
Rina Bandopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT	Overlock 10	OTf 50742
2	Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 2006, 23, 329-341.	4.4	683
3	The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004, 127, 420-430.	7.6	404
4	Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease. Neurobiology of Aging, 2014, 35, 1111-1115.	3.1	174
5	α-Synuclein fate is determined by USP9X-regulated monoubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18666-18671.	7.1	154
6	Cellular processes associated with <scp>LRRK</scp> 2 function and dysfunction. FEBS Journal, 2015, 282, 2806-2826.	4.7	144
7	SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation and pathological aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13176-13181.	7.1	131
8	Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Human Molecular Genetics, 2014, 23, 4621-4638.	2.9	126
9	Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2900-2910.	4.1	124
10	Brain stem pathology in Parkinson's disease: An evaluation of the Braak staging model. Movement Disorders, 2010, 25, 2508-2515.	3.9	117
11	Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Human Molecular Genetics, 2014, 23, 2055-2077.	2.9	113
12	Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochemical and Biophysical Research Communications, 2013, 441, 862-866.	2.1	79
13	A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain, 2011, 134, 2548-2564.	7.6	76
14	Post-transcriptional regulation of mRNA associated with DJ-1 in sporadic Parkinson disease. Neuroscience Letters, 2009, 452, 8-11.	2.1	73
15	Pathogenesis of Parkinson's disease: emerging role of molecular chaperones. Trends in Molecular Medicine, 2010, 16, 27-36.	6.7	72
16	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	3.3	69
17	Globular glial tauopathies (GCT) presenting with motor neuron disease or frontotemporal dementia: an emerging group of 4-repeat tauopathies. Acta Neuropathologica, 2011, 122, 415-428.	7.7	67
18	Transportin1: a marker of FTLD-FUS. Acta Neuropathologica, 2011, 122, 591-600.	7.7	58

Rina Bandopadhyay

#	Article	IF	CITATIONS
19	Leucineâ€rich repeat kinase 2 interacts with p21â€activated kinase 6 to control neurite complexity in mammalian brain. Journal of Neurochemistry, 2015, 135, 1242-1256.	3.9	57
20	Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biology, 2021, 19, e3001480.	5.6	48
21	Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus. PLoS ONE, 2013, 8, e70724.	2.5	45
22	A Parkinson's disease gene regulatory network identifies the signaling protein RCS2 as a modulator of LRRK2 activity and neuronal toxicity. Human Molecular Genetics, 2014, 23, 4887-4905.	2.9	45
23	Divergent α-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiology of Disease, 2013, 58, 183-190.	4.4	44
24	Differential DJ-1 gene expression in Parkinson's disease. Neurobiology of Disease, 2009, 36, 393-400.	4.4	42
25	TDP-43 pathology in a patient carrying C2019S LRRK2Âmutation and a novel p.Q124E MAPT. Neurobiology of Aging, 2013, 34, 2889.e5-2889.e9.	3.1	41
26	Synphilin-1 and parkin show overlapping expression patterns in human brain and form aggresomes in response to proteasomal inhibition. Neurobiology of Disease, 2005, 20, 401-411.	4.4	40
27	LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Movement Disorders, 2017, 32, 423-432.	3.9	39
28	Phosphorylation of 4E-BP1 in the Mammalian Brain Is Not Altered by LRRK2 Expression or Pathogenic Mutations. PLoS ONE, 2012, 7, e47784.	2.5	39
29	Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution. Journal of Biological Chemistry, 2014, 289, 21386-21400.	3.4	38
30	DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiology of Disease, 2007, 28, 122-132.	4.4	32
31	TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathologica, 2009, 118, 359-369.	7.7	30
32	Expression of DJ-1 in Neurodegenerative Disorders. Advances in Experimental Medicine and Biology, 2017, 1037, 25-43.	1.6	28
33	Pathogenic LRRK2 Mutations Do Not Alter Gene Expression in Cell Model Systems or Human Brain Tissue. PLoS ONE, 2011, 6, e22489.	2.5	27
34	AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease. Human Molecular Genetics, 2013, 22, 2083-2096.	2.9	25
35	Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology. Brain Research, 2018, 1701, 75-84.	2.2	25
36	Sequential Extraction of Soluble and Insoluble Alpha-Synuclein from Parkinsonian Brains. Journal of Visualized Experiments, 2016, , .	0.3	22

Rina Bandopadhyay

#	Article	IF	CITATIONS
37	Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathologica, 2022, 144, 81-106.	7.7	22
38	Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathologica Communications, 2014, 2, 159.	5.2	21
39	The presence of heterogeneous nuclear ribonucleoproteins in frontotemporal lobar degeneration with FUS-positive inclusions. Neurobiology of Aging, 2016, 46, 192-203.	3.1	20
40	Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies. Frontiers in Neuroscience, 2019, 13, 1381.	2.8	20
41	Physiological and pathological roles of LRRK2 in the nuclear envelope integrity. Human Molecular Genetics, 2019, 28, 3982-3996.	2.9	19
42	No pathogenic mutations in the synphilin-1 gene in Parkinson's disease. Neuroscience Letters, 2001, 307, 125-127.	2.1	18
43	Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. Journal of Alzheimer's Disease, 2020, 75, 1417-1435.	2.6	18
44	Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells. Neurochemistry International, 2021, 147, 105070.	3.8	18
45	LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation. Brain, 2021, 144, 1509-1525.	7.6	17
46	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	2.4	16
47	Critical role for DOK1 in PDGF-BB stimulated glioma cell invasion via p130Cas and Rap1 signalling. Journal of Cell Science, 2014, 127, 2647-58.	2.0	15
48	Improving the Gene Ontology Resource to Facilitate More Informative Analysis and Interpretation of Alzheimer's Disease Data. Genes, 2018, 9, 593.	2.4	15
49	Pathological Relevance of Post-Translationally Modified Alpha-Synuclein (pSer87, pSer129, nTyr39) in Idiopathic Parkinson's Disease and Multiple System Atrophy. Cells, 2022, 11, 906.	4.1	14
50	GTP binding controls complex formation by the human ROCO protein MASL 1. FEBS Journal, 2014, 281, 261-274.	4.7	13
51	Development, characterisation and epitope mapping of novel monoclonal antibodies for DJ-1 (PARK7) protein. Neuroscience Letters, 2005, 383, 225-230.	2.1	11
52	In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Research, 2021, 1765, 147503.	2.2	6
53	Pathophysiological implications of RNP granules in frontotemporal dementia and ALS. Neurochemistry International, 2020, 140, 104819.	3.8	5
54	Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview. Advances in Neurobiology, 2017, 15, 55-92.	1.8	2