Paris A Skourides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during <i>Xenopus</i> neural tube closure. Development (Cambridge), 2022, 149, .	2.5	11
2	Recognition of LD motifs by the focal adhesion targeting domains of focal adhesion kinase and prolineâ€rich tyrosine kinase 2â€beta: Insights from molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2021, 89, 29-52.	2.6	1
3	FAK displacement from focal adhesions: a promising strategy to target processes implicated in cancer progression and metastasis. Cell Communication and Signaling, 2021, 19, 3.	6.5	11
4	Mitotic cell responses to substrate topological cues are independent of the molecular nature of adhesion. Science Signaling, 2020, 13, .	3.6	8
5	Methods of Calpain Inhibition to Determine the Role of Calpains in Embryo Development in Amphibians. Methods in Molecular Biology, 2019, 1915, 249-259.	0.9	Ο
6	Determining Temporal and Spatial Expression of Calpains in Amphibians. Methods in Molecular Biology, 2019, 1915, 67-79.	0.9	0
7	Addressing the Functional Determinants of FAK during Ciliogenesis in Multiciliated Cells. Journal of Biological Chemistry, 2017, 292, 488-504.	3.4	13
8	A ligand-independent integrin \hat{l}^21 mechanosensory complex guides spindle orientation. Nature Communications, 2016, 7, 10899.	12.8	35
9	Cell-Autonomous Ca 2+ Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure. Cell Reports, 2015, 13, 2189-2202.	6.4	92
10	1,2,3-Dithiazoles – new reversible melanin synthesis inhibitors: a chemical genomics study. MedChemComm, 2015, 6, 935-946.	3.4	16
11	40LoVe and Samba Are Involved in Xenopus Neural Development and Functionally Distinct from hnRNP AB. PLoS ONE, 2014, 9, e85026.	2.5	3
12	Making the Connection: Ciliary Adhesion Complexes Anchor Basal Bodies to the Actin Cytoskeleton. Developmental Cell, 2014, 28, 70-80.	7.0	115
13	FAK transduces extracellular forces that orient the mitotic spindle and control tissue morphogenesis. Nature Communications, 2014, 5, 5240.	12.8	34
14	A dominant-negative provides new insights into FAK regulation and function in early embryonic morphogenesis. Development (Cambridge), 2013, 140, 4266-4276.	2.5	25
15	Calpain2 protease: A new member of the Wnt/Ca2+ pathway modulating convergent extension movements in Xenopus. Developmental Biology, 2013, 384, 83-100.	2.0	19
16	Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. Developmental Biology, 2013, 380, 243-258.	2.0	29
17	High-Resolution Whole-Mount <i>In Situ</i> Hybridization Using Quantum Dot Nanocrystals. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-9.	3.0	6
18	In Vivo, Site-Specific, Covalent Conjugation of Quantum Dots to Proteins via Split-Intein Splicing. Methods in Molecular Biology, 2012, 906, 157-169.	0.9	8

PARIS A SKOURIDES

#	Article	IF	CITATIONS
19	Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells. Small, 2012, 8, 1029-1037.	10.0	45
20	Activation of Endogenous FAK via Expression of Its Amino Terminal Domain in Xenopus Embryos. PLoS ONE, 2012, 7, e42577.	2.5	13
21	Single-Shot Optical Sectioning Using Two-Color Probes in HiLo Fluorescence Microscopy. Biophysical Journal, 2011, 100, 2810-2819.	0.5	7
22	Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets In vivo. Journal of Nanobiotechnology, 2011, 9, 37.	9.1	22
23	Samba, a <i>Xenopus</i> hnRNP expressed in neural and neural crest tissues. Developmental Dynamics, 2009, 238, 204-209.	1.8	6
24	Intein-mediated site-specific conjugation of Quantum Dots to proteins in vivo. Journal of Nanobiotechnology, 2009, 7, 9.	9.1	25
25	Imaging morphogenesis, in Xenopus with Quantum Dot nanocrystals. Mechanisms of Development, 2009, 126, 828-841.	1.7	26
26	Spatially and temporally regulated α6 integrin cleavage during Xenopus laevis development. Biochemical and Biophysical Research Communications, 2008, 366, 779-785.	2.1	7
27	In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298, 1759-1762.	12.6	2,961
28	Polarized distribution of Bcr-Abl in migrating myeloid cells and co-localization of Bcr-Abl and its target proteins. Oncogene, 1999, 18, 1165-1176.	5.9	29