
Michela Salamone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8856972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Reactivity and Selectivity in Hydrogen Atom Transfer from Aliphatic C–H Bonds to Alkoxyl Radicals: Role of Structural and Medium Effects. Accounts of Chemical Research, 2015, 48, 2895-2903.	15.6	192
2	The Quest for Selectivity in Hydrogen Atom Transfer Based Aliphatic C–H Bond Oxygenation. Accounts of Chemical Research, 2018, 51, 1984-1995.	15.6	122
3	Reaction Pathways of Alkoxyl Radicals. The Role of Solvent Effects on C–C Bond Fragmentation and Hydrogen Atom Transfer Reactions. Synlett, 2014, 25, 1803-1816.	1.8	69
4	Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp ³)–H functionalization promoted by electrophilic reagents. Chemical Society Reviews, 2022, 51, 2171-2223.	38.1	57
5	Tuning Selectivity in Aliphatic C–H Bond Oxidation of <i>N</i> -Alkylamides and Phthalimides Catalyzed by Manganese Complexes. ACS Catalysis, 2017, 7, 5903-5911.	11.2	50
6	Hydrogen Atom Abstraction Selectivity in the Reactions of Alkylamines with the Benzyloxyl and Cumyloxyl Radicals. The Importance of Structure and of Substrate Radical Hydrogen Bonding. Journal of the American Chemical Society, 2011, 133, 16625-16634.	13.7	49
7	Kinetic Solvent Effects on Hydrogen Abstraction Reactions from Carbon by the Cumyloxyl Radical. The Role of Hydrogen Bonding. Organic Letters, 2010, 12, 3654-3657.	4.6	46
8	Bimodal Evans–Polanyi Relationships in Hydrogen Atom Transfer from C(sp ³)–H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. Journal of the American Chemical Society, 2021, 143, 11759-11776.	13.7	39
9	Practical and Selective sp ³ Câ^'H Bond Chlorination via Aminium Radicals. Angewandte Chemie - International Edition, 2021, 60, 7132-7139.	13.8	34
10	Effect of Metal Ions on the Reactions of the Cumyloxyl Radical with Hydrogen Atom Donors. Fine Control on Hydrogen Abstraction Reactivity Determined by Lewis Acid–Base Interactions. Journal of the American Chemical Society, 2013, 135, 415-423.	13.7	31
11	Understanding Kinetic Solvent Effects on Hydrogen Abstraction Reactions from Carbon by the Cumyloxyl Radical. Organic Letters, 2011, 13, 6110-6113.	4.6	30
12	Absolute Rate Constants for Hydrogen Atom Transfer from Tertiary Amides to the Cumyloxyl Radical: Evaluating the Role of Stereoelectronic Effects. Journal of Organic Chemistry, 2014, 79, 7179-7184.	3.2	29
13	Photolysis of 1-Alkylcycloalkanols in the Presence of (Diacetoxyiodo)benzene and I2. Intramolecular Selectivity in the β-Scission Reactions of the Intermediate 1-Alkylcycloalkoxyl Radicals. Journal of Organic Chemistry, 2004, 69, 5281-5289.	3.2	28
14	Importance of π-Stacking Interactions in the Hydrogen Atom Transfer Reactions from Activated Phenols to Short-Lived <i>N</i> -Oxyl Radicals. Journal of Organic Chemistry, 2014, 79, 5209-5218.	3.2	28
15	Enhanced Reactivity in Hydrogen Atom Transfer from Tertiary Sites of Cyclohexanes and Decalins via Strain Release: Equatorial C–H Activation vs Axial C–H Deactivation. Journal of Organic Chemistry, 2015, 80, 4710-4715.	3.2	28
16	Hydrogen Atom Abstraction Reactions from Tertiary Amines by Benzyloxyl and Cumyloxyl Radicals: Influence of Structure on the Rate-Determining Formation of a Hydrogen-Bonded Prereaction Complex. Journal of Organic Chemistry, 2011, 76, 6264-6270.	3.2	27
