthesis and Complexation with Pd(II) and Pt(II) Salts. Organic Letters, 2009, 11, 3338-3341.	4.6	35
205	Synthesis, structures, and aromaticity of phosphole-containing porphyrins and their metal complexes. Pure and Applied Chemistry, 2010, 82, 583-593.	1.9	35
206	Remarkable Effects of P-Perfluorophenyl Group on the Synthesis of Core-Modified Phosphaporphyrinoids and Phosphadithiasapphyrin. Organic Letters, 2010, 12, 1112-1115.	4.6	35
207	Conjugated "Molecular Wire―for Excitons. Journal of Physical Chemistry Letters, 2010, 1, 1492-1496.	4.6	35
208	A Hydroxamic Acid Anchoring Group for Durable Dyeâ€&ensitized Solar Cells Incorporating a Cobalt Redox Shuttle. ChemSusChem, 2017, 10, 3347-3351.	6.8	35
209	Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chemical Science, 2020, 11, 3250-3257.	7.4	35
210	Hydrogen Bonding Effects on the Surface Structure and Photoelectrochemical Properties of Nanostructured SnO2Electrodes Modified with Porphyrin and Fullerene Composites. Journal of Physical Chemistry B, 2005, 109, 18465-18474.	2.6	34
211	Self-Organization of Porphyrins and Fullerenes for Molecular Photoelectrochemical Devices. Photosynthesis Research, 2006, 87, 63-71.	2.9	34
212	Carbon Nanotube Wiring of Donor–Acceptor Nanograins by Selfâ€Assembly and Efficient Charge Transport. Angewandte Chemie - International Edition, 2011, 50, 4615-4619.	13.8	34
213	Synthesis and Isolation of <i>cis</i> -2 Regiospecific Ethylene-Tethered Indene Dimer–[70]Fullerene Adduct for Polymer Solar Cell Applications. ACS Applied Materials & Interfaces, 2015, 7, 16676-16685.	8.0	34
214	Unique Tube–Ring Interactions: Complexation of Singleâ€Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes. Small, 2018, 14, e1800720.	10.0	34
215	Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics. Thin Solid Films, 2004, 451-452, 580-588.	1.8	33
216	Bithiopheneâ€Fused Benzo[<i>c</i>]phospholes: Novel P,Sâ€Containing Hybrid Ï€â€Conjugated Systems with Small HOMO–LUMO Energy Gaps. European Journal of Organic Chemistry, 2008, 2008, 255-259.	2.4	33

#	Article	IF	CITATIONS
217	Comparison of Cluster Formation, Film Structure, Microwave Conductivity, and Photoelectrochemical Properties of Composites Consisting of Single-Walled Carbon Nanotubes with C ₆₀ , C ₇₀ , and C ₈₄ . Journal of Physical Chemistry C, 2010, 114, 3235-3247.	3.1	33
218	Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy. Nature Communications, 2015, 6, 7732.	12.8	33
219	Effects of Lowering Symmetry on the ESR Spectra of Radical Anions of Fullerene Derivatives and the Reduction Potentials. Journal of Physical Chemistry A, 2000, 104, 10688-10694.	2.5	32
220	Extremely Slow Long-Range Electron Transfer Reactions Across Zeoliteâ^'Solution Interface. Journal of the American Chemical Society, 2001, 123, 11331-11332.	13.7	32
221	Porphyrin–fullerene dyad with a long linker: formation of charge transfer conformer in Langmuir–Blodgett film. Chemical Physics Letters, 2002, 366, 245-252.	2.6	32
222	Photoinduced electron transfer in multilayer self-assembled structures of porphyrins and porphyrin–fullerene dyads on ITO. Journal of Materials Chemistry, 2005, 15, 4546.	6.7	32
223	New Palladium(II) Complex of P,S-Containing Hybrid Calixphyrin. Theoretical Study of Electronic Structure and Reactivity for Oxidative Addition. Journal of the American Chemical Society, 2009, 131, 10955-10963.	13.7	32
224	Exclusive Photothermal Heat Generation by a Gadolinium Bis(naphthalocyanine) Complex and Inclusion into Modified High-Density Lipoprotein Nanocarriers for Therapeutic Applications. ACS Nano, 2013, 7, 8908-8916.	14.6	32
225	Polymer-Assisted Construction of Mesoporous TiO ₂ Layers for Improving Perovskite Solar Cell Performance. Journal of Physical Chemistry C, 2015, 119, 22847-22854.	3.1	32
226	Acceleration of Photoinduced Electron Transfer in Porphyrin-Linked C70. Chemistry Letters, 1999, 28, 227-228.	1.3	31
227	Acceleration and deceleration of photoinduced electron transfer rates by an electric field in porphyrin-fullerene dyads. Chemical Physics Letters, 2003, 368, 230-235.	2.6	31
228	Porphyrin and fullerene-based photovoltaic devices. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 57-62.	3.9	31
229	Phosphole-Containing Hybrid Calixpyrroles:Â New Multifunctional Macrocyclic Ligands for Platinum(II) Ions. Organometallics, 2006, 25, 3105-3107.	2.3	31
230	Synthesis of 2-Alkenyl- and 2-Alkynyl-benzo[<i>b</i>]phospholes by Using Palladium-Catalyzed Cross-Coupling Reactions. Organic Letters, 2013, 15, 4458-4461.	4.6	31
231	Synthesis and Photophysical Behavior of Porphyrins with Two C60Units. Chemistry Letters, 1998, 27, 605-606.	1.3	30
232	Photoinduced energy transfer in composites of poly[(p-phenylene-1,2-vinylene)-co-(p-phenylene-1,1-vinylidene)] and single-walled carbon nanotubes. Chemical Physics Letters, 2007, 444, 263-267.	2.6	30
233	Electron-rich Five-membered Ring of Azulene as a Donor Unit in Donor–Acceptor Alternating Copolymers for Polymer Solar Cell Applications. Chemistry Letters, 2015, 44, 47-49.	1.3	30
234	Effective role of eco-friendly acetyl tributyl citrate in large-scale catalyst-free synthesis of waterborne polyurethanes without volatile organic compounds. Journal of Cleaner Production, 2019, 237, 117543.	9.3	30

