
Natalia I Kalinina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immature Vascular Smooth Muscle Cells in Healthy Murine Arteries and Atherosclerotic Plaques: Localization and Activity. International Journal of Molecular Sciences, 2022, 23, 1744.	4.1	0
2	A Novel Cre/lox71-Based System for Inducible Expression of Recombinant Proteins and Genome Editing. Cells, 2022, 11, 2141.	4.1	1
3	Platelet-Derived Growth Factor Induces SASP-Associated Gene Expression in Human Multipotent Mesenchymal Stromal Cells but Does Not Promote Cell Senescence. Biomedicines, 2021, 9, 1290.	3.2	5
4	T-Cadherin and the Ratio of Its Ligands as Predictors of Carotid Atherosclerosis: A Pilot Study. Biomedicines, 2021, 9, 1398.	3.2	2
5	Angiotensin receptor subtypes regulate adipose tissue renewal and remodelling. FEBS Journal, 2020, 287, 1076-1087.	4.7	22
6	Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. International Journal of Molecular Sciences, 2020, 21, 4442.	4.1	12
7	Secretome of Mesenchymal Stromal Cells Prevents Myofibroblasts Differentiation by Transferring Fibrosis-Associated microRNAs within Extracellular Vesicles. Cells, 2020, 9, 1272.	4.1	44
8	Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. International Journal of Molecular Sciences, 2019, 20, 1656.	4.1	104
9	Data supporting that adipose-derived mesenchymal stem/stromal cells express angiotensin II receptors in situ and in vitro. Data in Brief, 2018, 16, 327-333.	1.0	4
10	Flow cytometry analysis of adrenoceptors expression in human adipose-derived mesenchymal stem/stromal cells. Scientific Data, 2018, 5, 180196.	5.3	9
11	Noradrenaline Sensitivity Is Severely Impaired in Immortalized Adipose-Derived Mesenchymal Stem Cell Line. International Journal of Molecular Sciences, 2018, 19, 3712.	4.1	7
12	UPAR silencing reveals its role in neuroblastoma. Oncotarget, 2018, 9, 31163-31164.	1.8	0
13	Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor. Stem Cell Research, 2017, 25, 115-122.	0.7	27
14	Activation of β-adrenergic receptors is required for elevated α1A-adrenoreceptors expression and signaling in mesenchymal stromal cells. Scientific Reports, 2016, 6, 32835.	3.3	39
15	Data supporting that miR-92a suppresses angiogenic activity of adipose-derived mesenchymal stromal cells by down-regulating hepatocyte growth factor. Data in Brief, 2016, 6, 295-310.	1.0	6
16	UK–Russia Researcher Links Workshop: extracellular vesicles – mechanisms of biogenesis and roles in disease pathogenesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 1–5ÂMarch 2015. Journal of Extracellular Vesicles, 2015, 4, 28094.	12.2	1
17	587. MiRNA-92a Is Involved in the Regulation of Adipose-Derived Stromal Cell (ADSC) Angiogenic Properties. Molecular Therapy, 2015, 23, S233-S234.	8.2	1
18	Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Research and Therapy, 2015, 6, 221.	5.5	114

NATALIA I KALININA

#	Article	IF	CITATIONS
19	Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration. Biomedicine and Pharmacotherapy, 2015, 74, 63-70.	5.6	28
20	miR-92a regulates angiogenic activity of adipose-derived mesenchymal stromal cells. Experimental Cell Research, 2015, 339, 61-66.	2.6	36
21	T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules. Cancers, 2015, 7, 1349-1370.	3.7	13
22	Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. Journal of Translational Medicine, 2014, 12, 337.	4.4	73
23	Adipose-Derived Mesenchymal Stromal Cells From Aged Patients With Coronary Artery Disease Keep Mesenchymal Stromal Cell Properties but Exhibit Characteristics of Aging and Have Impaired Angiogenic Potential. Stem Cells Translational Medicine, 2014, 3, 32-41.	3.3	104
24	Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Communication and Signaling, 2014, 12, 26.	6.5	240
25	In Vitro Neuronal Induction of Adipose-Derived Stem Cells and their Fate after Transplantation into Injured Mouse Brain. Current Medicinal Chemistry, 2012, 19, 5170-5177.	2.4	32
26	Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo. PLoS ONE, 2011, 6, e17899.	2.5	248
27	Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. Journal of Translational Medicine, 2011, 9, 10.	4.4	178
28	Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow under hypoxia and inflammation in vitro. Cell and Tissue Biology, 2010, 4, 117-127.	0.4	14
29	Left-ventricular heart aneurism as a new source of resident cardiac stem cells. Cell and Tissue Biology, 2010, 4, 546-555.	0.4	2
30	An attempt to prevent senescence: A mitochondrial approach. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 437-461.	1.0	359
31	Nonviral Transfection of Adipose Tissue Stromal Cells: An Experimental Study. Bulletin of Experimental Biology and Medicine, 2009, 147, 509-512.	0.8	1
32	Effects of hyperglycemia on functional state of human umbilical vein endothelial cells in vitro. Doklady Biological Sciences, 2009, 426, 210-212.	0.6	1
33	Adipose Stromal Cells Stimulate Angiogenesis via Promoting Progenitor Cell Differentiation, Secretion of Angiogenic Factors, and Enhancing Vessel Maturation. Tissue Engineering - Part A, 2009, 15, 2039-2050.	3.1	184
34	Detection of bone marrow-derived cells in neointimal thickening in the rat carotid artery by nested polymerase chain reaction. Russian Journal of Developmental Biology, 2008, 39, 227-231.	0.5	0
35	Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochemistry (Moscow), 2008, 73, 1300-1316.	1.5	82
36	T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis, 2007, 10, 183-195.	7.2	55

NATALIA I KALININA

#	Article	IF	CITATIONS
37	Transforming Growth Factor-β, Cell Signaling and Cardiovascular Disorders. Current Vascular Pharmacology, 2005, 3, 55-61.	1.7	74
38	Smad Expression in Human Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1391-1396.	2.4	93
39	Increased Expression of the DNA-Binding Cytokine HMGB1 in Human Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2320-2325.	2.4	259
40	Cytochrome <i>b</i> ₅₅₈ –Dependent NAD(P)H Oxidase–Phox Units in Smooth Muscle and Macrophages of Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 2037-2043.	2.4	100
41	Proliferative activity and expression of cyclin-dependent kinase inhibitor p21WAF1 and p53 protein in endothelial cells of human aorta during replicative aging in vitro. Bulletin of Experimental Biology and Medicine, 2002, 134, 81-83.	0.8	6
42	Effects of transforming growth factor-beta(1)on proliferation of smooth muscle cells in human aortic intima and human promonocytic leukemia THP-1 cells. Bulletin of Experimental Biology and Medicine, 2001, 131, 162-164.	0.8	1
43	Tumor Necrosis Factor Receptor and Ligand Superfamily Family Members TNFRSF14 and LIGHT. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1873-1875.	2.4	15