17	Reactions of the Cumyloxyl and Benzyloxyl Radicals with Strong Hydrogen Bond Acceptors. Large Enhancements in Hydrogen Abstraction Reactivity Determined by Substrate/Radical Hydrogen Bonding. Journal of Organic Chemistry, 2012, 77, 10479-10487.	3.2	27
18	Hydrogen Abstraction from Cyclic Amines by the Cumyloxyl and Benzyloxyl Radicals. The Role of Stereoelectronic Effects and of Substrate/Radical Hydrogen Bonding. Journal of Organic Chemistry, 2012, 77, 8556-8561.	3.2	27

MICHELA SALAMONE

#	ARTICLE	IF	CITATIONS
19	Reactions of the Phthalimide <i>N</i> -Oxyl Radical (PINO) with Activated Phenols: The Contribution of l€-Stacking Interactions to Hydrogen Atom Transfer Rates. Journal of Organic Chemistry, 2013, 78, 1026-1037.	3.2	25
20	Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C–H Bonds. Journal of Organic Chemistry, 2016, 81, 9269-9278.	3.2	25
21	Reactivity and Selectivity Patterns in Hydrogen Atom Transfer from Amino Acid C–H Bonds to the Cumyloxyl Radical: Polar Effects as a Rationale for the Preferential Reaction at Proline Residues. Journal of Organic Chemistry, 2015, 80, 3643-3650.	3.2	24
22	Kinetic Study of the Reaction of the Phthalimide-N-oxyl Radical with Amides: Structural and Medium Effects on the Hydrogen Atom Transfer Reactivity and Selectivity. Journal of Organic Chemistry, 2016, 81, 11924-11931.	3.2	19
23	Electron Transfer Properties of Alkoxyl Radicals. A Time-Resolved Kinetic Study of the Reactions of the <i>tert</i> -Butoxyl, Cumyloxyl, and Benzyloxyl Radicals with Alkyl Ferrocenes. Journal of Organic Chemistry, 2010, 75, 5875-5881.	3.2	17
24	Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C–H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals. Journal of Organic Chemistry, 2015, 80, 9214-9223.	3.2	17
25	One-electron oxidation of ferrocenes by short-lived N-oxyl radicals. The role of structural effects on the intrinsic electron transfer reactivities. Organic and Biomolecular Chemistry, 2011, 9, 4085.	2.8	16
26	Evaluation of Polar Effects in Hydrogen Atom Transfer Reactions from Activated Phenols. Journal of Organic Chemistry, 2019, 84, 1778-1786.	3.2	16
27	Resolving Oxygenation Pathways in Manganese-Catalyzed C(sp ³)–H Functionalization via Radical and Cationic Intermediates. Journal of the American Chemical Society, 2022, 144, 7391-7401.	13.7	16
28	Hydrogen Atom Transfer from Alkanols and Alkanediols to the Cumyloxyl Radical: Kinetic Evaluation of the Contribution of α-C–H Activation and β-C–H Deactivation. Journal of Organic Chemistry, 2018, 83, 5539-5545.	3.2	13
29	Reactions of the Cumyloxyl Radical with Secondary Amides. The Influence of Steric and Stereoelectronic Effects on the Hydrogen Atom Transfer Reactivity and Selectivity. Organic Letters, 2014, 16, 6444-6447.	4.6	12
30	Electronic and Torsional Effects on Hydrogen Atom Transfer from Aliphatic C–H Bonds: A Kinetic Evaluation via Reaction with the Cumyloxyl Radical. Journal of Organic Chemistry, 2017, 82, 13542-13549.	3.2	12
31	Deciphering Reactivity and Selectivity Patterns in Aliphatic C–H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. Journal of Organic Chemistry, 2021, 86, 9925-9937.	3.2	6
32	Factors Governing Reactivity and Selectivity in Hydrogen Atom Transfer from C(sp ³)–H Bonds of Nitrogen-Containing Heterocycles to the Cumyloxyl Radical. Journal of Organic Chemistry, 0, , .	3.2	6
33	Hydrogen atom transfer from 1,2- and 1,3-diols to the cumyloxyl radical. The role of structural effects on metal-ion induced C–H bond deactivation. Chemical Communications, 2019, 55, 5227-5230.	4.1	3