#	Article	IF	CITATIONS
235	Photodynamics of Charge Separation and Recombination in Solid Alternating Films of Phthalocyanine or Phthalocyanineâ^'Fullerene Dyad and Perylene Dicarboximide. Journal of Physical Chemistry C, 2009, 113, 1984-1992.	3.1	29
236	Mobility of Holes in Oligo- and Polyfluorenes of Defined Lengths. Journal of Physical Chemistry C, 2014, 118, 6100-6109.	3.1	29
237	Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene–Phthalocyanine Dyad. Journal of the American Chemical Society, 2016, 138, 1313-1319.	13.7	29
238	Electron transfer and exciplex chemistry of functionalized nanocarbons: effects of electronic coupling and donor dimerization. Nanoscale Horizons, 2018, 3, 352-366.	8.0	29
239	Triaryl(1-pyrenyl)bismuthonium Salts: Efficient Photoinitiators for Cationic Polymerization of Oxiranes and a Vinyl Ether. Organic Letters, 2008, 10, 2167-2170.	4.6	28
240	Effects of fullerene encapsulation on structure and photophysical properties of porphyrin-linked single-walled carbon nanotubes. Chemical Communications, 2011, 47, 11781.	4.1	28
241	A New, Efficient Method for Direct α-Alkenylation of β-Dicarbonyl Compounds and Phenols Using Alkenyltriarylbismuthonium Salts. Journal of Organic Chemistry, 2004, 69, 5505-5508.	3.2	27
242	External Electric Field Effects on Absorption and Fluorescence Spectra of a Fullerene Derivative and Its Mixture with Zinc-Tetraphenylporphyrin Doped in a PMMA Film. Journal of Physical Chemistry B, 2006, 110, 20354-20361.	2.6	27
243	Synthesis of Dendritic Branches with Peripheral Fullerene Subunits. European Journal of Organic Chemistry, 2006, 2006, 85-91.	2.4	27
244	Covalently Linked 5,15â€Diazaporphyrin Dimers: Promising Scaffolds for a Highly Conjugated Azaporphyrin π System. Chemistry - A European Journal, 2014, 20, 3342-3349.	3.3	27
245	Exclusive occurrence of photoinduced energy transfer and switching of its direction by rectangular Ï€-extension of nanographenes. Chemical Science, 2019, 10, 6642-6650.	7.4	27
246	Highly cost-efficient sorption and desorption of mercury ions onto regenerable poly(m-phenylenediamine) microspheres with many active groups. Chemical Engineering Journal, 2020, 391, 123515.	12.7	27
247	Synthesis and Photophysical Properties of Porphyrin-Tetracyanoanthraquinodimethane-Porphyrin Triad: Photon-Dependent Molecular Switching. Chemistry Letters, 1998, 27, 721-722.	1.3	26
248	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorusâ€Containing Porphyrin. Angewandte Chemie - International Edition, 2016, 55, 12311-12315.	13.8	26
249	[2 + 4] Photocyclization between quinones and allenes via photoinduced electron transfer. Journal of Organic Chemistry, 1989, 54, 2692-2702.	3.2	25
250	Electron Transfer Properties of Singlet Oxygen and Promoting Effects of Scandium Ion. Journal of Physical Chemistry A, 2002, 106, 1241-1247.	2.5	25
251	Synthesis, Structures, and Coordinating Properties of Phosphole-Containing Hybrid Calixpyrroles. Organometallics, 2008, 27, 3142-3152.	2.3	25
252	Optical control of neuronal firing via photoinduced electron transfer in donor–acceptor conjugates. Chemical Science, 2016, 7, 3331-3337.	7.4	25

