List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amygdalar CB2 cannabinoid receptor mediates fear extinction deficits promoted by orexin-A/hypocretin-1. Biomedicine and Pharmacotherapy, 2022, 149, 112925.	5.6	11
2	New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. International Journal of Molecular Sciences, 2021, 22, 13316.	4.1	6
3	THC exposure during adolescence does not modify nicotine reinforcing effects and relapse in adult male mice. Psychopharmacology, 2020, 237, 801-809.	3.1	9
4	The Hypocretin/Orexin System and Fear Learning. , 2019, , 155-170.		0
5	Anti-inflammatory agents for smoking cessation? Focus on cognitive deficits associated with nicotine withdrawal in male mice. Brain, Behavior, and Immunity, 2019, 75, 228-239.	4.1	28
6	Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology, 2019, 144, 345-357.	4.1	30
7	When orexins meet cannabinoids: Bidirectional functional interactions. Biochemical Pharmacology, 2018, 157, 43-50.	4.4	20
8	Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations. International Journal of Neuropsychopharmacology, 2017, 20, 654-659.	2.1	34
9	CB 1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal. Biological Psychiatry, 2017, 81, 625-634.	1.3	24
10	Facilitation of contextual fear extinction by orexin-1 receptor antagonism is associated with the activation of specific amygdala cell subpopulations. European Neuropsychopharmacology, 2017, 27, S1016.	0.7	0
11	Hypocretins/Orexins and Addiction: Role in Cannabis Dependence. , 2017, , 533-542.		0
12	Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ ⁹ â€ŧetrahydrocannabinol. British Journal of Pharmacology, 2016, 173, 1381-1392.	5.4	18
13	Orexins and fear: implications for the treatment of anxiety disorders. Trends in Neurosciences, 2015, 38, 550-559.	8.6	83
14	The Hypocretin/Orexin Receptor-1 as a Novel Target to Modulate Cannabinoid Reward. Biological Psychiatry, 2014, 75, 499-507.	1.3	38
15	The Hypocretin/Orexin System Mediates the Extinction of Fear Memories. Neuropsychopharmacology, 2014, 39, 2732-2741.	5.4	112
16	Endocannabinoid system and drug addiction: new insights from mutant mice approaches. Current Opinion in Neurobiology, 2013, 23, 480-486.	4.2	15
17	A Role for Hypocretin/Orexin Receptor-1 in Cue-Induced Reinstatement of Nicotine-Seeking Behavior. Neuropsychopharmacology, 2013, 38, 1724-1736.	5.4	62
18	An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure. Neuroscience Letters, 2013, 557, 101-106.	2.1	8

#	Article	IF	CITATIONS
19	G.1 - THE HYPOCRETIN/OREXIN RECEPTOR-1 AS A NOVEL TARGET TO MODULATE CANNABINOID REWARD. Behavioural Pharmacology, 2013, 24, e56.	1.7	0
20	Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Frontiers in Neuroscience, 2013, 7, 256.	2.8	55
21	Hypocretin/Orexin Signaling in the Hypothalamic Paraventricular Nucleus is Essential for the Expression of Nicotine Withdrawal. Biological Psychiatry, 2012, 71, 214-223.	1.3	77
22	Influence of δ-Opioid Receptors in the Behavioral Effects of Nicotine. Neuropsychopharmacology, 2012, 37, 2332-2344.	5.4	38
23	The Hypocretin/Orexin System: Implications for Drug Reward and Relapse. Molecular Neurobiology, 2012, 45, 424-439.	4.0	47
24	Neurochemical basis of cannabis addiction. Neuroscience, 2011, 181, 1-17.	2.3	93
25	Neurobiological mechanisms involved in nicotine dependence and reward: Participation of the endogenous opioid system. Neuroscience and Biobehavioral Reviews, 2010, 35, 220-231.	6.1	118
26	Effects of the endogenous PPARâ€Î± agonist, oleoylethanolamide on MDMAâ€induced cognitive deficits in mice. Synapse, 2010, 64, 379-389.	1.2	42
27	Central and peripheral consequences of the chronic blockade of CB ₁ cannabinoid receptor with rimonabant or taranabant. Journal of Neurochemistry, 2010, 112, 1338-13351.	3.9	24
