
## **Gabriel Kreiman**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859124/publications.pdf Version: 2024-02-01



CARDIEL KDEIMAN

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Neurons detect cognitive boundaries to structure episodic memories in humans. Nature<br>Neuroscience, 2022, 25, 358-368.                                                        | 14.8 | 51        |
| 2  | Beyond the Cane: Describing Urban Scenes to Blind People for Mobility Tasks. ACM Transactions on Accessible Computing, 2022, 15, 1-29.                                          | 2.4  | 3         |
| 3  | Face neurons encode nonsemantic features. Proceedings of the National Academy of Sciences of the<br>United States of America, 2022, 119, e2118705119.                           | 7.1  | 4         |
| 4  | Do computational models of vision need shape-based representations? Evidence from an individual with intriguing visual perceptions. Cognitive Neuropsychology, 2022, 39, 75-77. | 1.1  | 1         |
| 5  | From the Highest Echelons of Visual Processing to Cognition. , 2021, , 112-132.                                                                                                 |      | 0         |
| 6  | Beauty is in the eye of the machine. Nature Human Behaviour, 2021, 5, 675-676.                                                                                                  | 12.0 | 1         |
| 7  | Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell<br>Reports, 2021, 36, 109585.                                                      | 6.4  | 7         |
| 8  | When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes. , 2021, , .                                                                                                |      | 3         |
| 9  | Localized task-invariant emotional valence encoding revealed by intracranial recordings. Social Cognitive and Affective Neuroscience, 2021, , .                                 | 3.0  | 1         |
| 10 | Putting Visual Object Recognition in Context. , 2020, 2020, 12982-12991.                                                                                                        |      | 21        |
| 11 | Can Deep Learning Recognize Subtle Human Activities?. , 2020, , .                                                                                                               |      | 6         |
| 12 | Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances, 2020, 6, .                     | 10.3 | 12        |
| 13 | Minimal videos: Trade-off between spatial and temporal information in human and machine vision.<br>Cognition, 2020, 201, 104263.                                                | 2.2  | 0         |
| 14 | XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLoS Computational Biology, 2020, 16, e1007973.                  | 3.2  | 10        |
| 15 | Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York<br>Academy of Sciences, 2020, 1464, 222-241.                                   | 3.8  | 44        |
| 16 | A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Intelligence, 2020, 2, 210-219.                            | 16.0 | 62        |
| 17 | Can Deep Learning Recognize Subtle Human Activities?. IEEE Computer Society Conference on Computer<br>Vision and Pattern Recognition Workshops, 2020, 2020, .                   | 0.0  | 0         |
|    |                                                                                                                                                                                 |      |           |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Title is missing!. , 2020, 16, e1007973.                                                                                                                                  |      | 0         |
| 20 | Title is missing!. , 2020, 16, e1007973.                                                                                                                                  |      | 0         |
| 21 | Title is missing!. , 2020, 16, e1007973.                                                                                                                                  |      | 0         |
| 22 | Title is missing!. , 2020, 16, e1007973.                                                                                                                                  |      | 0         |
| 23 | Title is missing!. , 2020, 16, e1007973.                                                                                                                                  |      | 0         |
| 24 | Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex, 2019, 29, 4551-4567.                                                          | 2.9  | 3         |
| 25 | What do neurons really want? The role of semantics in cortical representations. Psychology of Learning and Motivation - Advances in Research and Theory, 2019, , 195-221. | 1.1  | 0         |
| 26 | Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell, 2019, 177, 999-1009.e10.                     | 28.9 | 153       |
| 27 | It's a small dimensional world after all. Physics of Life Reviews, 2019, 29, 96-97.                                                                                       | 2.8  | 1         |
| 28 | Computational strategies used during hybrid visual search. Journal of Vision, 2019, 19, 132.                                                                              | 0.3  | 0         |
| 29 | Adaptation in models of visual object recognition. Journal of Vision, 2019, 19, 210a.                                                                                     | 0.3  | 0         |
| 30 | Zero-shot neural decoding from rhesus macaque inferior temporal cortex using deep convolutional neural networks. Journal of Vision, 2019, 19, 209a.                       | 0.3  | 1         |
| 31 | What is changing when: Decoding visual information in movies from human intracranial recordings.<br>NeuroImage, 2018, 180, 147-159.                                       | 4.2  | 16        |
| 32 | Minimal memory for details in real life events. Scientific Reports, 2018, 8, 16701.                                                                                       | 3.3  | 22        |
| 33 | Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications, 2018, 9, 3730.                                                             | 12.8 | 25        |
| 34 | Learning scene gist with convolutional neural networks to improve object recognition. , 2018, , .                                                                         |      | 8         |
| 35 | Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8835-8840.              | 7.1  | 139       |
| 36 | Two targets, held in memory, can guide search; four targets cannot Journal of Vision, 2018, 18, 288.                                                                      | 0.3  | 0         |