#	Article	IF	CITATIONS
253	Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. ACS Energy Letters, 2022, 7, 1926-1938.	17.4	25
254	Formation of a Supramolecular Porphyrin-Spacer-Acceptor Ternary Complex and Intracomplex Electron Transfer. Journal of Physical Chemistry A, 2003, 107, 379-385.	2.5	24
255	Effects of Fullerene Substituents on Structure and Photoelectrochemical Properties of Fullerene Nanoclusters Electrophoretically Deposited on Nanostructured SnO2Electrodes. Journal of Physical Chemistry B, 2005, 109, 5700-5706.	2.6	24
256	Structure and photoelectrochemical properties of nanostructured SnO2 electrodes deposited electrophoretically with the composite clusters of porphyrin-modified gold nanoparticle with a long spacer and fullerene. Tetrahedron, 2006, 62, 1955-1966.	1.9	24
257	Synthesis and Aggregation Behavior of <i>meso</i> â€Sulfinylporphyrins: Evaluation of Sâ€Chirality Effects on the Selfâ€Organization to S–Oxoâ€Tethered Cofacial Porphyrin Dimers. Chemistry - an Asian Journal, 2007, 2, 1417-1429.	3.3	24
258	Meso-Substituent Effects on Redox Properties of the 5,10-Porphodimethene-Type P,S,N2-Hybrid Calixphyrins and Their Metal Complexes. Organometallics, 2009, 28, 6213-6217.	2.3	24
259	Unique cohesive nature of the β ₁ -isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers. Chemical Communications, 2018, 54, 405-408.	4.1	24
260	Significant Enhancement of Electron Transfer Reduction of NAD+Analogues by Complexation with Scandium Ion and the Detection of the Radical Intermediateâ^'Scandium Ion Complex. Journal of the American Chemical Society, 2002, 124, 9181-9188.	13.7	23
261	Supramolecular porphyrin/fullerene interactions studied by spectral methods. Chemical Physics, 2004, 305, 277-284.	1.9	23
262	Mesoscopic Metal Nanoparticles Doubly Functionalized with Natural and Engineered Lipidic Dispersants for Therapeutics. ACS Nano, 2014, 8, 7370-7376.	14.6	23
263	Synthesis and Properties of Conjugated Porphyrins with a Diacetylene Spacer. Bulletin of the Chemical Society of Japan, 1994, 67, 2500-2506.	3.2	22
264	Synthesis of Thiophene-Containing Hybrid Calixphyrins of the 5,10-Porphodimethene Type. Journal of Organic Chemistry, 2008, 73, 5139-5142.	3.2	22
265	Divergent Synthesis of 2,5-Diarylphospholes Based on Cross-coupling Reactions: Substituent Effects on the Optical and Redox Properties of Benzene–Phosphole–Benzene π-Systems. Chemistry Letters, 2011, 40, 919-921.	1.3	22
266	Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy. International Journal of Pharmaceutics, 2014, 471, 214-223.	5.2	22
267	Photovoltaic Properties and Long-Term Durability of Porphyrin-Sensitized Solar Cells with Silicon-Based Anchoring Groups. ACS Omega, 2017, 2, 6958-6967.	3.5	22
268	Supramolecular Complexation of Porphyrin and Quinone with Two Coordination Bonds and Intramolecular Electron Transfer. Journal of Porphyrins and Phthalocyanines, 1997, 01, 55-66.	0.8	21
269	Remarkable Substituent Effects on the Oxidizing Ability of Triarylbismuth Dichlorides in Alcohol Oxidation. Journal of Organic Chemistry, 2004, 69, 8676-8680.	3.2	21
270	Efficient photocurrent generation by SnO2electrode modified electrophoretically with composite clusters of porphyrin-modified silica microparticle and fullerene. Chemical Communications, 2006, , 406-408.	4.1	21

#	Article	IF	CITATIONS
271	N,S,Pâ€Hybrid Donor–π–Acceptor Organic Dyes for Dyeâ€Sensitized Solar Cell: Synthesis, Optical Properties, and Photovoltaic Performances. Heteroatom Chemistry, 2014, 25, 533-547.	0.7	21
272	Optical control of mitochondrial reductive reactions in living cells using an electron donor–acceptor linked molecule. Nanoscale, 2017, 9, 18690-18698.	5.6	21
273	Surface chemistry for cytosolic gene delivery and photothermal transgene expression by gold nanorods. Scientific Reports, 2017, 7, 4694.	3.3	21
274	Formation and Photodynamic Behavior of Transition Metal Dichalcogenide Nanosheet–Fullerene Inorganic/Organic Nanohybrids on Semiconducting Electrodes. Chemistry - A European Journal, 2018, 24, 1561-1572.	3.3	21
275	Strongly Deformed TCNQ Derivatives: Syntheses and Properties of 7,12-Bis(dicyanomethylene)-7,12-dihydrobenz[a]anthracene (BDCNBA) Derivatives. Bulletin of the Chemical Society of Japan, 1989, 62, 1626-1634.	3.2	20
276	Model systems for observing photoredox reactions of carotenoids. Pure and Applied Chemistry, 1997, 69, 2111-2116.	1.9	20
277	Self-Assembly of Zincporphyrin Dimer and Pyromellitimide Using Two Coordination Bonds and Photoinduced Intramolecular Electron Transfer. Chemistry Letters, 1999, 28, 235-236.	1.3	20
278	Structure and photoelectrochemical properties of ITO electrodes modified with self-assembled monolayers of meso, meso-linked porphyrin oligomers. Journal of Porphyrins and Phthalocyanines, 2003, 07, 296-312.	0.8	20
279	Structure and Photoelectrochemical Properties of Phthalocyanine and Perylene Diimide Composite Clusters Deposited Electrophoretically on Nanostructured SnO2 Electrodes. Langmuir, 2006, 22, 5497-5503.	3.5	20
280	Effects of Electrode Structure on Photoelectrochemical Properties of ZnO Electrodes Modified with Porphyrinâ^'Fullerene Composite Layers with an Intervening Fullerene Monolayer. Journal of Physical Chemistry C, 2009, 113, 10819-10828.	3.1	20
281	Synthesis, structures, optical and electrochemical properties, and complexation of 2,5-bis(pyrrol-2-yl)phospholes. Comptes Rendus Chimie, 2010, 13, 1035-1047.	0.5	20
282	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	3.3	20
283	Allylation of Quinones via Photoinduced Electron-Transfer Reactions from Allylstannanes. Bulletin of the Chemical Society of Japan, 1989, 62, 816-825.	3.2	19
284	Ultraviolet resonance Raman spectra and ab initio vibrational analyses of 1,4-benzoquinone: reassignments of the ν2 and ν3 bands. Chemical Physics Letters, 1996, 262, 643-648.	2.6	19
285	Photoinduced energy transfer in mixed self-assembled monolayers of pyrene and porphyrin. Chemical Communications, 2000, , 661-662.	4.1	19
286	Hydrogen bonding effect on photocurrent generation in porphyrin–fullerene photoelectrochemical devices. Chemical Communications, 2004, , 2066-2067.	4.1	19
287	Supramolecular assemblies for electron transfer. Journal of Porphyrins and Phthalocyanines, 2004, 08, 976-983.	0.8	19
288	Synthesis and photovoltaic properties of thiophene–imide-fused thiophene alternating copolymers with different alkyl side chains. Journal of Materials Chemistry, 2011, 21, 12454.	6.7	19