28	Hypocretins Regulate the Anxiogenic-Like Effects of Nicotine and Induce Reinstatement of Nicotine-Seeking Behavior. Journal of Neuroscience, 2010, 30, 2300-2310.	3.6	153
29	The endogenous opioid system: A common substrate in drug addiction. Drug and Alcohol Dependence, 2010, 108, 183-194.	3.2	198
30	Endogenous Cannabinoid and Opioid Systems and their Role in Nicotine Addiction. Current Drug Targets, 2010, 11, 440-449.	2.1	19
31	Differential changes in mesolimbic dopamine following contingent and non-contingent MDMA self-administration in mice. Psychopharmacology, 2009, 205, 457-466.	3.1	19
32	Prodynorphin gene disruption increases the sensitivity to nicotine self-administration in mice. International Journal of Neuropsychopharmacology, 2009, 12, 615.	2.1	45
33	MDMA modifies active avoidance learning and recall in mice. Psychopharmacology, 2008, 197, 391-400.	3.1	22
34	Involvement of kappa/dynorphin system in the development of tolerance to nicotine-induced antinociception. Journal of Neurochemistry, 2008, 105, 1358-1368.	3.9	19
35	Advances in the field of cannabinoid–opioid crossâ€ŧalk. Addiction Biology, 2008, 13, 213-224.	2.6	96
36	Influence of the anabolic-androgenic steroid nandrolone on cannabinoid dependence. Neuropharmacology, 2006, 50, 788-806.	4.1	39

#	Article	IF	CITATIONS
37	Involvement of the endocannabinoid system in drug addiction. Trends in Neurosciences, 2006, 29, 225-232.	8.6	530
38	Mu-opioid receptors are involved in the tolerance to nicotine antinociception. Journal of Neurochemistry, 2006, 97, 416-423.	3.9	55
39	Mu-opioid receptors are involved in the tolerance to nicotine antinociception. Journal of Neurochemistry, 2006, 98, 1343-1343.	3.9	1
40	B60 INVOLVEMENT OF OPIOID RECEPTORS IN THE TOLERANCE TO NICOTINE ANTINOCICEPTIVE EFFECTS. Behavioural Pharmacology, 2005, 16, S84-S85.	1.7	0
41	κ- and δ-opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1receptor knockout mice. European Journal of Neuroscience, 2005, 22, 2106-2110.	2.6	23
42	The role of the cannabinoid system in nicotine addiction. Pharmacology Biochemistry and Behavior, 2005, 81, 381-386.	2.9	63
43	Nicotine-Induced Antinociception, Rewarding Effects, and Physical Dependence Are Decreased in Mice Lacking the Preproenkephalin Gene. Journal of Neuroscience, 2005, 25, 1103-1112.	3.6	133
44	Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. European Journal of Neuroscience, 2004, 20, 2203-2213.	2.6	74
45	Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. European Journal of Neuroscience, 2004, 20, 2737-2748.	2.6	106
46	Study of the behavioural responses related to the potential addictive properties of MDMA in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 338-349.	3.0	45
47	Increase of morphine withdrawal in mice lacking A _{2a} receptors and no changes in CB ₁ /A _{2a} double knockout mice. European Journal of Neuroscience, 2003, 17, 315-324.	2.6	52
48	Cannabinoid receptor and WIN 55 212-2-stimulated [35S]-GTPgammaS binding in the brain of mu-, delta- and kappa-opioid receptor knockout mice. European Journal of Neuroscience, 2003, 18, 2197-2202.	2.6	41
49	Neuropathic Pain: Some Clues for Future Drug Treatments. Mini-Reviews in Medicinal Chemistry, 2003, 3, 719-727.	2.4	5
50	Attenuation of Nicotine-Induced Antinociception, Rewarding Effects, and Dependence in μ-Opioid Receptor Knock-Out Mice. Journal of Neuroscience, 2002, 22, 10935-10940.	3.6	213
51	The endogenous cannabinoid system and the basal ganglia. , 2002, 95, 137-152.		126
52	Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington's disease. Brain Research, 2002, 929, 236-242.	2.2	107
53	Involvement of the opioid system in the anxiolytic-like effects induced by Δ9-tetrahydrocannabinol. Psychopharmacology, 2002, 163, 111-117.	3.1	205