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Rapid learning of meaningful image interpretation. Journal of Vision, 2018, 18, 1362.                                                                                 | 0.3  | Ο         |
| 38 | Recognition of Occluded Objects. Cognitive Science and Technology, 2017, , 41-58.                                                                                     | 0.4  | 11        |
| 39 | A null model for cortical representations with grandmothers galore. Language, Cognition and Neuroscience, 2017, 32, 274-285.                                          | 1.2  | 4         |
| 40 | Neuronal correlates of rapid learning in the human medial temporal lobe. Journal of Vision, 2017, 17, 483.                                                            | 0.3  | 0         |
| 41 | Task dependent modulation before, during and after visually evoked responses in human intracranial recordings. Journal of Vision, 2017, 17, 983.                      | 0.3  | Ο         |
| 42 | A machine learning approach to predict episodic memory formation. , 2016, , .                                                                                         |      | 0         |
| 43 | Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron, 2016, 91, 540-547.                                                                  | 8.1  | 26        |
| 44 | Predicting episodic memory formation for movie events. Scientific Reports, 2016, 6, 30175.                                                                            | 3.3  | 10        |
| 45 | f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome. Nucleic Acids Research, 2016, 44, e97-e97. | 14.5 | 7         |
| 46 | There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an<br>Object Search Task. Cerebral Cortex, 2016, 26, 3064-3082.        | 2.9  | 13        |
| 47 | Cascade of neural processing orchestrates cognitive control in human frontal cortex. ELife, 2016, 5, .                                                                | 6.0  | 33        |
| 48 | Probing human intracranial visual responses with commercial movies. Journal of Vision, 2016, 16, 502.                                                                 | 0.3  | 0         |
| 49 | Sensitivity to timing and order in human visual cortex. Journal of Neurophysiology, 2015, 113, 1656-1669.                                                             | 1.8  | 4         |
| 50 | Corticocortical feedback increases the spatial extent of normalization. Frontiers in Systems<br>Neuroscience, 2014, 8, 105.                                           | 2.5  | 42        |
| 51 | Neural Dynamics Underlying Target Detection in the Human Brain. Journal of Neuroscience, 2014, 34, 3042-3055.                                                         | 3.6  | 19        |
| 52 | Short temporal asynchrony disrupts visual object recognition. Journal of Vision, 2014, 14, 7-7.                                                                       | 0.3  | 7         |
| 53 | Quantitative profiling of peptides from RNAs classified as noncoding. Nature Communications, 2014, 5, 5429.                                                           | 12.8 | 55        |
| 54 | Spatiotemporal Dynamics Underlying Object Completion in Human Ventral Visual Cortex. Neuron, 2014,<br>83, 736-748.                                                    | 8.1  | 75        |

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Decrease in gamma-band activity tracks sequence learning. Frontiers in Systems Neuroscience, 2014, 8,<br>222.                                                                           | 2.5  | 7         |
| 56 | Mind the quantum?. Trends in Cognitive Sciences, 2013, 17, 109-110.                                                                                                                     | 7.8  | 6         |
| 57 | Depression-Biased Reverse Plasticity Rule Is Required for Stable Learning at Top-Down Connections.<br>PLoS Computational Biology, 2012, 8, e1002393.                                    | 3.2  | 12        |
| 58 | Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition. PLoS Computational Biology, 2012, 8, e1002747.                                                  | 3.2  | 6         |
| 59 | Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. Journal of Neurophysiology, 2012, 108, 3073-3086. | 1.8  | 11        |
| 60 | Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites. Nucleic Acids Research, 2012, 40, 7858-7869.                          | 14.5 | 36        |
| 61 | On the Minimization of Fluctuations in the Response Times ofÂAutoregulatory Gene Networks.<br>Biophysical Journal, 2011, 101, 1297-1306.                                                | 0.5  | 19        |
| 62 | Internally Generated Preactivation of Single Neurons in Human Medial Frontal Cortex Predicts Volition. Neuron, 2011, 69, 548-562.                                                       | 8.1  | 383       |
| 63 | Nine Criteria for a Measure of Scientific Output. Frontiers in Computational Neuroscience, 2011, 5, 48.                                                                                 | 2.1  | 61        |
| 64 | Neuroscience: What We Cannot Model, We Do Not Understand. Current Biology, 2011, 21, R123-R125.                                                                                         | 3.9  | 1         |
| 65 | Face Recognition: Vision and Emotions beyond the Bubble. Current Biology, 2011, 21, R888-R890.                                                                                          | 3.9  | 4         |
| 66 | Decoding ensemble activity from neurophysiological recordings in the temporal cortex. , 2011, 2011, 5904-7.                                                                             |      | 0         |
| 67 | Conservation of transcription factor binding events predicts gene expression across species. Nucleic Acids Research, 2011, 39, 7092-7102.                                               | 14.5 | 25        |
| 68 | Visual integration in the human brain. Journal of Vision, 2011, 11, 887-887.                                                                                                            | 0.3  | 0         |
| 69 | Postscript: About grandmother cells and Jennifer Aniston neurons Psychological Review, 2010, 117, 297-299.                                                                              | 3.8  | 7         |
| 70 | Measuring sparseness in the brain: Comment on Bowers (2009) Psychological Review, 2010, 117, 291-297.                                                                                   | 3.8  | 54        |
| 71 | Robust Selectivity to Two-Object Images in Human Visual Cortex. Current Biology, 2010, 20, 872-879.                                                                                     | 3.9  | 37        |