#	Article	IF	CITATIONS
289	Material Exchange Property of Organo Lead Halide Perovskite with Hole-Transporting Materials. Photonics, 2015, 2, 1043-1053.	2.0	19
290	Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells. Materials Today Energy, 2018, 7, 190-198.	4.7	19
291	Porphyrin–quinone supramolecule with two coordination bonds. Journal of the Chemical Society Chemical Communications, 1995, , 1133-1134.	2.0	18
292	Quantitative Evaluation of Lewis Acidity of Organotin Compounds and the Catalytic Reactivity in Electron Transfer. Chemistry Letters, 2001, 30, 978-979.	1.3	18
293	Tunable Soretâ€Band Splitting of an Amphiphilic Porphyrin by Surface Pressure. ChemPhysChem, 2008, 9, 1511-1513.	2.1	18
294	J-aggregation of a sulfonated amphiphilic porphyrin at the air–water interface as a function of pH. Journal of Colloid and Interface Science, 2011, 356, 775-782.	9.4	18
295	Co-grafting of porphyrins and fullerenes on ZnO nanorods: Towards supramolecular donor–acceptor assembly. Journal of Colloid and Interface Science, 2012, 386, 268-276.	9.4	18
296	Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 18689-18696.	8.0	18
297	Cleaner synthesis and systematical characterization of sustainable poly(isosorbide-co-ethylene) Tj ETQq1 1 0.784 483-497.	314 rgBT 9.3	/Overlock 10 18
298	Development of clean performance-tunable waterborne polyurethane using acetyl tributyl citrate for transferable holographic films. Journal of Cleaner Production, 2021, 279, 123496.	9.3	18
299	Long-Range Interfacial Charge Carrier Trapping in Halide Perovskite-C ₆₀ and Halide Perovskite-TiO ₂ Donor–Acceptor Films. Journal of Physical Chemistry Letters, 2021, 12, 8644-8651.	4.6	18
300	Mesityltriphenylbismuthonium tetrafluoroborate as an efficient bismuth(V) oxidant: remarkable steric effects on reaction rates and chemoselectivities in alcohol oxidation. Tetrahedron Letters, 2007, 48, 2885-2888.	1.4	17
301	Porphyrin-appended phosphapalladacycle precatalysts: effects of central metals on the catalytic activity in a high-temperature Heck reaction. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1172-1182.	0.8	17
302	Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices. Nanoscale, 2011, 3, 1845.	5.6	17
303	Synthesis of low bandgap polymers based on thienoquinodimethane units and their applications in bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 24394.	6.7	17
304	Slow Charge Recombination and Enhanced Photoelectrochemical Properties of Diazaporphyrin-Fullerene Linked Dyad. Journal of Physical Chemistry C, 2014, 118, 1808-1820.	3.1	17
305	Size control of lipid-based drug carrier by drug loading. Molecular BioSystems, 2010, 6, 789.	2.9	16
306	Development of a Novel Composite Material with Carbon Nanotubes Assisted by Self-Assembled Peptides Designed in Conjunction with β-Sheet Formation. Journal of Pharmaceutical Sciences, 2012, 101, 3398-3412.	3.3	16

#	Article	IF	CITATIONS
307	Incorporation of Graphene to Fullerene Clusters and Fullerene-Nanotube Composites and Their Photoelectrochemical Properties. ECS Journal of Solid State Science and Technology, 2013, 2, M3001-M3007.	1.8	16
308	Remarkable Dependence of Exciplex Decay Rate on Through-Space Separation Distance between Porphyrin and Chemically Converted Graphene. Journal of Physical Chemistry C, 2016, 120, 28337-28344.	3.1	16
309	Molecular Location Sensing Approach by Anisotropic Magnetism of an Endohedral Metallofullerene. Journal of the American Chemical Society, 2016, 138, 8000-8006.	13.7	16
310	Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and ¹⁹ F Magnetic Resonance Imaging. ChemBioChem, 2017, 18, 951-959.	2.6	16
311	Enhanced Donor–π–Acceptor Character of a Porphyrin Dye Incorporating Naphthobisthiadiazole for Efficient Nearâ€Infrared Light Absorption. European Journal of Organic Chemistry, 2018, 2018, 2537-2547.	2.4	16
312	PhotoleitfŤigkeit in Dünnfilmen Metallâ€organischer Gerüste. Angewandte Chemie, 2019, 131, 9691-9696.	2.0	16
313	Heavy Metal Effects on the Photovoltaic Properties of Metallocorroles in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 12460-12467.	5.1	16
314	Synthesis and Photovoltaic Properties of Conjugated Polymer Based on 1,3,4-Thiadiazole Unit. Chemistry Letters, 2012, 41, 354-356.	1.3	15
315	Synthesis of push–pull porphyrin with two electron-donating and two electron-withdrawing groups and its application to dye-sensitized solar cell. Journal of Porphyrins and Phthalocyanines, 2015, 19, 140-149.	0.8	15
316	A Ruthenium Complex–Porphyrin–Fullereneâ€Linked Molecular Pentad as an Integrative Photosynthetic Model. Angewandte Chemie, 2017, 129, 3377-3381.	2.0	15
317	Photoallylation of Quinones with Allylstannane. Chemistry Letters, 1986, 15, 1719-1722.	1.3	14
318	Fullerenâ€beschleunigte lichtinduzierte Elektronenübertragungen in einer Porphyrinâ€Pyromellitsäreimid ₆₀ â€Triade. Angewandte Chemie, 1997, 109, 2740-2742.	2.0	14
319	A Unique Architecture Based on 1 D Semiconductor, Reduced Graphene Oxide, and Chalcogenide with Multifunctional Properties. Chemistry - A European Journal, 2014, 20, 10456-10465.	3.3	14
320	Sustained photodynamic effect of single chirality-enriched single-walled carbon nanotubes. Carbon, 2020, 161, 718-725.	10.3	14
321	Coherent nuclear dynamics in ultrafast electron transfer in a porphyrin-ferrocene dyad. Chemical Physics Letters, 2006, 429, 91-96.	2.6	13
322	Effects of heterole spacers on the structural, optical, and electrochemical properties of 2,5â€bis(1,5â€diphenylphospholâ€2â€yl)heteroles. Heteroatom Chemistry, 2011, 22, 457-470.	0.7	13
323	Conjugated donor–acceptor (D–A) copolymers in inverted organic solar cells – a combined experimental and modelling study. Journal of Materials Chemistry A, 2013, 1, 7451.	10.3	13
324	Synthesis and Photophysical Properties of Two Diazaporphyrin–Porphyrin Hetero Dimers in Polar and Nonpolar Solutions. Journal of Physical Chemistry B, 2015, 119, 7328-7337.	2.6	13