54	Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington's disease. Synapse, 2002, 44, 23-35.	1.2	114

#	Article	IF	CITATIONS
55	Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. Journal of Neurochemistry, 2001, 78, 1415-1427.	3.9	197
56	Changes in cannabinoid CB1receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse, 2001, 41, 195-202.	1.2	62
57	Cannabinoid CB1 receptors colocalize with tyrosine hydroxylase in cultured fetal mesencephalic neurons and their activation increases the levels of this enzyme. Brain Research, 2000, 857, 56-65.	2.2	55
58	Decreased cannabinoid CB1 receptor mRNA levels and immunoreactivity in pituitary hyperplasia induced by prolonged exposure to estrogens. Pituitary, 2000, 3, 221-227.	2.9	16
59	Sex Steroid Influence on Cannabinoid CB1 Receptor mRNA and Endocannabinoid Levels in the Anterior Pituitary Gland. Biochemical and Biophysical Research Communications, 2000, 270, 260-266.	2.1	172
60	The endogenous cannabinoid system and brain development. Trends in Neurosciences, 2000, 23, 14-20.	8.6	303
61	Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sciences, 2000, 66, 485-494.	4.3	100
62	Enhancement of Anandamide Formation in the Limbic Forebrain and Reduction of Endocannabinoid Contents in the Striatum of Δ ⁹ â€Tetrahydrocannabinolâ€Tolerant Rats. Journal of Neurochemistry, 2000, 74, 1627-1635.	3.9	144
63	Unilateral 6-Hydroxydopamine Lesions of Nigrostriatal Dopaminergic Neurons Increased Cannabinoid CB1 Receptor mRNA Levels in the Rat Striatum: Possible Therapeutic Implications. , 2000, , 301-305.		0
64	Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. Synapse, 1999, 33, 181-191.	1.2	247
65	Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTPÎ ³ S binding and cannabinoid receptor mRNA levels in several brain structures of adult male rats chronically exposed to R-methanandamide. Neurochemistry International, 1999, 34, 473-482.	3.8	23
66	Time-dependent differences of repeated administration with Δ9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by I¼-opioid and CB1-cannabinoid receptors in the caudate–putamen. Molecular Brain Research, 1999, 67, 148-157.	2.3	61
67	Role of endocannabinoids in brain development. Life Sciences, 1999, 65, 725-736.	4.3	100
68	Brain Regional Distribution of Endocannabinoids: Implications for Their Biosynthesis and Biological Function. Biochemical and Biophysical Research Communications, 1999, 256, 377-380.	2.1	288
69	Identification of Endocannabinoids and Cannabinoid CB ₁ Receptor mRNA in the Pituitary Gland. Neuroendocrinology, 1999, 70, 137-145.	2.5	78
70	Cannabinoid Receptor and WIN-55,212-2-Stimulated [³⁵ S]GTPγS Binding and Cannabinoid Receptor mRNA Levels in the Basal Ganglia and the Cerebellum of Adult Male Rats Chronically Exposed to Δ ⁹ -Tetrahydrocannabinol. Journal of Molecular Neuroscience, 1998, 11, 109-120.	2.3	36
71	Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to ?9-tetrahydrocannabinol. Synapse, 1998, 30, 298-308.	1.2	111
72	Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated [35s]guanylyl-5′-O-(thio)-triphosphate binding in the basal ganglia of aged rats. Neuroscience, 1998, 84, 1075-1083.	2.3	80

#	Article	IF	CITATIONS
73	Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1407, 205-214.	3.8	59
74	Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development. Development (Cambridge), 1998, 125, 3179-3188.	2.5	148
75	Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development. Development (Cambridge), 1998, 125, 3179-88.	2.5	57
76	Δ9-tetrahydrocannabinol increases activity of tyrosine hydroxylase in cultured fetal mesencephalic neurons. Journal of Molecular Neuroscience, 1997, 8, 83-91.	2.3	33
77	Atypical location of cannabinoid receptors in white matter areas during rat brain development. Synapse, 1997, 26, 317-323.	1.2	129