| 72 | Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010, 465, 182-187.                                                                                          | 27.8 | 2,120     |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | How cortical neurons help us see: visual recognition in the human brain. Journal of Clinical<br>Investigation, 2010, 120, 3054-3063.                                                                                                             | 8.2  | 17        |
| 74 | Differential Gene Expression in the Developing Lateral Geniculate Nucleus and Medial Geniculate<br>Nucleus Reveals Novel Roles for Zic4 and Foxp2 in Visual and Auditory Pathway Development. Journal<br>of Neuroscience, 2009, 29, 13672-13683. | 3.6  | 48        |
| 75 | From Neurons to Circuits: Linear Estimation of Local Field Potentials. Journal of Neuroscience, 2009, 29, 13785-13796.                                                                                                                           | 3.6  | 62        |
| 76 | Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in<br>Human Visual Cortex. Neuron, 2009, 62, 281-290.                                                                                             | 8.1  | 353       |
| 77 | Toward Unmasking the Dynamics of Visual Perception. Neuron, 2009, 64, 446-447.                                                                                                                                                                   | 8.1  | 1         |
| 78 | Sparse but not â€~Grandmother-cell' coding in the medial temporal lobe. Trends in Cognitive Sciences, 2008, 12, 87-91.                                                                                                                           | 7.8  | 230       |
| 79 | Differential Gene Expression between Sensory Neocortical Areas: Potential Roles for Ten_m3 and Bcl6 in Patterning Visual and Somatosensory Pathways. Cerebral Cortex, 2008, 18, 53-66.                                                           | 2.9  | 62        |
| 80 | Dynamic Population Coding of Category Information in Inferior Temporal and Prefrontal Cortex.<br>Journal of Neurophysiology, 2008, 100, 1407-1419.                                                                                               | 1.8  | 343       |
| 81 | Biological object recognition. Scholarpedia Journal, 2008, 3, 2667.                                                                                                                                                                              | 0.3  | 12        |
| 82 | A quantitative theory of immediate visual recognition. Progress in Brain Research, 2007, 165, 33-56.                                                                                                                                             | 1.4  | 168       |
| 83 | Single unit approaches to human vision and memory. Current Opinion in Neurobiology, 2007, 17, 471-475.                                                                                                                                           | 4.2  | 25        |
| 84 | Brain Science: From the Very Small to the Very Large. Current Biology, 2007, 17, R768-R770.                                                                                                                                                      | 3.9  | 1         |
| 85 | Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nature Neuroscience, 2006, 9, 660-668.                                                                                                  | 14.8 | 199       |
| 86 | Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex.<br>Neuron, 2006, 49, 433-445.                                                                                                                   | 8.1  | 274       |
| 87 | Invariant visual representation by single neurons in the human brain. Nature, 2005, 435, 1102-1107.                                                                                                                                              | 27.8 | 1,580     |
| 88 | Fast Readout of Object Identity from Macaque Inferior Temporal Cortex. Science, 2005, 310, 863-866.                                                                                                                                              | 12.6 | 720       |
| 89 | Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Research, 2004, 32, 2889-2900.                                                                                           | 14.5 | 45        |
| 90 | Neural coding: computational and biophysical perspectives. Physics of Life Reviews, 2004, 1, 71-102.                                                                                                                                             | 2.8  | 30        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Variation in alternative splicing across human tissues. Genome Biology, 2004, 5, R74.                                                                                                                                       | 9.6  | 486       |
| 92  | A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6062-6067.                                                 | 7.1  | 3,290     |
| 93  | Consciousness and Neurosurgery. Neurosurgery, 2004, 55, 273-282.                                                                                                                                                            | 1.1  | 50        |
| 94  | Single-neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8378-8383.                                      | 7.1  | 178       |
| 95  | Stimulus Encoding and Feature Extraction by Multiple Sensory Neurons. Journal of Neuroscience, 2002, 22, 2374-2382.                                                                                                         | 3.6  | 50        |
| 96  | Neural correlates of consciousness in humans. Nature Reviews Neuroscience, 2002, 3, 261-270.                                                                                                                                | 10.2 | 665       |
| 97  | Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid<br>subnuclei. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98,<br>5270-5275.    | 7.1  | 155       |
| 98  | Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neuroscience, 2000, 3, 946-953.                                                                                              | 14.8 | 450       |
| 99  | Imagery neurons in the human brain. Nature, 2000, 408, 357-361.                                                                                                                                                             | 27.8 | 315       |
| 100 | Robustness and Variability of Neuronal Coding by Amplitude-Sensitive Afferents in the Weakly Electric<br>FishEigenmannia. Journal of Neurophysiology, 2000, 84, 189-204.                                                    | 1.8  | 68        |
| 101 | Tetanic Stimulation Leads to Increased Accumulation of Ca <sup>2+</sup> /Calmodulin-Dependent<br>Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons. Journal of Neuroscience,<br>1999, 19, 7823-7833. | 3.6  | 271       |