#	Article	IF	CITATIONS
325	Photochemical Reaction of 2,3-Dichloro-1,4-naphthoquinone with Enol Silyl Ethers. Bulletin of the Chemical Society of Japan, 1986, 59, 1777-1780.	3.2	12
326	Selection of novel forms of a functional domain within theTetrahymena ribozyme. Nucleic Acids Research, 1994, 22, 2003-2009.	14.5	12
327	Fast self-exchange electron transfer and delocalization of unpaired electron between zinc porphyrin radical cations and zinc porphyrins. Journal of Porphyrins and Phthalocyanines, 2003, 07, 328-336.	0.8	12
328	Morphological and Spectroscopic Properties of Thin Films of Self-Assembling Amphiphilic Porphyrins on a Hydrophilic Surface as Revealed by Scanning Near-Field Optical Microscopy. Journal of Physical Chemistry B, 2005, 109, 19839-19844.	2.6	12
329	Localized mode of sound in a waveguide with Helmholtz resonators. Journal of Fluid Mechanics, 2006, 546, 89.	3.4	12
330	Photo-induced electron transfer at nanostructured semiconductor–zinc porphyrin interface. Chemical Physics Letters, 2014, 592, 47-51.	2.6	12
331	Blend films of an amorphous conjugated polymer and a thermal precursor fullerene: effects of annealing temperatures on film structures and photovoltaic properties. RSC Advances, 2016, 6, 83758-83766.	3.6	12
332	Thermal Precursor Approach to Pristine Fullerene Film as Electron Selective Layer in Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, M3078-M3083.	1.8	12
333	Strategy to Attain Remarkably High Photoinduced Charge-Separation Yield of Donor–Acceptor Linked Molecules in Biological Environment via Modulating Their Cationic Moieties. Journal of Physical Chemistry C, 2017, 121, 17457-17465.	3.1	12
334	Phosphole–Thiophene Hybrid: A Dual Role of Dithieno[3,4- <i>b</i> :3′,4′- <i>d</i>]phosphole as Electron Acceptor and Electron Donor. Journal of Organic Chemistry, 2018, 83, 3397-3402.	3.2	12
335	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 18431-18436.	8.0	12
336	Photoreactions of halogeno-1,4-naphthoquinones with electron-rich alkenes. Journal of the Chemical Society Perkin Transactions II, 1990, , 257.	0.9	11
337	Molecule-Based Artificial Photosynthesis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 31-36.	1.6	11
338	Ï€-Complex formation in electron-transfer reactions of porphyrins. Journal of Porphyrins and Phthalocyanines, 2004, 08, 191-200.	0.8	11
339	Remarkable Substituent Effects on the Oxidizing Ability of Tetraarylbismuthonium Tetrafluoroborates in Alcohol Oxidation. Bulletin of the Chemical Society of Japan, 2008, 81, 1621-1628.	3.2	11
340	Porphyrin-modified electrodes for solar energy conversion. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1063-1068.	0.8	11
341	Synthesis and Photovoltaic Properties of Phenylethynyl-substituted Diazaporphyrin. Chemistry Letters, 2013, 42, 725-726.	1.3	11
342	Pluripotent Features of Doubly Thiopheneâ€Fused Benzodiphospholes as Organic Functional Materials. Chemistry - A European Journal, 2019, 25, 6425-6438.	3.3	11

IF

CITATIONS

343	ABC–ABCâ€Type Directly <i>meso</i> – <i>meso</i> Linked Porphyrin Dimers. Chemistry - A European Journal, 2019, 25, 538-547.	3.3	11
344	Direct Observation of Intramolecular Electron Transfer from Excess Electrons in a σ-Conjugated Main Chain to a Porphyrin Side Chain in Polysilanes Having a Tetraphenylporphyrin Side Chain by the Pulse Radiolysis Technique. Organometallics, 2002, 21, 5144-5147.	2.3	10
345	Layer-by-layer assembly of porphyrin-fullerene dyads. Journal of Porphyrins and Phthalocyanines, 2003, 07, 357-364.	0.8	10
346	Symmetry of the electronic and geometric structures of metallofullerene M@C74 (M=Be, Mg, Ca, Sr,) Tj ETQq0	0 0 rgBT /(2.6	Overlock 1 10
347	Thermal Conversion of Precursor Polymer to Low Bandgap Conjugated Polymer Containing Isothianaphthene Dimer Subunits. Journal of Physical Chemistry C, 2012, 116, 1256-1264.	3.1	10
348	A Push–Pull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. Chemistry Letters, 2016, 45, 1126-1128.	1.3	10
349	Enantiomerically Separated α-[70]PCBM for Organic Photovoltaics. Chemistry Letters, 2017, 46, 1001-1003.	1.3	10
350	Thiophene-fused dithiaoctaphyrins: ï€-system switching between cross-conjugated and macrocyclic Ï€-networks. Chemical Communications, 2017, 53, 5091-5094.	4.1	10
351	Regioisomer effects of [70]PCBM on film structures and photovoltaic properties of composite films with a crystalline conjugated polymer P3HT. RSC Advances, 2017, 7, 45697-45704.	3.6	10
352	Exploration on the Combination of Push-Pull Porphyrin Dyes and Copper(I/II) Redox Shuttles toward High-performance Dye-sensitized Solar Cells. Chemistry Letters, 2020, 49, 936-939.	1.3	10
353	Efficient Exciton Diffusion in Micrometer-Sized Domains of Nanographene-Based Nonfullerene Acceptors with Long Exciton Lifetimes in Blend Films with Conjugated Polymer. ACS Applied Materials & Interfaces, 2020, 12, 39236-39244.	8.0	10
354	Electrospray mass spectrometry analysis of dendritic branches bearing peripheral fullerene subunits. Analytical and Bioanalytical Chemistry, 2006, 386, 46-51.	3.7	9
355	Zinc-Induced Fluorescence Enhancement of the 5,10-Porphodimethene-Type Thiophene-Containing Calixphyrins. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1098-1107.	1.6	9
356	A Photoconductive, Thiophene–Fullerene Double-Cable Polymer, Nanorod Device. Journal of Physical Chemistry Letters, 2012, 3, 478-481.	4.6	9
357	<i>cis</i> -1 Isomers of tethered bismethano[70]fullerene as electron acceptors in organic photovoltaics. RSC Advances, 2018, 8, 18316-18326.	3.6	9
358	Local stoichiometry in amorphous supramolecular composites analyzed by solid-state C13 nuclear magnetic resonance. Applied Physics Letters, 2011, 98, 113301.	3.3	8
359	Donor–Acceptor Alternating Copolymer Based on Thermally Converted Isothianaphthene Dimer and Thiazolothiazole Subunits. Journal of Physical Chemistry C, 2012, 116, 17414-17423.	3.1	8
360	Hybrid [5]Radialenes with Bispyrroloheteroles: New Electronâ€Donating Units. Chemistry - A European Journal, 2015, 21, 13375-13381.	3.3	8

ARTICLE

#

#	Article	IF	CITATIONS
361	Unsymmetrically Substituted Donor–π–Acceptorâ€Type 5,15â€Diazaporphyrin Sensitizers: Synthesis, Optical and Photovoltaic Properties. ChemPlusChem, 2017, 82, 695-704.	2.8	8
362	Photophysical Properties of Porphyrin Dimer–Single-Walled Carbon Nanotube Linked Systems. Journal of Physical Chemistry C, 2018, 122, 13285-13293.	3.1	8
363	Calix[5]phyrin for Fluoride Ion Sensing with Visible and Near Infrared Optical Responses. Chemistry - an Asian Journal, 2018, 13, 2019-2022.	3.3	8
364	Reversible π-system switching of thiophene-fused thiahexaphyrins by solvent and oxidation/reduction. Chemical Science, 2018, 9, 7528-7539.	7.4	8
365	Good Solvent Effects of C70Cluster Formations and Their Electron-Transporting and Photoelectrochemical Propertiesâ€. Journal of Physical Chemistry B, 2010, 114, 14287-14297.	2.6	7
366	Porphyrins as Potential Sensitizers for Dye-Sensitized Solar Cells. Key Engineering Materials, 0, 451, 29-40.	0.4	7
367	Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO ₂ . ACS Omega, 2017, 2, 128-135.	3.5	7
368	Occurrence of photoinduced charge separation by the modulation of the electronic coupling between pyrene dimers and chemically converted graphenes. Chemical Communications, 2017, 53, 1025-1028.	4.1	7
369	Effects of <i>meso</i> -diarylamino group of porphyrins on optical and electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 67-74.	0.8	7
370	Noncovalent Functionalization of Few‣ayered Antimonene with Fullerene Clusters and Photoinduced Charge Separation in the Composite. Chemistry - A European Journal, 2020, 26, 6726-6735.	3.3	7
371	Synthesis of thiophene-fused porphyrin dimers as effective π-extended helical chromophores. Chemical Communications, 2021, 57, 9606-9609.	4.1	7
372	Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397.	1.3	6
373	Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorusâ€Containing Porphyrin. Angewandte Chemie, 2016, 128, 12499-12503.	2.0	6
374	Long-Range Observation of Exciplex Formation and Decay Mediated by One-Dimensional Bridges. Journal of Physical Chemistry C, 2017, 121, 13952-13961.	3.1	6
375	Glassy Porphyrin/C ₆₀ Composites: Morphological Engineering of C ₆₀ Fullerene with Liquefied Porphyrins. Langmuir, 2020, 36, 13583-13590.	3.5	6
376	Porphyrin-Quinone Compounds with a Spacer of Diacetylene Unit. Chemistry Letters, 1993, 22, 1215-1218.	1.3	5
377	Dehydrogenation vs Oxygenation in Photosensitized Oxidation of 9-Substituted 10-Methyl-9,10-dihydroacridine in the Presence of Scandium Ion. Journal of Physical Chemistry A, 2002, 106, 1465-1472.	2.5	5
378	Mechanism of Cell Interactions with Water-Dispersed Carbon Nanohorns. Nanoscience and Nanotechnology Letters, 2013, 5, 402-407.	0.4	5

#	Article	IF	CITATIONS
379	Synthesis of Thienothiadiazole–Benzothiadiazole Alternating Copolymers and Their Application to Bulk Heterojunction Solar Cells. Chemistry Letters, 2014, 43, 1876-1878.	1.3	5
380	Photoinduced electron transfer reaction in mitochondria for spatiotemporal selective photo-oxidation of lipids by donor/acceptor linked molecules. Nanoscale, 2017, 9, 17909-17913.	5.6	5
381	Thiazolocatechol: Electronâ€Withdrawing Catechol Anchoring Group for Dye‧ensitized Solar Cells. ChemPhysChem, 2019, 20, 2689-2695.	2.1	5
382	Prolongation of the singlet exciton lifetime of nonfullerene acceptor films by the replacement of the central benzene core with naphthalene. Sustainable Energy and Fuels, 2021, 5, 2028-2035.	4.9	5
383	Effect of Terminal-Group Halogenation of Naphthalene-Based Nonfullerene Acceptors on Their Film Structure and Photophysical and Photovoltaic Properties. ACS Applied Energy Materials, 2021, 4, 14022-14033.	5.1	5
384	Facile synthesis of an ambient stable pyreno[4,5-b]pyrrole monoanion and pyreno[4,5-b:9,10-b′]dipyrrole dianion: from serendipity to design. Chemical Science, 2022, 13, 1594-1599.	7.4	5
385	Identification of the Nucleotides in the A-Rich Bulge of the Tetrahymena Ribozyme Responsible for an Efficient Self-Splicing Reaction. Journal of Biochemistry, 1997, 122, 878-882.	1.7	4
386	Nanostructured materials for efficient solar energy conversion. , 2010, , .		4
387	Unique Role of Heteroleâ€Fused Structures in Aromaticity and Physicochemical Properties of 7,8â€Đehydropurpurins. Chemistry - A European Journal, 2020, 26, 12043-12049.	3.3	4
388	Photodynamic and Photoelectrochemical Properties of Few-Layered Bismuthene Film on SnO ₂ Electrode and Its Hybridization with C ₆₀ . Journal of Physical Chemistry C, 2021, 125, 13954-13962.	3.1	4
389	Synthesis of Chain Type and Fused ^ ^pi;-Conjugated Phosphole Derivatives. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 629-639.	0.1	4
390	Novel Photocyclization between Quinone and 1,1-Diphenylcyclopropane. Chemistry Letters, 1989, 18, 2117-2118.	1.3	3
391	Structure and photoelectrochemical properties of porphyrin-linked fullerenes on a gold surface using a self-assembled monolayer technique. , 1997, , .		3
392	Synthesis of Copolymers Containing C60, Cyclododecyl, and Sulfonate Groups: Photophysical Behavior of C60in Highly Constrained Microenvironments. Chemistry Letters, 1998, 27, 381-382.	1.3	3
393	Photophysical and Photochemical Behavior of Triplet Excited State of C60in Unimer Micelle. Chemistry Letters, 2000, 29, 426-427.	1.3	2
394	Density Functional Theory Studies on Chemical Functionalization of Single-Walled Carbon Nanotubes by Bingel Reaction. Bulletin of the Chemical Society of Japan, 2011, 84, 748-753.	3.2	2
395	Carbon Nanomaterials: Unique Tube–Ring Interactions: Complexation of Singleâ€Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes (Small 26/2018). Small, 2018, 14, 1870120.	10.0	2
396	Spontaneous Complexation of Fullerene Aggregates on Nanodiamond Aggregates and Their Enhanced Photocurrent Generation. Chemistry - an Asian Journal, 2019, 14, 4042-4047.	3.3	2

#	Article	IF	CITATIONS
397	Synthesis of Phosphole-bridged Porphyrin Dimers. Chemistry Letters, 2019, 48, 257-259.	1.3	2
398	Near-infrared light control of membrane potential by an electron donor–acceptor linked molecule. Chemical Communications, 2020, 56, 12562-12565.	4.1	2
399	Modulation of Frontier Molecular Orbitals on Dithieno[3,4- <i>b</i> :3′,4′- <i>d</i>]phosphole Derivatives by Donor-Ï€-Acceptor Interaction. Chemistry Letters, 2020, 49, 272-275.	1.3	2
400	Thiopheneâ€Fused Naphthodiphospholes: Modulation of the Structural and Electronic Properties of Polycyclic Aromatics by Precise Fusion of Heteroles. ChemPlusChem, 2021, 86, 130-136.	2.8	2
401	Truxenone Triimide: Twoâ€Dimensional Molecular Arrangements of Triangular Molecules for Air Stable nâ€Type Semiconductors. Advanced Electronic Materials, 0, , 2101390.	5.1	2
402	A Novel [2+4] Photocyclization Reaction between Quinone and Allene. Chemistry Letters, 1988, 17, 725-726.	1.3	1
403	Jahn–Teller Effect in Circulenes. Advances in Quantum Chemistry, 2003, 44, 239-255.	0.8	1
404	Across the Board: Hiroshi Imahori. ChemSusChem, 2015, 8, 426-427.	6.8	1
405	Synthesis of Partially <i>meso</i> -Free 2,3-Di(arylethynyl)porphyrins. Chemistry Letters, 2017, 46, 976-978.	1.3	1
406	Development of Efficient Sensitizers Based on Porphyrin Dimers and Fused Porphyrins for Dye-Sensitized Solar Cells. ECS Meeting Abstracts, 2021, MA2021-01, 769-769.	0.0	1
407	Application of Multiporphyrin Arrays to Solar Energy Conversion. , 2012, , 439-498.		1
408	Elucidation of the Mechanisms for the Underlying Depolarization and Reversibility by Photoactive Molecule Cellular Physiology and Biochemistry, 2020, 54, 899-916.	1.6	1
409	Donor-ï€-Acceptor Type Porphyrin-Fullerene Dyad with Acetylene Bridge for p-Type Dye-sensitized Solar Cell. Chemistry Letters, 2022, 51, 260-263.	1.3	1
410	Photoinduced Electron Transfer in a Carotenobuckminsterfullerene Dyad. Photochemistry and Photobiology, 1996, 63, 353-353.	2.5	0
411	Synthesis and Photoinduced Electron Transfer of Pyromellitimide-Linked Porphyrin in Constrained Hydrophobic Environment of Unimer Micelle. Chemistry Letters, 1999, 28, 191-192.	1.3	0
412	Porphyrin—Fullerene Linked Systems as Artificial Photosynthetic Mimics. ChemInform, 2004, 35, no.	0.0	0
413	A New, Efficient Method for Direct α-Alkenylation of β-Dicarbonyl Compounds and Phenols Using Alkenyltriarylbismuthonium Salts ChemInform, 2004, 35, no.	0.0	0
414	Remarkable Substituent Effects on the Oxidizing Ability of Triarylbismuth Dichlorides in Alcohol Oxidation ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
415	Supramolecular Photoelectrochemical Devices Composed of Fullerenes and Porphyrins. ECS Meeting Abstracts, 2005, , .	0.0	0
416	Porphyrin and Fullerene Nanoarchitecture for Photoelectrochemical Devices. ECS Meeting Abstracts, 2007, , .	0.0	0
417	Self-Assembly of Amphiphilic Porphyrins - Invited. ECS Meeting Abstracts, 2009, , .	0.0	0
418	Inside Cover: Bisquinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells (ChemSusChem 6/2011). ChemSusChem, 2011, 4, 670-670.	6.8	0
419	Fullerenes for Photoelectrochemical and Photovoltaic Devices. World Scientific Series on Carbon Nanoscience, 2011, , 593-635.	0.1	0
420	Photoinduced Energy Transfer in Artificial Photosynthetic Systems. , 2013, , 729-765.		0
421	(Invited) Self-Assembled Monolayers of Porphyrin Derivatives on Semiconductor Surfaces: Photoindued Reactions at the Interface. ECS Meeting Abstracts, 2013, , .	0.0	0
422	Emerging investigators. Journal of Materials Chemistry A, 2014, 2, 5952.	10.3	0
423	Preface — Special Issue in Honor of Professor Shunichi Fukuzumi. Journal of Porphyrins and Phthalocyanines, 2015, 19, i-xvi.	0.8	0
424	ABC-ABC-Type Directly meso -meso Linked Porphyrin Dimers. Chemistry - A European Journal, 2019, 25, 389-389.	3.3	0
425	Modulation of Aromaticity and Properties of Porphyrins By Peripheral Heterole-Fused Structures. ECS Meeting Abstracts, 2021, MA2021-01, 741-741.	0.0	0
426	Control of Physicochemical Properties for Thiophene-Fused Naphthodiphospholes By Precise Fusion of Heterole Rings. ECS Meeting Abstracts, 2021, MA2021-01, 735-735.	0.0	0
427	Rational Molecular Design of Nonfullerene Acceptors for Bulk Heterojunction Solar Cells. ECS Meeting Abstracts, 2021, MA2021-01, 721-721.	0.0	0
428	ãf•ãf©ãf¼ãf¬ãf³èª*導体修飾電極ä,Šã®å‰é›»å移動. Electrochemistry, 2002, 70, 274-278.	1.4	0
429	Porphyrin and Fullerene-Based Artificial Photosynthesis. Oleoscience, 2004, 4, 19-24,4.	0.0	0
430	Chapter 9. Fullerene Modified Electrodes and Solar Cells. RSC Nanoscience and Nanotechnology, 2007, , 266-300.	0.2	0
431	Artificial Photosynthesis. Trends in the Sciences, 2011, 16, 26-29.	0.0	0
432	Effects of Regioisomers in Fullerene Derivatives on Photovoltaic Properties of Bulk Heterojunction Solar Cells. ECS Meeting Abstracts, 2017, , .	0.0	0

#	Article	IF	CITATIONS
433	Visible Light-Driven Water Oxidation with Porphyrin Sensitizers and Water Oxidation Catalysts. ECS Meeting Abstracts, 2017, , .	0.0	0
434	Geometries and Dynamics of Photoinduced Electron-Hole Pairs in Polyhexylthiophene-Fullerene Systems. ECS Meeting Abstracts, 2017, , .	0.0	0
435	(Invited) Electron Donor-Nanocarbon Electron Acceptor Composites Linked with Oligophenylene Bridge. ECS Meeting Abstracts, 2017, , .	0.0	0
436	(Invited) Exciplex Formation and Decay in Porphyrin-Carbon Nanotube Ensembles. ECS Meeting Abstracts, 2018, , .	0.0	0
437	(Invited) Isomer Effects of Nanocarbons in Organic Solar Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
438	Thiophene-Fused Expanded Porphyrins with Ï \in -System Switching. ECS Meeting Abstracts, 2019, , .	0.0	0
439	(Invited) Photoinduced Donor-Acceptor Interaction in Nanocarbon-Based Systems. ECS Meeting Abstracts, 2020, MA2020-01, 802-802.	0.0	0
440	Preparation and Physicochemical Properties of Inorganic Two-dimensional Nanomaterial/Fullerene Composites. ECS Meeting Abstracts, 2021, MA2021-02, 515-515.	0.0	0
441	(Invited)ÂVisible Light-Driven Water Oxidation with Porphyrin Sensitizers and Water Oxidation Catalysts. ECS Meeting Abstracts, 2018, MA2018-01, 1852-1852.	0.0	0
442	Photoinduced Energy and Electron Transfer in Nanocarbon-Based Donor-Acceptor Systems. ECS Meeting Abstracts, 2020, MA2020-02, 1085-1085.	0.0	0
443	Rational Design of Dyes and Donor-Acceptor Type Molecules for Organic Solar Cells. ECS Meeting	0.0	0